Bimodality Index

Kevin R. Coombes

May 6, 2019

Contents

1 Simulated Data 1
2 Computing the Bimodal Index 1
3 Appendix 2

1 Simulated Data

We simulate a dataset.

```
> set.seed(564684)
> nSamples <- 60
> nGenes <- 3000
> dataset <- matrix(rnorm(nSamples*nGenes), ncol=nSamples, nrow=nGenes)
> dimnames(dataset) <- list(paste("G", 1:nGenes, sep=''),
+
```

At present, this dataset has no interesting structure; all genes have their expression patterns drawn from a common normal distribution. So, we shift the means by three standard deviations for half the samples for the first 100 genes.

```
> dataset[1:100, 1:30] <- dataset[1:100, 1:30] + 3
```


2 Computing the Bimodal Index

In order to compute the bimodal index from Wang et al. (2009) https://www.ncbi.nlm.nih.gov/pmc/ articles/PMC2730180, we must load the package.
> library(BimodalIndex)
Now we call the basic function:

```
> bim <- bimodalIndex(dataset)
```

1
2
3
4

```
> summary(bim)
    mu1
    Min. :-4.3546 Min. :-0.1689 Min. :0.3941 Min. :0.3182
    1st Qu.:-0.8958 1st Qu.: 0.3900 1st Qu.:0.6742 1st Qu.:1.5785
    Median :-0.5944 Median : 0.6270 Median :0.7590 Median :2.0552
    Mean :-0.6996 Mean : 0.7922 Mean :0.7690 Mean :1.9962
    3rd Qu.:-0.3454 3rd Qu.: 0.9623 3rd Qu.:0.8579 3rd Qu.:2.4705
    Max. : 0.5800 Max. : 4.0833 Max. :1.3067 Max. :4.6638
        pi BI
    Min. :0.01682 Min. :0.1589
    1st Qu.:0.37812 1st Qu.:0.6341
    Median :0.50043 Median :0.8560
    Mean :0.49958 Mean :0.8546
    3rd Qu.:0.62829 3rd Qu.:1.0646
    Max. :0.98309 Max. :2.2457
```

Here we see a suggestion that at least some of the values are likely to be above a reasonable cutoff to be called significant.

Next, we plot the results, with the known bimodal genes colored red (Figure ??). As expected, most (but not all) of the large BI values arise from the known bimodal genes. We can then use the simulations from the null model to estimate reasonable significance cutoffs when using 60 samples.

```
> summary(bim$BI[101:3000])
    Min. 1st Qu. Median Mean 3rd Qu. Max.
0.1589}00.6251 0.8418 0.8285 1.0431 1.7491
> cutoffs <- quantile(bim$BI[101:3000], probs=c(0.90, 0.95, 0.99))
> cutoffs
    90% 95% 99%
1.214219 1.310714 1.476804
```

Now we can assess the sensitivity of the test when using the derived cutoffs.

```
> sapply(cutoffs, function(x) sum(bim$BI[1:100] > x))
90% 95% 99%
    94 91 78
```

With real data, of course, we would need to determine the significance by simulating a large number of genes from the null model, using the simulations to compute empirical p-values. Because these p-values would still be computed one gene at a time, it would be advisable to incorporate a multiple testing crierion by, for example, estimating the false discovery rate.

3 Appendix

This analysis was performed in the following directory:

```
> getwd()
```

```
> plot(bim$BI, col=rep(c("red", "black"), times=c(100, 2900)),
+ xlab="Gene", ylab="Bimodal Index")
```


Figure 1: Scatter plot of the bimodal indices of all genes.
bimodalIndex
[1] "C:/Users/Kevin Coombes/AppData/Local/Temp/RtmpMTdwaY/Rbuild216876c52df8/BimodalIndex/vignettes"
This analysis was performed in the following software environment:
> sessionInfo()
R version 3.6.0 (2019-04-26)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 17134)

Matrix products: default
locale:
[1] LC_COLLATE=C LC_CTYPE=English_United States. 1252
[3] LC_MONETARY=English_United States. 1252 LC_NUMERIC=C
[5] LC_TIME=English_United States. 1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] BimodalIndex_1.1.9
loaded via a namespace (and not attached):
[1] compiler_3.6.0 mclust_5.4.3 tools_3.6.0 oompaBase_3.2.8 cluster_2.0.8

