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Introduction

The BTYDplus package provides advanced statistical methods to describe and predict
customers’ purchase behavior in non-contractual settings. It fits probabilistic models
to historic transaction records for computing customer-centric metrics of managerial

interest.

The challenge of this task is threefold: For one, the churn event in a non-contractual cus-
tomer relationship is not directly observable, but needs to be inferred indirectly based
on observed periods of inactivity. Second, with customers behaving differently, yet
having oftentimes only few transactions recorded so far, we require statistical methods
that can utilize cohort-level patterns as priors for estimating customer-level quantities.
And third, we attempt to predict the (unseen) future, thus need assumptions regarding

the future dynamics.

Figure 1 displays the complete transaction records of 30 sampled customers of an online
grocery store. Each horizontal line represents a customer, and each circle a purchase

event. The typical questions that arise are:

e How many customers does the firm still have?

e How many customers will be active in one year from now?
e How many transactions can be expected in next X weeks?
e Which customers can be considered to have churned?

e Which customers will provide the most value to the company going forward?



library (BTYDplus)

data("groceryElog")

set.seed(123)

# plot timing patterns of 30 sampled customers

plotTimingPatterns(groceryElog, n = 30, T.cal = "2007-05-15",

headers = c("Past", "Future"), title = "")
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Figure 1: Timing patterns for sampled grocery customers

Fitting a buy-till-you-die model to a particular customer cohort not just allows ana-
lysts to describe it in terms of its heterogeneous distribution of purchase patterns and
dropout probabilities, but also provides answers for all of the above stated questions.
On an aggregated level the estimated number of future transactions can then be, for
example, used for capacity and production planning. The estimated future value of the
cohort for assessing the return on investment for customer acquistion spends. On an
individual level the customer database can be enriched with estimates on a customer’s
status, future activity and future value. customer scores like these can be then uti-
lized to adapt services, messages and offers with respect to customers’ state and value.
Given the accessibility and speed of the provided models, practitioners can score their

customer base with these advanced statistical techniques on a continuous basis.



Models

The BTYD package already provides implementations for the Pareto/NBD (Schmit-
tlein, Morrison, and Colombo 1987), the BG/NBD (P. S. Fader, Hardie, and Lee 2005)
and the BG/BB (Fader, Hardie, and Shang 2010) model. BTYDplus complements
the BTYD package by providing several additional buy-till-you-die models, that have
been published in the marketing literature, but whose implementation are complex and
non-trivial. In order to create a consistent experience of users of both packages, the

BTYDplus adopts method signatures from BTYD where possible.

The models provided as part of BT'YDplus are:

o NBD Ehrenberg (1959)

« MBG /NBD Batislam, Denizel, and Filiztekin (2007), Hoppe and Wagner (2007)
« BG/CNBD-k Reutterer, Platzer, and Schroder (2020)

« MBG/CNBD-k Reutterer, Platzer, and Schroder (2020)

« Pareto/NBD (HB) Ma and Liu (2007)

o Pareto/NBD (Abe) Abe (2009)

o Pareto/GGG Platzer and Reutterer (2016)

The number of implemented models raises the question, which one to use, and which one
works best in a particular case. There is no simple answer to that, but practitioners
could consider trying out all of them for a given dataset, assess data fit, calculate
forecast accuracy based on a holdout time period and then make a tradeoff between

calculation speed, data fit and accuracy.

The implementation of the original NBD model from 1959 serves mainly as a basic
benchmark. It assumes a heterogenous purchase process, but doesn’t account for the
possibility of customer defection. The Pareto/NBD model, introduced in 1987, com-
bines the NBD model for transactions of active customers with a heterogeneuos dropout
process, and to this date can still be considered a gold standard for buy-till-you-die
models. The BG/NBD model adjusts the Pareto/NBD assumptions with respect to

the dropout process in order to speed up computation. It is able to retain a similar


https://cran.r-project.org/package=BTYD
https://github.com/mplatzer/BTYDplus#readme

level of data fit and forecast accuracy, but also improves the robustness of the param-
eter search. However, the BG/NBD model particularly assumes that every customer
without a repeat transaction has not defected yet, independent of the elapsed time
of inactivity. This seems counterintuitive, particularly when compared to customers
with repeat transactions. Thus the MBG/NBD has been developed to eliminate this
inconsistency by allowing customers without any activity to also remain inactive. Data
fit and forecast accuracy are comparable to the BG/NBD, yet it results in more plau-
sible estimates for the dropout process. The more recently developed BG/CNBD-k
and MBG/CNBD-k model classes extend BG/NBD and MBG/NBD each but allow
for regularity within the transaction timings. If such regularity is present (even in
a mild form), these models can yield significant improvements in terms of customer
level forecasting accuracy, while the computational costs remain at a similar order of

magnitude.

All of the aforementioned models benefit from closed-form solutions for key expres-
sions and thus can be efficiently estimated via means of maximum likelihood estima-
tion (MLE). However, the necessity of deriving closed-form expressions restricts the
model builder from relaxing the underlying behavioral assumptions. An alternative es-
timation method for probabilistic models is via Markov-Chain-Monte-Carlo (MCMC)
simulation. MCMC comes at significantly higher costs in terms of implementation
complexity and computation time, but it allows for more flexible assumptions. Addi-
tionally, one gains the benefits of (1) estimated marginal posterior distributions rather
than point estimates, (2) individual-level parameter estimates, and thus (3) straight-
forward simulations of customer-level metrics of managerial interest. The hierarchical
Bayes variant of Pareto/NBD (i.e., Pareto/NBD (HB)) served as a proof-of-concept
for the MCMC approach, but doesn’t yet take full advantage of the gained flexibility,
as it sticks to the original Pareto/NBD assumptions. In contrast, Abe’s variant of the
Pareto/NBD (termed here Pareto/NBD (Abe)) relaxes the independence of purchase
and dropout process, plus is capable of incorporating customer covariates. Particularly
the latter can turn out to be very powerful, if any of such known covariates helps in
explaining the heterogeneity within the customer cohort. Finally, the Pareto/GGG is

another generalization of Pareto/NBD, which allows for a varying degree of regularity



within the transaction timings. Analogous to (M)BG/CNBD-k, incorporating regu-
larity can yield significant improvements in forecasting accuracy, if such regularity is

present in the data.

Analytical Workflow

The typical analysis process starts out by reading in a complete log of all events or
transactions of an existing customer cohort. It is up to the analyst to define how a
customer base is split into cohorts, but typically these are defined based on customers’
first transaction date and/or the acquisition channel. The data requirements for such
an event log are minimal, and only consist of a customer identifier field cust, and a date
field of class Date or POSIXt. If the analysis should also cover the monetary component,
the event log needs to contain a corresponding field sales. In order to get started
quickly, BTYDplus provides an event log for customers of an online grocery store over
a time period of two years (data("groceryElog")). Further, for each BTYDplus
model data generators are available (*.GenerateData), which allow to create artificial

transaction logs, that follow the assumptions of a particular model.

Table 1: Transaction Log Example

cust date sales
4 1997-01-01 29.33
4 1997-01-18 29.73
4 1997-08-02 14.96
4 1997-12-12 26.48

21 1997-01-01 63.34
21 1997-01-13 11.77

Once the transaction log has been obtained, it needs to be converted into a customer-
by-sufficient-statistic summary table (via the elog2cbs method), so that the data can

be used by model-specific parameter estimation methods (*.EstimateParameters for



MLE- and *.DrawParameters for MCMC-models). The estimated parameters already
provide insights regarding the purchase and dropout process, e.g. mean purchase fre-
quency, mean lifetime, variation in dropout probability, etc. For MLE-estimated mod-
els we can further report the maximized log-likelihood (via the *.cbs.LL methods) to
benchmark the models in terms of their data fit to a particular dataset. Further, esti-
mates for the conditional and unconditional expected number of transactions (*.pmf,
* .Expectation, *.ConditionalExpectedTransactions), as well as for the (unobserv-
able) status of a customer (*.PAlive) can be computed based on the parameters. Such
estimates can then be analyzed either on an individual level, or be aggregated to cohort

level.

Helper Methods

BTYDplus provides various model-independent helper methods for handling and de-

scribing customers’ transaction logs.

Convert Event Log to Weekly Transactions

Before starting to fit probabilistic models, an analyst might be interested in reporting
the total number of transactions over time, to gain a first understanding of the dynamics
at a cohort level. For this purpose the methods elog2cum and elog2inc are provided.
These take an event log as a first argument, and count for each time unit the cumulated
or incremental number of transactions. If argument first is set to TRUE, then a

customer’s initial transaction will be included, otherwise not.

data("groceryElog")
op <- par(mfrow = c(1, 2), mar = c(2.5, 2.5, 2.5, 2.5))

# incremental

weekly_inc_total <- elog2inc(groceryElog, by = 7, first = TRUE)

weekly_inc_repeat <- elog2inc(groceryElog, by = 7, first FALSE)
plot(weekly_inc_total, typ = "1", frame = FALSE, main = "Incremental")

lines(weekly_inc_repeat, col = "red")



# cumulative

TRUE)

weekly_cum_total <- elog2cum(groceryElog, by = 7, first

weekly_cum_repeat <- elog2cum(groceryElog, by = 7, first = FALSE)

plot(weekly_cum_total, typ = "1", frame = FALSE, main = "Cumulative")

lines(weekly_cum_repeat, col = "red")
par (op)
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Figure 2: Weekly trends for the grocery dataset

The x-axis represents time measured in weeks, thus we see that the customers were ob-
served over a two year time period. The gap between the red line (=repeat transactions)
and the black line (=total transactions) illustrates the customers’ initial transactions.
These only occur within the first 13 weeks because the cohort of this particular dataset

has been defined by their acquisition date falling within the first quarter of 2006.

Convert Transaction Log to CBS format

The elog2cbs method is an efficient implementation for the conversion of an event log
into a customer-by-sufficient-statistic (CBS) data.frame, with a row for each customer.

This is the required data format for estimating model parameters.

data("groceryElog")
head(elog2cbs(groceryElog), 5)



#> cust t.z litt first T.cal
#> 1 1 0 0.00000 0.000000 2006-01-01 104

#> 2 2 1 50.28571 3.917721 2006-01-01 104
#> 3 3 33 99.28571 32.887165 2006-01-01 104
#> 4 4 0 0.00000 0.000000 2006-01-01 104
#> 5 5 5 89.85714 14.353181 2006-01-01 104

The returned field cust is the unique customer identifier, x the number of repeat trans-
actions (i.e., frequency), t.x the time of the last recorded transaction (i.e., recency),
litt the sum over logarithmic intertransaction times (required for estimating regular-
ity), first the date of the first transaction, and T.cal the duration between the first
transaction and the end of the calibration period. If the provided elog data.frame
contains a field sales, then this will be summed up, and returned as an additional
field, named sales. Note, that transactions with identical cust and date field are

counted as a single transaction, but with sales being summed up.

The time unit for expressing t.x, T.cal and litt are determined via the argument

units, which is passed forward to method difftime, and defaults to weeks.

Argument T.tot allows one to specify the end of the observation period, i.e., the last
possible date of an event to still be included in the event log. If T.tot is not provided,
then the date of the last recorded event will be assumed to coincide with the end of the
observation period. If T.tot is provided, then any event that occurs after that date is

discarded.

Argument T.cal allows one to calculate the summary statistics for a calibration and a
holdout period separately. This is particularly useful for evaluating forecasting accuracy
for a given dataset. If T.cal is not provided, then the whole observation period is
considered, and is then subsequently used for for estimating model parameters. If it
is provided, then the returned data.frame contains two additional fields, with x.star
representing the number of repeat transactions during the holdout period of length
T.star. And only those customers are contained, who have had at least one event

during the calibration period.



data("groceryElog")

range (groceryElog$date)

#> [1] "2006-01-01" "2007-12-30"

groceryCBS <- elog2cbs(groceryElog, T.cal = "2006-12-31")
head(groceryCBS, 5)

#> cust <« oG8 litt first T.cal T.star z.star
#> 1 1 0 0.00000 0.000000 2006-01-01 52 52 0
#> 2 2 1 50.28571 3.917721 2006-01-01 52 52 0
#> 3 3 19 48.57143 16.952179 2006-01-01 52 52 14
#> 4 4 0 0.00000 0.000000 2006-01-01 52 52 0
#> 5 5 2 40.42857 6.012667 2006-01-01 52 52 3

Estimate Regularity

The models BG/CNBD-k, MBG/CNBD-k and Pareto/GGG are capable of leveraging
regularity within transaction timings for improving forecast accuracy. The method
estimateRegularity provides a quick check for the degree of regularity in the event
timings. A return value of close to 1 supports the assumption of exponentially dis-
tributed intertransaction times, whereas values significantly larger than 1 reveal the
presence of regularity. Estimation is either done by 1) assuming a same degree of reg-
ularity across all customers (method = "wheat"), or 2) by estimating regularity for
each customer separately, as the shape parameter of a fitted gamma distribution, and
then return the median across estimates. The latter methods, though, require sufficient

(> 10) transactions per customer.

Wheat and Morrison (1990)’s method calculates for each customer a statistic M based
on her last two intertransaction times as M := ITT;/(ITT; + ITT2). That measure
is known to follow a Beta(k, k) distribution, if the intertransaction times of customers
follow Gamma(k, \) with a shared k but potentially varying A, and k can then be
estimated as (1—4-Var(M))/(8-Var(M)). The corresponding diagnostic plot shows the
actual distribution of M vs. the theoretical distribution for Exponential, respectively

for Erlang-2 distributed I'TTs.



data("groceryElog")
op <- par(mfrow = c(1, 2))
(k.wheat <- estimateRegularity(groceryElog, method = "wheat",
plot = TRUE, title = "Wheat & Morrison"))

#> [1] 1.824447
(k.mle <- estimateRegularity(groceryElog, method = "mle",

plot = TRUE, title = "Maximum Likelihood"))
#> [1] 3.262912

par (op)

Wheat & Morrison

Maximum Likelihood

Figure 3: Diagnostic plots for estimating regularity

Applied to the online grocery dataset the Wheat & Morrison estimator reports a reg-
ularity estimate of close to 2, suggesting that a Erlang-2 might be more appropriate
than the exponential distribution for modelling intertransaction times in this case. The
peak in the plotted distribution additionally suggests that there is a subset of customers

exhibiting an even stronger degree of regularity.

The maximum likelihood estimation method fits separate gamma distributions to the
intertransaction times of each customer with more than 10 events. The reported me-
dian estimate of k=3.26 also indicate stronger degrees of regularity for this subset of
highly active customers. The boxplot then gives a deeper understanding of the dis-
tribution of k estimates, revealing a heterogeneity within regularity across the cohort,

thus suggesting that this dataset is a good candidate for the Pareto/ GGG model.
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Maximum Likelihood Estimated Models
NBD

The NBD model by Ehrenberg (1959) assumes a heterogenous, yet constant purchasing
process, with expontentially distributed intertransaction times, whereas its purchase

rate \ is Gamma(r, a)-distributed across customers.

Fitting the model requires converting the event log first to a CBS format and passing the
dataset to nbd.EstimateParameters. The method searches (by using stats::optim)
for that pair of (r, a) heterogeneity parameters, that maximizes the log-likelihood func-

tion (nbd.cbs.LL) given the data.

# load grocery dataset, tf 4t hasn’t been done before
if (lexists("groceryCBS")) {
data("groceryElog")
groceryCBS <- elog2cbs(groceryElog, T.cal = "2006-12-31")
3
# estimate NBD parameters
round (params.nbd <- nbd.EstimateParameters(groceryCBS), 3)
#> T alpha
#> 0.420 5.245
# report log-likelihood
nbd.cbs.LL(params.nbd, groceryCBS)
#> [1] -16376.86

With the mean of the Gamma distribution being r/ca, the mean estimate for A is 0.08,

which translates to a mean intertransaction time of 1/\ of 12.48 weeks.

The expected number of (future) transactions for a customer, conditional on her past
(x and T.cal), can be computed with nbd.ConditionalExpectedTransactions. By

passing the whole CBS we can easily generate estimates for all customers in the cohort.
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# calculate expected future transactions for customers who’ve

# had 1 to 5 transactions in first 52 weeks

est5.nbd <- nbd.ConditionalExpectedTransactions(params.nbd,

T.star = 52, x = 1:5, T.cal = 52)

for (i in 1:5) {

#>
#>
#>
#>
#>

: 1.290
: 2.199
. 3.107
: 4.015
: 4.924

# predict whole customer cohort

cat("x =", i, ":", sprintf("%5.3f", est5.nbd[i]l), "\n")

groceryCBS$xstar.nbd <- nbd.ConditionalExpectedTransactions(

params = params.nbd, T.star = 52,

x = groceryCBS$x, T.cal = groceryCBS$T.cal)

# compare predictions with actuals at aggregated level

rbind(‘Actuals®

#>

#> Actuals
#> NBD

As can be seen, the NBD model heavily overforecasts the actual number of transactions
(by 87.5%), which can be explained by the lack of a dropout process in the model
assumptions. All customers are assumed to remain just as active in the second year, as
they have been in their first year. However, figure 2 shows clearly a downward trend in

the incremental transaction counts for the online grocery customers, thus mandating a

‘NBD¢

Holdout
3389

c(‘Holdout*

c(‘Holdout*

6355

different model.

sum(groceryCBS$x.star)),

round (sum(groceryCBS$xstar.nbd))))
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Pareto/NBD

The Pareto/NBD model (Schmittlein, Morrison, and Colombo 1987) combines the
NBD model with the possibility of customers becoming inactive. A customer’s state,
however, is not directly observable, and the model needs to draw inferences based on the
observed elapsed time since a customer’s last activity, i.e., T.cal - t.x. In particular
the model assumes a customer’s lifetime 7 to be exponential distributed with parameter

w, whereas p is Gammalf(s, 5)-distributed across customers.

The Pareto/NBD implementation is part of the BTYD package, but the workflow of
fitting the model and making predictions is analogous to BTYDplus (respectively vice

versa).

# load grocery dataset, tf 4t hasn’t been done before
if (lexists("groceryCBS")) {
data("groceryElog")
groceryCBS <- elog2cbs(groceryElog, T.cal = "2006-12-31")
3
# estimate Pareto/NBD parameters
params.pnbd <- BTYD: :pnbd.EstimateParameters(groceryCBS[, c("x", "t.x", "T.cal")])
#> Warning in maz(logpar): mo non-missing arguments to maz; returning —Inf
#> Warning in min(logpar): mo non-missing arguments to min; returning Inf
names (params.pnbd) <- c("r", "alpha", "s", "beta")
round (params.pnbd, 3)
#> T alpha s beta
#> 0.786 5.679 0.386 5.717
# report log-likelihood
BTYD: :pnbd.cbs.LL(params.pnbd, groceryCBS[, c("x", "t.x", "T.cal")])
#> [1] -15782.39

For one, we can note, that the maximized log-likelihood of Pareto/NBD is higher than
for the NBD model, implying that its data fit is better. And second, by estimating a

mean lifetime 1/(3/s) of 14.8 weeks, the estimated mean intertransaction times change

13



from 12.48 to 7.22 weeks, when compared to NBD.

Let’s now again compute the conditional expected transactions for five simulated cus-
tomers with an increasing number of observed transactions, but all with an observed

overly long period of recent inactivity.

# calculate expected future transactions for customers who’ve

# had 1 to 5 transactions in first 12 weeks, but then remained

# inactive for 40 weeks

est5.pnbd <- BTYD::pnbd.ConditionalExpectedTransactions(params.pnbd,
T.star = 52, x = 1:5, t.x = 12, T.cal = 52)

for (i in 1:5) {

cat("x =", i, ":", sprintf("}5.3f", est5.pnbd[i]), "\n")
}
#> =1 : 0.448
#> x =2 : 0.363
#> =3 : 0.217
#> x = 4 : 0.109
#> =5 : 0.049

# predict whole customer cohort
groceryCBS$xstar.pnbd <- BTYD::pnbd.ConditionalExpectedTransactions(
params = params.pnbd, T.star = 52,
x = groceryCBS$x, t.x = groceryCBS$t.x,
T.cal = groceryCBS$T.cal)
# compare predictions with actuals at aggregated level
rbind(‘Actuals® = c(‘Holdout‘ = sum(groceryCBS$x.star)),
‘Pareto/NBD‘ = c(‘Holdout‘ = round(sum(groceryCBS$xstar.pnbd))))
#> Holdout
#> Actuals 3389
#> Pareto/NBD 3991

As expected, the Pareto/NBD yields overall lower and thus more realistic estimates

14



than the NBD. However, the results also reveal an interesting pattern, which might
seem at first sight counter intuitive. Customers with a very active purchase history
(e.g., customers with 5 transactions) receive lower estimates than customers which
have been less active in the past. Peter S Fader, Hardie, and Lee (2005) discuss this
apparent paradox in more detail, yet the underlying mechanism can be easily explained

by looking at the model’s assessment of the latent activity state.

# P(alive) for customers who’ve had 1 to 5 transactions in first
# 12 weeks, but then remained inactive for 40 weeks
palive.pnbd <- BTYD::pnbd.PAlive(params.pnbd,
x = 1:5, t.x = 12, T.cal = 52)
for (i in 1:5) {

cat("x =", i, ":", sprintf("}5.2f %%", 100*palive.pnbd[i]l), "\n")
}
#>x =1 : 31.86 )
#> ¢ =2 : 16.52 )

2
#> ¢ = 3 7.28
#>x =4 : 2.8 7
#> x = 5 1.07 7
The probability of still being alive after a 40 week purchase hiatus drops from 31.9%
for the one-time-repeating customer to 1.1% for the customer which has had already
5 transactions. The elapsed time of inactivity is a stronger indication of churn for
the highly frequent than for the less frequent purchasing customer, as a low purchase

frequency also allows for the possibility of such long intertransaction times as the

observed 40 weeks.

BG/CNBD-k and MBG/CNBD-k

The BG/NBD (P. S. Fader, Hardie, and Lee 2005) and the MBG/NBD (Batislam,
Denizel, and Filiztekin 2007; Hoppe and Wagner 2007) models are contained in the
larger class of (M)BG/CNBD-k models (Reutterer, Platzer, and Schréder 2020), and

15



are thus presented here together in this section. The MBG/CNBD-k model assumptions
are as follows: A customer’s intertransaction times, while being active, are Erlang-k
distributed, with purchase rate A\ being Gamma(r, a)-distributed across customers.
After each transaction a customer can become inactive (for good) with a constant
dropout probability of p, whereas p is Beta(a, b)-distributed across customers. The
BG/CNBD-k only differs in that respect, that the customer is not allowed to drop out

at the initial transaction, but only at repeat transactions.

# load grocery dataset, if it hasn’t been done before
if (lexists("groceryCBS")) {
data("groceryElog")
groceryCBS <- elog2cbs(groceryElog, T.cal = "2006-12-31")
b
# estimate parameters for wvarious models

params.bgnbd  <- BTYD::bgnbd.EstimateParameters(groceryCBS) # BG/NBD

params.bgcnbd <- bgcnbd.EstimateParameters(groceryCBS) # BG/CNBD-k
params.mbgnbd <- mbgnbd.EstimateParameters(groceryCBS) # MBG/NBD
params.mbgcnbd <- mbgcnbd.EstimateParameters(groceryCBS) # MBG/CNBD-k

row <- function(params, LL) {
names (params) <- c("k", "r", "alpha", "a", "b")
c(round(params, 3), LL = round(LL))
}
rbind (‘BG/NBD¢ = row(c(1l, params.bgnbd),
BTYD: :bgnbd.cbs.LL(params.bgnbd, groceryCBS)),
‘BG/CNBD-k‘ = row(params.bgcnbd,
bgcnbd. cbs.LL(params.bgcnbd, groceryCBS)),
‘MBG/NBD ¢ = row(params.mbgnbd,

mbgcnbd. cbs.LL(params.mbgnbd, groceryCBS)),

‘MBG/CNBD-k‘ = row(params.mbgcnbd,
mbgcnbd. cbs.LL(params.mbgcnbd, groceryCBS)))

#> k T alpha a b LL

16



#> BG/NBD 1 0.349 2.581 0.504 3.644 -15837
#> BG/CNBD-k 2 0.359 1.129 0.523 2.785 -1505/
#> MBG/NBD 1 1.257 6.038 0.368 0.716 -15782
#> MBG/CNBD-k 2 1.329 2.813 0.425 0.790 -14978

The MLE method searches across a five dimensional parameter space (k,r, a,a,b) to
find the optimum of the log-likelihood function. As can be seen from the reported
log-likelihood values, the MBG/CNBD-k is able to provide a better fit than NBD,
Pareto/NBD, BG/NBD, MBG/NBD and BG/CNBD-k for the given dataset. Further,
the estimate for regularity parameter k is 2 and implies that regularity is present,
and that Erlang-2 is considered more suitable for the intertransaction times than the

exponential distribution (k = 1).

# calculate expected future transactions for customers who’ve

# had 1 to 5 transactions in first 12 weeks, but then remained

# inactive for 40 weeks

estb.mbgcnbd <- mbgcnbd.ConditionalExpectedTransactions (params.mbgenbd,
T.star = 52, x = 1:5, t.x = 12, T.cal = 52)

for (i in 1:5) {

cat("x =", i, ":", sprintf("}5.3f", est5.mbgcnbd[i]l), "\n")
}
#> x =1 : 0.282
#> x =2 : 0.075
# =3 : 0.013
#> x = 4 : 0.002
# ¢ =5 : 0.000

# P(alive) for customers who’ve had 1 to 5 transactions in first
# 12 weeks, but then remained inactive for 40 weeks
palive.mbgcnbd <- mbgcnbd.PAlive (params.mbgcnbd,

x =1:5, t.x = 12, T.cal = 52)
for (i in 1:5) {

17



cat("x =", i, ":", sprintf("}5.2f %", 100*palive.mbgcnbd[i]), "\n")

#>

8
I

#> x =

1
2

#> x =3 : 0.39
#> x = 4
&)

#> x =

Predicting transactions for 5 simulated customers, each with a long purchase hiatus but
with a varying number of past transactions, we see the same pattern as for Pareto/NBD,
except that the forecasted numbers are even lower. This results from the long period
of inactivity being now, in the presence of regularity, an even stronger indiciation for

defection, as the Erlang-2 allows for less variation in the intertransaction times.

# predict whole customer cohort

groceryCBS$xstar .mbgcnbd <- mbgcnbd.ConditionalExpectedTransactions(
params = params.mbgcnbd, T.star = 52,
x = groceryCBS$x, t.x = groceryCBS$t.x,
T.cal = groceryCBS$T.cal)

# compare predictions with actuals at aggregated level

rbind(‘Actuals® = c(‘Holdout‘ = sum(groceryCBS$x.star)),

‘MBG/CNBD-k‘ = c(‘Holdout‘ = round(sum(groceryCBS$xstar.mbgcnbd))))
#> Holdout
#> Actuals 3389

#> MBG/CNBD-k 3970

Comparing the predictions at an aggregate level, we see that also the MBG/CNBD-
k remains overly optimistic for the online grocery dataset, but to a slightly lower
extent compared to the predictions resulting from the Pareto/NBD. The aggregate

level dynamics can be visualized with the help of mbgcnbd.PlotTrackingInc.
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# runs for ~37secs on a 2015 MacBook Pro

nil <- mbgcnbd.PlotTrackingInc(params.mbgcnbd,

T.cal = groceryCBS$T.cal,

T.tot = max(groceryCBS$T.cal + groceryCBS$T.star),

actual.inc.tracking = elog2inc(groceryElog))

Tracking Weekly Transactions
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Figure 4: Weekly actuals vs. MBG/CNBD-k predictions

However, when assessing the error at individual level, by calculating mean absolute er-
ror (MAE) of our predictions, we see a significant improvement in forecasting accuracy,

by accounting for the mild degree of regularity within the timing patterns.

# mean absolute error (MAE)

mae <- function(act, est) {
stopifnot(length(act)==1length(est))
sum(abs (act-est)) / length(act)

}

mae.nbd <- mae(groceryCBS$x.star, groceryCBS$xstar.nbd)
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mae.pnbd <- mae(groceryCBS$x.star, groceryCBS$xstar.pnbd)

mae .mbgcnbd <- mae(groceryCBS$x.star, groceryCBS$xstar.mbgcnbd)

rbind (‘NBD° = c(‘MAE® round(mae.nbd, 3)),

‘Pareto/NBD‘ = c(‘MAE®

round (mae.pnbd, 3)),

‘MBG/CNBD-k‘ = c(‘MAE‘ = round(mae.mbgcnbd, 3)))
#> MAE
#> NBD 2.609

#> Pareto/NBD 1.508

#> MBG/CNBD-k 1.431

1ift <- 1 - mae.mbgcnbd / mae.pnbd

cat("Lift in MAE for MBG/CNBD-k vs. Pareto/NBD:", round(100*1lift, 1), "%")
#> Lift in MAE for MBG/CNBD-k vs. Pareto/NBD: 5.1 7

MCMC Estimated Models

This chapter presents three buy-till-you-die model variants which rely on Markov-
Chain-Monte-Carlo simulation for parameter estimation. Implementation complex-
ity as well as computational costs are significantly higher, and despite an efficient
MCMC implementation in C++ applying these models requires much longer com-
puting time when compared to the before presented ML-estimated models. On the
upside, we gain flexibility in our model assumptions and get estimated distributions
even for individual-level parameters. Thus, the return object for parameter estima-
tion (param.draws <- *.mcmc.DrawParameters(...)) not only returns the point es-
timates of the heterogeneity parameters (params <- *.EstimateParameters(...)),
but provides samples from the marginal posterior distributions, both at the cohort-
(param.draws$level_1) as well as on the customer-level (param.draws$level_2).
Based on these parameter draws, we can then easily sample the posterior distribu-
tions of any derived quantity of managerial interest, for example the number of future
transactions (mcmc.DrawFutureTransactions) or the probability of being active in a

given period.

Generally speaking, MCMC works by constructing a Markov chain which has the de-
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sired target (posterior) distribution as its equilibrium distribution. The algorithm
then performs random walks on that Markov chain and will eventually (after some
“burnin” phase) produce draws from the posterior. In order to assess MCMC conver-
gence one can run multiple MCMC chains (in parallel) and check whether these provide
similar distributions. Due to the high auto-correlation between subsequent iteration
steps in the MCMC chains, it is also advisable to keep only every x-th step. The
MCMC default settings for parameter draws (*.mcmc.DrawParameters(..., mcmc =
2500, burnin = 500, thin = 50, chains = 2) should work well in many empirical
settings. Depending on your platform, the code will either use a single core (on Win-
dows OS), or multiple cores in parallel (on Unix/MacOS) to run the MCMC chains.
To speed up convergence, the MCMC chains will be automatically initialized with
the maximum likelihood estimates of Pareto/NBD. The sampled draws are wrapped
as coda::mcmc.list object, and the coda package provides various helper methods
(e.g. as.matrix.mcmc.list, HPDinterval, etc.) for performing output analysis and

diagnostics for MCMC (cf. help(package="coda")).

Pareto/NBD (HB)

The Pareto/NBD (HB) is identical to Pareto/NBD with respect to its model assump-
tions, but relies on MCMC for parameter estimation and thus can leverage the afore-
mentioned benefits of such approach. Rossi and Allenby (2003) already provided a
blueprint for applying a full Bayes approach (in contrast to an empirical Bayes ap-
proach) to hierarchical models such as Pareto/NBD. Ma and Liu (2007) then published
a specific MCMC scheme, comprised of Gibbs sampling with slice sampling to draw
from the conditional distributions. Later Abe (2009) suggested in the technical ap-
pendix to augment the parameter space with the unobserved lifetime 7 and activity
status z in order to decouple the sampling of the transaction process from the dropout
process. This allows the sampling scheme to take advantage of conjugate priors for

drawing A and p, and is accordingly implemented in this package.

Let’s apply the Pareto/NBD (HB), with the default MCMC settings in place, for the

online grocery dataset. First we draw parameters with pnbd.mcmc.DrawParameters,
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and then pass these forward to the model-independent methods for deriving quantities
of managerial interest, namely mcmc.DrawFutureTransactions, mcmc.PActive and
mcme . PAlive. Note the difference between P(active) and P(alive): the former denotes
the probability of making at least one transaction within the holdout period, and the

latter is the probability of making another transaction at any time in the future.

# load grocery dataset, if 4t hasn’t been done before
if (lexists("groceryCBS")) {

data("groceryElog")

groceryCBS <- elog2cbs(groceryElog, T.cal = "2006-12-31")
}
# generate parameter draws (~13secs on 2015 MacBook Pro)
pnbd.draws <- pnbd.mcmc.DrawParameters(groceryCBS)
#> set param_intt: 1, 1, 1, 1
#> running in parallel on 2 cores
# generate draws for holdout period
pnbd.xstar.draws <- mcmc.DrawFutureTransactions(groceryCBS, pnbd.draws)
# conditional ezxzpectations
groceryCBS$xstar.pnbd.hb  <- apply(pnbd.xstar.draws, 2, mean)
# P(active)
groceryCBS$pactive.pnbd.hb <- mcmc.PActive(pnbd.xstar.draws)
# P(alive)
groceryCBS$palive.pnbd.hb <- mcmc.PAlive(pnbd.draws)
# show estimates for first few customers
head(groceryCBS[, c("x", "t.x", "x.star",

"xstar.pnbd.hb", "pactive.pnbd.hb",
"palive.pnbd.hb")])

#> T t.z x.star zstar.pnbd.hdb pactive.pnbd.hdb palive.pnbd.hd
#> 1 0 0.00000 0 0.10 0.08 0.14
#> 2 1 50.28571 0 1.37 0.68 0.99
#> 3 19 48.57143 14 15.23 0.94 0.95
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# 4 0 0.00000 0 0.09 0.05 0.19
#> 5 2 40.42857 3 1.58 0.66 0.90
#> 6 5 47.57143 6 4.66 0.89 0.99

As can be seen, the basic application of an MCMC-estimated model is just as
straightforward as for ML-estimated models. However, the 2-element list return
object of pnbd.mcmc.DrawParameters allows for further analysis: level_1 is a list of
coda: :mcmc.lists, one for each customer, with draws for customer-level parameters
(A p,7,2), and level_2 a coda::mcmc.list with draws for cohort-level parameters
(r,a, s, ). Running the estimation with the default MCMC settings returns a total of
100 samples ((mecmc-burnin)*chains/thin) for nrow(groceryCBS) * 4 + 4 = 6104
parameters, and for each we can inspect the MCMC traces, the estimated distributions

and calculate summary statistics.

For the cohort-level parameters (r, , s, 5) the median point estimates are generated as

follows:

class(pnbd.draws$level _2)
#> [1] "memc.list"

# convert cohort-level draws from coda::mcmc.list to a matriz, with
# each parameter becoming a column, and each draw a Tow
cohort.draws <- pnbd.draws$level 2
head(as.matrix(cohort.draws), 5)
#> 7 alpha s beta
#> [1,] 0.7985439 5.523831 0.4102437 5.924005
#> [2,] 0.8868358 6.345834 0.3742759 4.128258
#> [3,] 0.7083689 5.005131 0.3851681 5.778556
#> [4,] 0

0

#> [5,]

7943478 5.867682 0.4506918 7.822091
7537911 5.584436 0.4617075 7.163425

# compute median across draws, and compare to ML estimates; as can be
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# seen, the two parameter estimation approaches result in very similar
# estimates
round (

rbind(‘Pareto/NBD (HB) ¢

apply(as.matrix(cohort.draws), 2, median),

‘Pareto/NBD°

BTYD: :pnbd .EstimateParameters(groceryCBS[, c("x", "t.x", "T.c
, 2)

#> Warning in maz(logpar): no mon-missing arguments to maz; returning -Inf

#> Warning in min(logpar): no mon-missing arguments to min; returning Inf

#> T alpha s beta

#> Pareto/NBD (HB) 0.78 5.65 0.36 4.81

#> Pareto/NBD 0.79 5.68 0.39 5.72

MCMC traces and estimated parameter distributions can be easily visualized by using

the corresponding methods from the coda package.

# plot trace- and density-plots for heterogeneity parameters
op <- par(mfrow = c(2, 4), mar = c(2.5, 2.5, 2.5, 2.5))
coda: :traceplot (pnbd.draws$level_2)

coda: :densplot (pnbd.draws$level _2)

par (op)

One of the advantages of the MCMC approach compared to MLE is that the parameter
draws and corresponding median values can also be inspected on the customer-evel.

The following example code does so for the specific customer with ID 4 (i.e., cust=4).

class(pnbd.draws$level_1)
#> [1] "list”
length(pnbd.draws$level_1)
#> [1] 1525

customer4 <- "4"

customer4.draws <- pnbd.draws$level_1[[customer4]]
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Figure 5: MCMC traces and parameter distributions of cohort-level parameters

head(as.matrix(customerd.draws), 5)

#> lambda mu tau 2

#> [1,] 0.047007657 0.24608294 7.733160 0

#> [2,] 0.037746035 0.31477867 6.406407 O

#> [3,] 0.002300915 0.01295063 8.560947 0

#> [4,] 0.003127200 0.07224037 40.155208 0

#> [5,] 0.087534603 0.04088102 6.205785 0

round (apply(as.matrix(customer4.draws), 2, median), 3)
#> lambda mu tau z

#> 0.025 0.089 5.620 0.000

# plot trace- and density-plots for customer4 parameters
op <- par(mfrow = c(2, 4), mar = c(2.5, 2.5, 2.5, 2.5))
coda: :traceplot (pnbd.draws$level 1[[customerd]])

coda: :densplot (pnbd.draws$level _1[[customer4]])

par (op)

Analogous to MLE-based models, we can also plot weekly transaction counts, as well as

frequency plots at an aggregated level. These methods can be applied to all provided
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Figure 6: MCMC traces and parameter distributions of individual-level parameters for
a specific customer

MCMC-based models in the following way.

# runs for ~120secs on a MacBook Pro 2015

op <- par(mfrow = c(1, 2))

nil <- mcmc.PlotFrequencyInCalibration(pnbd.draws, groceryCBS)
nil <- mcmc.PlotTrackingInc(pnbd.draws,

T.cal = groceryCBS$T.cal,

T.tot = max(groceryCBS$T.cal + groceryCBS$T.star),
actual.inc.tracking.data = elog2inc(groceryElog))

par (op)

Pareto/NBD (Abe)

Abe (2009) introduced a variant of Pareto/NBD by replacing the two independent
gamma distributions for individuals’ purchase rates A and dropout rates p with a mul-
tivariate lognormal distribution. The BTYDplus package refers to this model variant
as Pareto/NBD (Abe). The multivariate lognormal distribution permits a correlation
between purchase and dropout processes, but even more importantly, can be easily

extended to a linear regression model to incorporate customer-level covariates. This
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flexibility can significantly boost inference, if any of the captured covariates indeed

helps in explaining the heterogeneity within the customer cohort.

The online grocery dataset doesn’t contain any additional covariates, so for demonstra-
tion purposes we will apply Pareto/NBD (Abe) to the CDNow dataset and reproduce
the findings from the original paper. First we estimate a model without covariates (M1),
and then, we incorporate the dollar amount of the first purchase as a customer-level

covariate (M2).

# load CDNow event log from BTYD package
cdnowElog <- read.csv(

system.file("data/cdnowElog.csv", package = "BTYD"),

stringsAsFactors = FALSE,

col.names = c("cust", "sampleid", "date", "cds", "sales"))
cdnowElog$date <- as.Date(as.character(cdnowElog$date),

format = "%Y/mJ%d")
# convert to CBS; split into 39 weeks calibration, and 39 weeks holdout
cdnowCbs <- elog2cbs(cdnowElog,
T.cal = "1997-09-30", T.tot = "1998-06-30")

# estimate Pareto/NBD (Abe) without cowariates; model M1 in Abe (2009)
draws.ml <- abe.mcmc.DrawParameters(cdnowCbs,

mcmc = 7500, burnin = 2500) # ~33secs on 2015 MacBook Pro
quant <- function(x) round(quantile(x, c(0.025, 0.5, 0.975)), 2)
t (apply(as.matrix(draws.mi$level_2), 2, quant))

#> 2.57 50% 97.5]
#> log_lambda -3.70 -3.54 -3.32
#> log_mu -3.96 -3.59 -3.26
#> var_log_lambda 1.10 1.34 1.65

#> cov_log_lambda_log_mu -0.20 0.13 0.74
#> wvar_log_mu 1.44 2.62 5.05
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#’ append dollar amount of first purchase to use as covariate
first <- aggregate(sales ~ cust, cdnowElog, function(x) x[1] * 107-3)
names (first) <- c("cust", "first.sales")

cdnowCbs <- merge(cdnowCbs, first, by = "cust")

#’ estimate with first purchase spend as covariate; model M2 in Abe (2009)
draws.m2 <- abe.mcmc.DrawParameters(cdnowCbs,
covariates = c("first.sales"),
mcmc = 7500, burnin = 2500) # ~33secs on 2015 MacBook Pro
t(apply(as.matrix(draws.m2$level_2), 2, quant))
#> 2.57 507 97.57
#> log_lambda_intercept —4.02 =3.77 -3.19
#> log_mu_intercept —4.37 =3.73 -2.69
#> log_lambda_first.sales 0.04 6.04 9.39
#> log_mu_first.sales -9.02 1.73 7.90
#> wvar_log_lambda 0.01 1.35 1.79
#> cov_log_lambda_log_mu -0.35 0.22 0.76
#> wvar_log_mu 0.56 2.59 4.97

The parameter estimates for model M1 and M2 match roughly the numbers re-
ported in Table 3 of Abe (2009). There are some discrepancies for the parameters
log_lambda_first.sales and log_mu_first.sales, but the high level result remains
unaltered: The dollar amount of a customer’s initial purchase correlates positively

with purchase frequency, but doesn’t influence the dropout process.

Note that the BTYDplus package can establish via simulations that its provided im-
plementation is indeed correctly able to reidentify the underlying data generating pa-

rameters, including the regression coefficients for the covariates.
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Pareto/GGG

Platzer and Reutterer (2016) presented another extension of the Pareto/NBD model.
The Pareto/GGG generalizes the distribution for the intertransaction times from the
exponential to the Gamma distribution, whereas its shape parameter £ is also allowed
to vary across customers following a Gamma(t, ) distribution. Hence, the purchase
process follows a Gamma-Gamma-Gamma (GGG) mixture distribution, that is capa-
ble of capturing a varying degree of regularity across customers. For datasets which
exhibit regularity in their timing patterns, and the degree of regularity varies across
the customer cohort, leveraging that information can yield significant improvements in
terms of forecasting accuracy. This results from improved inferences about customers’

latent state in the presence of regularity.

# load grocery dataset, tf it hasn’t been done before
if (lexists("groceryCBS")) {
data("groceryElog")
groceryCBS <- elog2cbs(groceryElog, T.cal = "2006-12-31")
¥
# estimte Pareto/GGG
pggg.draws <- pggg.mcmc.DrawParameters(groceryCBS) # ~2mins on 2015 MacBook Pro
# generate draws for holdout period
pggg . xstar.draws <- mcmc.DrawFutureTransactions(groceryCBS, pggg.draws)
# conditional ezxzpectations
groceryCBS$xstar.pggg <- apply(pggg.xstar.draws, 2, mean)
# P(active)
groceryCBS$pactive.pggg <- mcmc.PActive(pggg.xstar.draws)
# P(alive)
groceryCBS$palive.pggg <- mcmc.PAlive(pggg.draws)
# show estimates for first few customers
head(groceryCBS[, c("x", "t.x", "x.star",

"xstar.pggg", "pactive.pggg", "palive.pggg")1)
#> 4 t.z z.star zstar.pggg pactive.pggg palive.pggg
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#> 1 0 0.00000 0 0.02 0.02 0.03

#> 2 1 50.28571 0 1.01 0.59 1.00
#> 3 19 48.57143 14 14.76 0.87 0.87
# 4 0 0.00000 0 0.04 0.03 0.13
#> 5 2 40.42857 3 2.02 0.84 0.91
#> 6 5 47.57143 6 4.46 0.92 0.95

# report median cohort-level parameter estimates

round (apply(as.matrix(pggg.draws$level _2), 2, median), 3)

#> t gamma T alpha s beta

#> 1.695 0.373 0.948 5.243 0.432 4.348

# report mean over median individual-level parameter estimates

median.est <- sapply(pggg.draws$level 1, function(draw) {
apply(as.matrix(draw), 2, median)

b

round(apply(median.est, 1, mean), 3)

#> k lambda mu, tau z

#> 3.892 0.160 0.065 69.546 0.316

Summarizing the estimated parameter distributions shows that regularity parameter k

is estimated significantly larger than 1, and that it varies substantially across customers.

Concluding our vignette we will benchmark the forecasting error of Pareto/GGG,

MBG/CNBD-k and Pareto/NBD.

# compare predictions with actuals at aggregated level

rbind(‘Actuals® c(‘Holdout‘ = sum(groceryCBS$x.star)),
‘Pareto/GGG*

‘MBG/CNBD-k

round (sum(groceryCBS$xstar.pggg)) ,

round (sum(groceryCBS$xstar.mbgcnbd) ),
‘Pareto/NBD (HB)‘ = round(sum(groceryCBS$xstar.pnbd.hb)))

#> Holdout

#> Actuals 3389
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#> Pareto/GGG 3815
#> MBG/CNBD-k 3970
#> Pareto/NBD (HB) 4018

# error on customer level
mae <- function(act, est) {
stopifnot(length(act)==length(est))
sum(abs(act-est)) / length(act)
3
mae.pggg <- mae(groceryCBS$x.star, groceryCBS$xstar.pggg)
mae.mbgcnbd <- mae(groceryCBS$x.star, groceryCBS$xstar.mbgcnbd)

mae.pnbd.hb <- mae(groceryCBS$x.star, groceryCBS$xstar.pnbd.hb)

rbind (‘Pareto/GGG* = c(‘MAE‘ = round(mae.pggg, 3)),
‘MBG/CNBD-k ¢ = c(‘MAE‘ = round(mae.mbgcnbd, 3)),
‘Pareto/NBD (HB)‘ = c(‘MAE‘ = round(mae.pnbd.hb, 3)))

#> MAE

#> Pareto/GGG 0.621

#> MBG/CNBD-k 0.644

#> Pareto/NBD (HB) 0.688

1lift <- 1 - mae.pggg / mae.pnbd.hb
cat("Lift in MAE:", round(100*1ift, 1), "%")
#> Lift in MAE for Pareto/GGG vs. Pareto/NBD: 9.8}

Both, on the aggregate level as well as on the customer level we see a significant
improvement in the forecasting accuracy when leveraging the regularity within the
transaction timings of the online grocery dataset. Further, the superior performance of
the Pareto/GGG compared to the MBG/CNBD-k model suggests that it does pay off
to also consider the heterogeneity in the degree of regularity across customers, which

itself can also be visualized via pggg.mcmc.DrawParameters (groceryCBS).
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