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1 Introduction

BoolNet is an R package that provides tools for assembling, analyzing and visualizing synchronous
and asynchronous Boolean networks as well as probabilistic Boolean networks. This document
gives an introduction to the usage of the software and includes examples for use cases.

BoolNet supports four types of networks:

Synchronous Boolean networks consist of a set of Boolean variables

X = {X1, . . . , Xn}

and a set of transition functions
F = {f1, . . . , fn} ,

one for each variable. These transition functions map an input of the Boolean variables in
X to a Boolean value (0 or 1). We call a Boolean vector x(t) = (x1(t), . . . , xn(t)) the state
of the network at time t. Then, the next state of the network x(t) is calculated by applying
all transition functions fi(x(t− 1)).

In a biological context, genes can be modeled as Boolean variables (active/expressed or
inactive/not expressed), and the transition functions model the dependencies among these
genes. In the synchronous model, the assumption is that all genes are updated at the same
time. This simplification facilitates the analysis of the networks.

Asynchronous Boolean networks have the same structure as synchronous Boolean networks.
Yet, at each point of time t, only one of the transition functions fi ∈ F is chosen at random,
and the corresponding Boolean variable is updated. This corresponds to the assumption that
in a genetic network, gene expression levels are likely to change at different points of time.
In the most common model, the gene to be updated is chosen uniformly among all genes.
Moreover, BoolNet supports specifying non-uniform update probabilities for the genes.

Probabilistic Boolean networks (PBN) allow for specifying more than one transition func-
tion per variable/gene. Each of these functions has a probability to be chosen, where the
probabilities of all functions for one variable sum up to 1. Formally

F = {{(f11, p11) , . . . , (f1k1
, p1k1

)} , . . . , {(fn1, pn1) , . . . , (fnkn
, pnkn

)}}

where ki is the number of alternative transition functions for variable i, and pij is the
probability that function j is chosen for variable i. A state transition is performed by
selecting one function for each gene based on the probabilities and applying the chosen
functions synchronously.

Temporal Boolean networks are Boolean networks that incorporate temporal predicates and
discrete time delays. Here, the next state x(t) may not only depend on x(t − 1), but can
depend on any predecessor state x(t−∆),∆ ∈ {1, 2, . . .}. Furthermore, x(t) may also directly
depend on the time step t itself.

In BoolNet, there are different structure classes representing these network types:

BooleanNetwork objects contain synchronous and asynchronous Boolean networks. Here, the
transition functions are internally represented as truth tables.

ProbabilisticBooleanNetwork objects encode Probabilistic Boolean networks. They use a
truth table representation as well.

SymbolicBooleanNetwork objects represent synchronous and temporal Boolean networks. They
encode Boolean functions in a symbolic form, i.e. as expression trees.
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As we have seen, the networks are represented in two different forms: The truth table repre-
sentation, which basically maps inputs to the corresponding output values, is usually the most
efficient representation for synchronous, asynchronous and probabilistic networks and uses a very
fast simulator. However, this representation grows exponentially with the number of inputs and is
therefore inappropriate for networks with a high number of inputs. This is particularly the case for
temporal networks, where each unique time delay for a gene encodes an input. Hence, temporal
networks are represented by directly encoding the corresponding Boolean expressions and use a
different simulator. As synchronous Boolean networks are a special case of temporal networks
(with all time delays being 1), these networks can also be represented as SymbolicBooleanNetwork
objects.

The package provides several methods of constructing networks: Networks can be loaded from
files in which human experts describe the dependencies between the genes. Furthermore, they can
be reconstructed from time series of gene expression measurements. It is also possible to generate
random networks. This can be helpful for the identification of distinct properties of biological
networks by comparison to random structures. The different methods of assembling networks are
described in Section 2.

In Section 3, tools for the analysis and visualization of network properties are introduced. For
synchronous, asynchronous and temporal Boolean networks, the most important tool is the iden-
tification of attractors. Attractors are cycles of states and are assumed to be associated with
the stable states of cell function. Another possibility of identifying relevant states is the included
Markov chain simulation. This method is particularly suited for probabilistic networks and cal-
culates the probability that a state is reached after a certain number of iterations. To test the
robustness of structural properties of the networks to noise and mismeasurements, the software
also includes extensive support for perturbing networks. In this way, it is possible to test these
properties in noisy copies of a biological network.

In Section 4, the interaction of BoolNet with related software is described. In particular, the
import from and export to SBML is discussed. Also, the necessary steps to import networks
import networks from BioTapestry and to export networks to Pajek are outlined.

For the examples in the following sections, we assume that the BoolNet package has been properly
installed into the R environment. This can be done by typing

> install.packages("BoolNet")

into the R console or by the corresponding menu entries in an R GUI. For some of the plots, the
igraph package is required and must be installed in your R environment as well. This is analogous
to installing BoolNet. For the BioTapestry and SBML import, the XML package must be installed.
After installation, the BoolNet package can be loaded via

> library(BoolNet)

2 Assembling networks

2.1 Assembling a network from expert knowledge

A major advantage of Boolean networks is the fact that natural-language statements can easily be
transferred into this representation. This allows researchers for building Boolean networks entirely
from expert knowledge, for example by collecting statements on gene dependencies from literature
and expressing them as Boolean rules.

BoolNet is able to read in networks consisting of such rule sets in a standardized text file format.
In such a file, each line consists of a target gene and an update rule, usually separated by a comma.
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Optionally, it is also possible to add a probability for the rule if the file describes a probabilistic
network. The first line of such a file is a header

targets, factors

or

targets, factors, probabilities

To illustrate the process of transforming natural-language statements into Boolean rules, we take
a look at the mammalian cell cycle network introduced by Fauré et al. [5]. In Table 1 of this
paper, the authors list natural-language statements of gene dependencies and the corresponding
Boolean expressions. The following rules are taken from this table.

For gene CycD, Fauré et al. state:

CycD is an input, considered as constant.

Transforming this into a Boolean rule is rather simple: CycD does not change its value, which
means that its value after a transition only depends on its previous value. Thus, the transition
rule is

CycD, CycD

Gene Rb has a more complex description:

Rb is expressed in the absence of the cyclins, which inhibit it by phosphorylation [...]; it
can be expressed in the presence of CycE or CycA if their inhibitory activity is blocked
by p27.

As a general rule, inhibition can be represented by a Boolean negation. In the BoolNet file format,
a negation is expressed by the ! character. The referenced cyclins comprise the genes CycA, CycB,
CycD, and CycE. If all these genes are absent, Rb is expressed – i.e. if CycA is not expressed and
CycB is not expressed and CycD is not expressed and CycE is not expressed. A logical AND is
embodied by the & character. Consequently, the first part of the rule is

! CycA & ! CycB & ! CycD & ! CycE

In combination with the above statement, the fact that Rb can be expressed in the presence of
CycE and CycA if p27 is active means that CycB and CycD must not be active. Thus, the second
part of the rule is

p27 & ! CycB & ! CycD

This statement is an exception (or alternative) to the first statement; this can be expressed as a
logical OR, for which the | character is used.

The complete rule for gene Rb is thus

Rb, (! CycA & ! CycB & ! CycD & ! CycE) | (p27 & ! CycB & ! CycD)
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After processing all genes in the table in this way, we get the following network description:

targets, factors

CycD, CycD

Rb, (! CycA & ! CycB & ! CycD & ! CycE) | (p27 & ! CycB & ! CycD)

E2F, (! Rb & ! CycA & ! CycB) | (p27 & ! Rb & ! CycB)

CycE, (E2F & ! Rb)

CycA, (E2F & ! Rb & ! Cdc20 & ! (Cdh1 & UbcH10)) | (CycA & ! Rb & ! Cdc20 & ! (Cdh1 & UbcH10))

p27, (! CycD & ! CycE & ! CycA & ! CycB) | (p27 & ! (CycE & CycA) & ! CycB &! CycD)

Cdc20, CycB

Cdh1,(! CycA & ! CycB) | (Cdc20) | (p27 & ! CycB)

UbcH10, ! Cdh1 | (Cdh1 & UbcH10 & (Cdc20 | CycA | CycB))

CycB, ! Cdc20 & ! Cdh1

Now save this description to a file “cellcycle.txt” in your R working directory. The network can be
loaded via

> cellcycle <- loadNetwork("cellcycle.txt")

The result is an object of class BooleanNetwork containing a truth table representation of the
network.

The same network is also included in BoolNet as an example and can be accessed via

> data(cellcycle)

BoolNet also provides several convenience operators that can be used to express complex Boolean
functions in a compact way, e.g.

• maj(a, b, ...) is 1 if the majority of its operands are 1. Similarly, sumgt(a, b, ...,

N) is 1 if more than N operands are 1, sumlt(a, b, ..., N) is 1 if less than N operands
are 1, and sumis(a, b, ..., N) is 1 if exactly N operands are 1.

• all(a, b, ...) is 1 if all its operands are 1 (i.e. a logical AND), and any(a, b, ...)

is 1 if at least one of its operands is 1 (i.e. a logical OR).

The cell cycle network is a classical Boolean network, where each transition function only depends
on the previous state of the network. E.g., CycB, ! Cdc20 & ! Cdh1 can be written formally as
CycB(t) = ¬Cdc20(t− 1)∧¬Cdh1(t− 1). As already discussed before, BoolNet also incorporates
several temporal extensions. For example, a transition function can also depend on the states of
genes at earlier time points:

a, b[-3] & b[-2] & b

is 1 if b has been active in the previous three time steps. The operators described above can also
incorporate time ranges. The previous statement can be written in a more compact way using the
all operator:

a, all[d=-3..-1](b[d])

This defines a time delay variable d that can be used for time specifications inside the operator.
It can also be used in arithmetic operations. E.g.,

a, all[d=-3..-1](b[d] & c[d-1])

specifies that a is active if b has been active in the previous three time steps and c has been active
at time t− 4, t− 3 and t− 2.

Apart from relative time specifications, the BoolNet network language also incorporates predicates
that depend on the absolute time, i.e. the number of time steps that have elapsed since the initial
state.
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For example,

a, timeis(3)

specifies that a is active at time step 3 and inactive at all other time steps. Similarly, the predicates
timelt and timegt evaluate to 1 before and after the specified time point respectively.

As the above examples do not cover all possibilities of the network description language, a full
language specification is provided in Section 5.

For temporal networks, BoolNet uses a special symbolic simulator that represents the functions as
expression trees, whereas the standard simulator is based on a truth table representation. These
simulators are discussed in Section 3. As synchronous Boolean networks are a special case of
temporal networks, they can also be simulated with the symbolic simulator. When a network is
loaded from a file using loadNetwork(), the user can specify the parameter symbolic=TRUE to
load it in form of a SymbolicBooleanNetwork object instead of a BooleanNetwork object. The same
parameter is also available for the import functions discussed in Section 4. Temporal networks
can only be loaded with symbolic=TRUE, as BoolNet cannot represent them as truth tables.

As many network generation and modification routines (such as random network genera-
tion and network reconstruction that are discussed in the following sections) internally use
the truth table representation, there are conversion routines truthTableToSymbolic() and
symbolicToTruthTable() that convert synchronous Boolean networks of class BooleanNetwork
in a truth table representation to networks of class SymbolicBooleanNetwork in a symbolic repre-
sentation and vice versa. For more details, please refer to the manual.

2.2 Reconstructing a network from time series

An entirely different approach of assembling a network is to infer rules from series of expres-
sion measurements of the involved genes over time. For example, microarray experiments can be
conducted at different points of time to cover the expression levels of different cell states. To recon-
struct networks from such data, BoolNet includes two reconstruction algorithms for synchronous
Boolean networks, Best-Fit Extension [10] and REVEAL [12]. REVEAL requires the inferred
functions to match the input time series perfectly, hence it is not always able to reconstruct net-
works in the presence of noisy and inconsistent measurements. Best-Fit Extension retrieves a set
of functions with minimum error on the input and is thus suited for noisy data.

In the following, we introduce a tool chain for the reconstruction of a Probabilistic Boolean Network
from time series using Best-Fit extension.

Microarray measurements are usually represented as matrices of real-valued numbers which, for
example, quantify the expression levels of genes. BoolNet includes a real-valued time series of
gene measurements from a project to analyze the yeast cell cycle [16] which can be loaded using

> data(yeastTimeSeries)

This data contains four preselected genes and a series of 14 measurements for each of these genes.

In a first step, the real-valued dataset has to be converted to binary data as required by
the reconstruction algorithm. BoolNet offers several binarization algorithms in the function
binarizeTimeSeries(). We here employ the default method which is based on k-means clus-
tering (with k = 2 for active and inactive):

> binSeries <- binarizeTimeSeries(yeastTimeSeries)

The returned structure in binSeries has an element $binarizedMeasurements containing the
binary time series, and, depending on the chosen binarization method, some other elements de-
scribing parameters of the binarization.

To reconstruct the network from this data, we call the Best-Fit Extension algorithm:
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> net <- reconstructNetwork(binSeries$binarizedMeasurements,

+ method="bestfit",

+ maxK=4)

Here, maxK is the maximum number of input genes for a gene examined by the algorithm. The
higher this number, the higher is the runtime and memory consumption of the reconstruction.

We can now take a look at the network using

> net

Probabilistic Boolean network with 4 genes

Involved genes:

Fkh2 Swi5 Sic1 Clb1

Transition functions:

Alternative transition functions for gene Fkh2:

Fkh2 = <f(Clb1){01}> (error: 1)

Fkh2 = <f(Fkh2){01}> (error: 1)

Alternative transition functions for gene Swi5:

Swi5 = <f(Clb1){01}> (error: 1)

Swi5 = <f(Fkh2){01}> (error: 1)

Alternative transition functions for gene Sic1:

Sic1 = <f(Sic1,Clb1){0001}> (error: 1)

Sic1 = <f(Swi5,Sic1){0001}> (error: 1)

Sic1 = <f(Fkh2,Sic1){0001}> (error: 1)

Alternative transition functions for gene Clb1:

Clb1 = <f(Clb1){01}> (error: 1)

Clb1 = <f(Fkh2){01}> (error: 1)

The dependencies among the genes in the network can be visualized using the
plotNetworkWiring() function. In this graph, each gene corresponds to a vertex, and the in-
puts of transition functions correspond to edges.

> plotNetworkWiring(net)

plots a graph similar to that at the top of Figure 1. To use this function, you must install the
igraph package.

A network that involved the same genes was examined by Kim et al. [9]. When comparing the
wiring graph of our reconstructed network with the reference network presented in Figure 2 of this
paper, one observes a very high similarity between the two networks. However, the reconstructed
network comprises too many links for the gene Sic1: The reference network does not contain a self-
regulation of Sic1 or regulation of Sic1 by Fkh2. If it is known in advance that these regulations
are not plausible, such prior knowledge can be supplied to the reconstruction algorithm:

> net <- reconstructNetwork(binSeries$binarizedMeasurements,

+ method="bestfit",

+ maxK=4,

+ excludedDependencies = list("Sic1" = c("Sic1", "Fkh2")))
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Fkh2

Swi5

Sic1

Clb1

Fkh2

Swi5

Sic1

Clb1

Figure 1: The wiring graph of the reconstructed network without prior knowledge (top) and with
the inclusion of prior knowledge (bottom). Each node of the graph represents one gene, and each
arrow represents a gene dependency.
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The wiring of the reconstruction with prior knowledge is shown at the bottom of Figure 1. We
can see that the two false links are now eliminated. Similar to excludedDependencies, there is
also a parameter requiredDependencies that specifies dependencies that must be included in the
network.

When reconstructNetwork() discovers multiple functions for a gene with the minimum error on
the input data, it includes all of these functions as alternative functions with equal probability.
Consequently, the function returns a ProbabilisticBooleanNetwork structure.

If you would like to obtain a BooleanNetwork object with only one function per gene from a
probabilistic network, you can extract such a network by telling the software which of the functions
you would like to use. This can be done by specifying the indices of the functions to extract:

> net <- reconstructNetwork(binSeries$binarizedMeasurements,

+ method="bestfit", maxK=4)

> functionIndices <- c(1,2,3,2) #select function index for each regulatory component

> dontCareDefaults <- lapply(seq_along(net$interactions), function(idx) rep(F, sum(net$interactions[[idx]][[func

> names(dontCareDefaults) <- net$genes

> singleNet <- chooseNetwork(net, functionIndices, dontCareValues = dontCareDefaults)

In case of don’t care values in reconstructed functions, it is possible to set them to 0 or 1 per
default. The result is a Boolean network that is created by extracting the first function of gene
Fkh2, the second function of genes Swi5 and Clb1, and the third function of gene Sic1 from the
above probabilistic network:

> singleNet

Boolean network with 4 genes

Involved genes:

Fkh2 Swi5 Sic1 Clb1

Transition functions:

Fkh2 = <f(Clb1){01}>

Swi5 = <f(Fkh2){01}>

Sic1 = <f(Fkh2,Sic1){0001}>

Clb1 = <f(Fkh2){01}>

BoolNet also supports the generation of artificial time series from existing networks: The
generateTimeSeries() function generates a set of time series from a network using random
start states and optionally adds Gaussian noise.

> series <- generateTimeSeries(cellcycle,

+ numSeries=100,

+ numMeasurements=10,

+ noiseLevel=0.1)

generates a list of 100 time series by calculating 10 consecutive transitions from 100 randomly
chosen network states in the mammalian cell cycle network. The series are subject to Gaussian
noise with a standard deviation of 0.1, such that the result is a list of real-valued matrices.

We can now binarize these simulated measurements and try to reconstruct the original network:

> binSeries <- binarizeTimeSeries(series, method="kmeans")

> net <- reconstructNetwork(binSeries$binarizedMeasurements, method="bestfit")

> net
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Probabilistic Boolean network with 10 genes

Involved genes:

CycD Rb E2F CycE CycA p27 Cdc20 Cdh1 UbcH10 CycB

Transition functions:

Alternative transition functions for gene CycD:

CycD = <f(CycD){01}> (error: 0)

Alternative transition functions for gene Rb:

Rb = <f(CycD,CycE,p27,CycB){1010001000000000}> (error: 0)

Alternative transition functions for gene E2F:

E2F = <f(Rb,CycA,p27,CycB){1010001000000000}> (error: 0)

Alternative transition functions for gene CycE:

CycE = <f(Rb,E2F){0100}> (error: 0)

Alternative transition functions for gene CycA:

CycA = <f(Rb,E2F,Cdc20,Cdh1,UbcH10){11000000111000000000000000000000}> (error: 5)

CycA = <f(Rb,E2F,CycA,Cdc20,UbcH10){00001100100011000000000*00000*00}> (error: 5)

Alternative transition functions for gene p27:

p27 = <f(CycD,CycE,CycA,p27,CycB){1010*010001000000000*00000000000}> (error: 0)

Alternative transition functions for gene Cdc20:

Cdc20 = <f(CycB){01}> (error: 0)

Alternative transition functions for gene Cdh1:

Cdh1 = <f(CycA,p27,Cdc20,CycB){1011101100111011}> (error: 0)

Alternative transition functions for gene UbcH10:

UbcH10 = <f(CycA,Cdc20,Cdh1,UbcH10,CycB){11110001111100111111001111*10011}> (error: 0)

Alternative transition functions for gene CycB:

CycB = <f(Cdc20,Cdh1){1000}> (error: 0)

Obviously, the number of generated time series is still to small to reconstruct the network unam-
biguously. However, the result comes close to the original network. We see that the functions
of the network are not fully specified: At some positions, there are asterisks (*) denoting a don’t
care value. This means that functions with a 0 and a 1 at this position match the time series
equally well. That is, a partially defined function with m asterisks corresponds to 2m fully de-
fined Boolean functions. It is also possible to generate these fully defined functions instead of the
partially defined function by setting the parameter returnPBN to true (which was the behaviour
prior to BoolNet version 2.0). For many don’t care values, this may consume a high amount of
memory and computation time.

generateTimeSeries() can also generate time series with artificial knock-outs and overexpres-
sions:

> series <- generateTimeSeries(cellcycle,

+ numSeries=10,

+ numMeasurements=10,
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+ perturbations=1,

+ noiseLevel=0.1)

specifies that each generated time series is generated from a network where one randomly se-
lected gene is artificially knocked down (constantly 0) or overexpressed (constantly 1). These
perturbations are returned in an additional element perturbations.

> series$perturbations

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

CycD NA NA NA NA NA NA NA 0 NA NA

Rb NA NA NA NA NA NA NA NA NA 0

E2F 0 0 NA NA 1 NA NA NA NA NA

CycE NA NA NA NA NA NA NA NA NA NA

CycA NA NA NA NA NA NA NA NA NA NA

p27 NA NA NA NA NA NA NA NA NA NA

Cdc20 NA NA NA NA NA NA 0 NA NA NA

Cdh1 NA NA NA NA NA 0 NA NA 0 NA

UbcH10 NA NA NA 0 NA NA NA NA NA NA

CycB NA NA 1 NA NA NA NA NA NA NA

Here, each column corresponds to the perturbations applied in one series. A value of 1 denotes an
overexpression, a value of 0 denotes a knock-out, and an N/A value means that no perturbation
was applied to this gene.

The reconstructNetwork() function also supports the reconstruction from such perturbation ex-
periments if it is known which genes were perturbed. First, we store the series and the perturbation
matrix in separate variables and binarize the data as before:

> perturbations <- series$perturbations

> series$perturbations <- NULL

> binSeries <- binarizeTimeSeries(series, method="kmeans")

Now, we can reconstruct the network by specifying the perturbations parameter:

> net <- reconstructNetwork(binSeries$binarizedMeasurements,

+ method="bestfit",

+ perturbations=perturbations)

> net

Probabilistic Boolean network with 10 genes

Involved genes:

CycD Rb E2F CycE CycA p27 Cdc20 Cdh1 UbcH10 CycB

Transition functions:

Alternative transition functions for gene CycD:

CycD = <f(CycD){01}> (error: 0)

Alternative transition functions for gene Rb:

Rb = <f(CycD,p27,Cdc20,CycB){001010100000*0*0}> (error: 0)

Rb = <f(CycD,CycA,Cdc20,CycB){101000100*00*0*0}> (error: 0)

Rb = <f(CycD,CycA,p27,CycB){1010001000***0*0}> (error: 0)

Alternative transition functions for gene E2F:
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E2F = <f(CycA,p27,CycB){10000010}> (error: 0)

Alternative transition functions for gene CycE:

CycE = <f(Rb,E2F){0100}> (error: 0)

Alternative transition functions for gene CycA:

CycA = <f(p27,Cdc20,Cdh1,UbcH10,CycB){11111*0**0000*0010000100*0*00***}> (error: 0)

Alternative transition functions for gene p27:

p27 = <f(CycD,p27,Cdc20,CycB){001010100000*0*0}> (error: 0)

p27 = <f(CycD,CycA,Cdc20,CycB){101000100*0000*0}> (error: 0)

p27 = <f(CycD,CycA,p27,CycB){1010001000**00*0}> (error: 0)

Alternative transition functions for gene Cdc20:

Cdc20 = <f(CycB){01}> (error: 0)

Alternative transition functions for gene Cdh1:

Cdh1 = <f(CycA,Cdc20,CycB){10110011}> (error: 0)

Alternative transition functions for gene UbcH10:

UbcH10 = <f(Cdc20,Cdh1,UbcH10,CycB){11110001*1110*11}> (error: 0)

UbcH10 = <f(CycA,Cdc20,Cdh1,UbcH10){110011*11101110*}> (error: 0)

UbcH10 = <f(Rb,CycA,Cdc20,Cdh1){10111010101**11*}> (error: 0)

UbcH10 = <f(CycD,CycA,Cdc20,Cdh1){1011*1*01011101*}> (error: 0)

Alternative transition functions for gene CycB:

CycB = <f(Cdc20,Cdh1){1000}> (error: 0)

As we generated only 10 series in this case, the reconstructed network is much more incomplete
than in the previous reconstruction.

In biological settings, perturbation experiments are probably one of the most frequent ways of
exploring the behaviour of a regulatory network, as it is much easier to obtain various different
responses by applying perturbations than by just measuring the wild type behaviour.

2.3 Creating random networks

To study structural properties of Boolean networks and to determine the specific properties of
biological networks in comparison to arbitrary networks, it is often desirable to generate artificial
networks. BoolNet comprises a facility for the generation of random N -K networks [7, 8]. In the
standard N -K networks, N is the total number of genes, and K is the number of input genes for
each gene transition function. Such a network can be generated using

> net <- generateRandomNKNetwork(n=10, k=3)

This creates a network with 10 genes, each of which has a transition function that depends on 3
genes and whose output is generated uniformly at random. Similarly, one can also specify different
numbers of input genes for each gene:

> net <- generateRandomNKNetwork(n=10, k=c(1,2,3,1,3,2,3,2,1,1))

BoolNet does not only support this standard case, but allows for different methods of choosing the
numbers of input genes (parameter topology), the input genes themselves (parameter linkage),
and the transition functions (parameter functionGeneration). In the following, some examples
are presented.

The command
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> net <- generateRandomNKNetwork(n=20, k=20, topology="scale_free")

determines the numbers of input genes by drawing values from the scale-free Zeta distribution [1].
According to this distribution, most transition functions will have a small number of input genes,
but a few transition functions may depend on a high number of genes. The shape of the Zeta
distribution can be customized using an additional parameter gamma, which potentially increases
the number of input genes when chosen small and vice versa.

> net <- generateRandomNKNetwork(n=10, k=3, linkage="lattice")

creates a network in which the transition functions of the genes depend on a choice of genes with
adjacent indices [2]. This leads to networks with highly interdependent genes.

It is also possible to influence the truth tables of the functions in several ways. The parameter
zeroBias changes the ratio of 1 and 0 returned by the functions:

> net <- generateRandomNKNetwork(n=10,

+ k=3,

+ functionGeneration="biased",

+ zeroBias=0.75)

generates a network in which the outcome of a transition function is 0 for around 75% of the
inputs.

A more intricate way of influencing the function generation is the specification of generation
functions. Generation functions explicitly generate functions according to a specific function class.

Canalyzing functions are assumed to occur frequently in biological systems [6]. A canalyzing
function has the property that one input can determine the output value on its own, i.e. if
this input is either active or inactive, the output of the function is always the same. Nested
canalyzing functions are a recursive definition of canalyzing functions, where the part of the
function that does not depend on the canalyzing input is a canalyzing function for another input.
Such functions can be generated using the built-in generation functions generateCanalyzing()

and generateNestedCanalyzing():

> net1 <- generateRandomNKNetwork(n=10,

+ k=3,

+ functionGeneration=generateCanalyzing,

+ zeroBias=0.75)

> net2 <- generateRandomNKNetwork(n=10,

+ k=3,

+ functionGeneration=generateNestedCanalyzing,

+ zeroBias=0.75)

It is also possible to define own generation functions: A generation function receives a vector input
of input gene indices as a parameter and returns a truth table result column with 2^length(input)

values representing the function.

If no explicit generation scheme is known for the function class of interest, validation functions can
be used instead of generation functions. Validation functions verify whether randomly generated
functions belong to a specific function class and reject invalid functions. Naturally, this is much
less efficient than generating appropriate functions directly. An example is the generation of
monotone functions, which are also thought to be biologically plausible. These function account
for the assumption that a transcription factor usually either activates or inhibits a specific target
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gene, but does not change the type of regulation depending on other factors [14]. We can specify
a simple validation function that checks whether a Boolean function is monotone:

> isMonotone <- function(input, func)

+ {

+ for (i in seq_len(ncol(input)))

+ # check each input gene

+ {

+ groupResults <- split(func, input[,i])

+ if (any(groupResults[[1]] < groupResults[[2]]) &&

+ any(groupResults[[1]] > groupResults[[2]]))

+ # the function is not monotone

+ return(FALSE)

+ }

+ return(TRUE)

+ }

Here, input is a matrix containing the input part of the transition table, and func is the output
of the Boolean function. In a monotone function, the values of the target may only change in one
direction when switching one input. Hence, a function for which switching the value of an input
gene sometimes switches the target from active to inactive, but also sometimes switches it from
inactive to active is not monotone. This is validated by comparing the two groups of transition
table entries for which the current input is active and inactive respectively.

If a validation function is supplied to generateRandomNKNetwork(), the generator generates
Boolean functions until either the validation function returns TRUE or the maximum number of
iterations (specified by the parameter failureIterations) is reached, in which case it fails.

> net <- generateRandomNKNetwork(n=10,

+ k=3,

+ validationFunction="isMonotone",

+ failureIterations=1000)

creates a network with 10 genes in which all functions have 3 inputs, of which at least one is
canalyzing.

By default, generateRandomNKNetwork() creates functions that cannot be simplified, i.e. that do
not contain any genes that are irrelevant for the outcome of the function. If desired, this behaviour
can be changed by setting noIrrelevantGenes to FALSE.

The presented parameters can be combined, and there are further options and parameters, so
that a broad variety of networks with different structural properties can be generated. For a full
reference of the possible parameters, please refer to the manual.

2.4 Knock-out and overexpression of genes

BoolNet allows for temporarily knocking out and overexpressing genes in a network without touch-
ing the transition functions. This means that genes can be set to a fixed value, and in any calcu-
lation on the network, this fixed value is taken instead of the value of the corresponding transition
function. Knocked-out and overexpressed genes speed up the analysis of the network, as they can
be ignored in many calculations. For example, to knock out CycD in the mammalian cell cycle
network, we call

> data(cellcycle)

> knockedOut <- fixGenes(cellcycle, "CycD", 0)

or alternatively use the gene index
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> knockedOut <- fixGenes(cellcycle, 1, 0)

This sets the gene constantly to 0. To over-express the gene (i.e. to fix it to 1), the corresponding
call is

> overExpressed <- fixGenes(cellcycle, "CycD", 1)

The command

> originalNet <- fixGenes(knockedOut, "CycD", -1)

reactivates the gene (for both knock and overexpression) and resets the network to its original
state.

The function also accepts multiple genes in a single call, such as

> newNet <- fixGenes(cellcycle, c("CycD","CycE"), c(0,1))

which knocks out CycD and overexpresses CycE.

3 Network analysis

3.1 Simulation of state transitions

To simulate a state transition and identify successor states of a given state, BoolNet includes the
function stateTransition(). The function supports transitions for all four types of networks.

The following code performs a synchronous state transition for the state in which all genes are set
to 1 on the mammalian cell cycle network:

> data(cellcycle)

> stateTransition(cellcycle, rep(1,10))

CycD Rb E2F CycE CycA p27 Cdc20 Cdh1 UbcH10 CycB

1 0 0 0 0 0 1 1 1 0

To calculate all state transitions in a synchronous network until an attractor is reached, you can
call

> path <- getPathToAttractor(cellcycle, rep(0,10))

> path

CycD Rb E2F CycE CycA p27 Cdc20 Cdh1 UbcH10 CycB

1 0 0 0 0 0 0 0 0 0 0

2 0 1 1 0 0 1 0 1 1 1

3 0 0 0 0 0 0 1 0 1 0

4 0 1 1 0 0 1 0 1 1 0

5 0 1 0 0 0 1 0 1 0 0

The returned matrix consists of the subsequent states until an attractor is reached. Depending
on the optional parameter includeAttractorStates, the sequence comprises all attractor states,
only the first attractor state or none of the attractor states.

A sequence can be visualized by plotting a table of state changes:

> plotSequence(sequence=path)
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CycB
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Figure 2: Visualization of a sequence of states in the mammalian cell cycle network. The columns
of the table represent consecutive states of the time series. The last state is the steady-state
attractor of the network.

The result is depicted in Figure 2. plotSequence() also includes a shortcut that calculates the
sequence directly if a network and a start state are supplied. It also provides an alternative way
of visualizing the sequence as a state transition by setting mode="graph".

The function

> sequenceToLaTeX(sequence=path, file="sequence.tex")

creates a LATEX table similar to plotSequence() function document.

In many cases, start states are defined by a set of active genes. Instead of supplying a full state
vector, one can also supply only these active genes using the generateState() function.

> startState <- generateState(cellcycle, specs=c("CycD"=1,"CycA"=1))

> stateTransition(cellcycle,startState)

CycD Rb E2F CycE CycA p27 Cdc20 Cdh1 UbcH10 CycB

1 0 0 0 1 0 0 0 1 1

calculates a state transition starting from a state where only the genes CycD and CycA are
active, while all other genes are inactive (which is controlled by the default parameter of
generateState()).

For temporal Boolean networks (objects of class SymbolicBooleanNetworks), the above functions
can be utilized mostly in the same way. We demonstrate this using a small temporal network
example of the IGF (Insulin-like growth receptor) pathway that is included in the package and
can be loaded via

> data(igf)

The model illustrates the activation and feedback inhibition of the PI3K-Akt-mTOR signalling
cascade through IGF and IRS.
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A state transition from the initial state in which the trigger of the pathway – IGF – is active, can
be performed using

> startState <- generateState(igf, specs=c("IGF"=1))

> stateTransition(igf, startState)

IGF IRS PI3K Akt mTORC1 mTORC2

1 1 0 0 0 0

The IGF network incorporates time delays of up to 3. Therefore, the last three states have to be
known to calculate a successor state. If only a single state is supplied – as above – the function
assumes that the state was the same before. This can be seen when calculating the sequence to
the attractor using

> getPathToAttractor(network=igf,state=startState)

IGF IRS PI3K Akt mTORC1 mTORC2

t = -2 1 0 0 0 0 0

t = -1 1 0 0 0 0 0

t = 0 1 0 0 0 0 0

t = 1 1 1 0 0 0 0

t = 2 1 1 1 0 0 0

t = 3 1 1 1 1 0 1

t = 4 1 1 1 1 0 1

t = 5 1 1 1 1 0 0

t = 6 1 1 1 1 1 0

t = 7 1 1 1 1 1 0

t = 8 1 0 1 1 1 0

t = 9 1 0 0 1 1 0

t = 10 1 0 0 0 1 0

t = 11 1 0 0 0 1 0

t = 12 1 0 0 0 0 0

t = 13 1 0 0 0 0 0

t = 14 1 0 0 0 0 0

Here, the states at t = −2, . . . 0 are the same as the generated start state. If it is required to
specify multiple predecessor states here, a matrix of states can be supplied instead of a vector.
E.g.,

> startState <- generateState(igf, specs=list("IGF"=c(0,0,1)))

> startState

IGF IRS PI3K Akt mTORC1 mTORC2

[1,] 0 0 0 0 0 0

[2,] 0 0 0 0 0 0

[3,] 1 0 0 0 0 0

specifies that the first two states (t = −2, t = −1) should have all genes inactive, while IGF is
activated only at t = 0. This time, we plot the sequence instead of printing it:

> plotSequence(network=igf, startState=startState)

The result is depicted in Figure 3.

stateTransition() can also perform asynchronous updates. A random asynchronous transition
is performed using
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Figure 3: Visualization of a sequence of states in the IGF network. The columns of the table
represent consecutive states of the time series. After activation of IGF, the attractor consisting of
14 states is entered immediately. This attractor represents the activation and inactivation of the
PI3K-Akt-mTOR signalling cascade through IGF and IRS.

> stateTransition(cellcycle, rep(1,10), type="asynchronous")

CycD Rb E2F CycE CycA p27 Cdc20 Cdh1 UbcH10 CycB

1 1 1 0 1 1 1 1 1 1

In this case, the fifth gene, CycA, was chosen at uniformly at random and updated.

We can also specify non-uniform probabilities for the genes, for example

> stateTransition(cellcycle, rep(1,10), type="asynchronous",

+ geneProbabilities=c(0.05,0.05,0.2,0.3,0.05,0.05,0.05,0.05,0.1,0.1))

CycD Rb E2F CycE CycA p27 Cdc20 Cdh1 UbcH10 CycB

1 1 1 0 1 1 1 1 1 1

This obviously increases probabilities for the genes 3 and 4 (E2F and CycE) to be chosen. In this
case, CycE was chosen for the update.

Sometimes you do not want a random update at all, but would like to specify which gene should
be chosen for the update. This is possible via

> stateTransition(cellcycle, rep(1,10), type="asynchronous",

+ chosenGene="CycE")

CycD Rb E2F CycE CycA p27 Cdc20 Cdh1 UbcH10 CycB

1 1 1 0 1 1 1 1 1 1

In probabilistic Boolean networks, a state transition is performed by choosing one of the alternative
functions for each gene and applying this set of functions to the current state. The following
performs a state transition with a randomly chosen set of functions on the artificial probabilistic
Boolean network taken from [15] with 3 genes, starting from state (0,1,1):
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> data(examplePBN)

> stateTransition(examplePBN, c(0,1,1), type="probabilistic")

x1 x2 x3

1 0 0

You may get a different result, as the functions are chosen randomly according to the probabilities
stored in the network. If you would like to execute a specific set of transition functions, you can
supply this in an additional parameter:

> stateTransition(examplePBN, c(0,1,1), type="probabilistic",

+ chosenFunctions=c(2,1,2))

x1 x2 x3

0 0 0

This call uses the second function for gene x1 and x3 and the first function for gene x2.

3.2 Identification of attractors

Attractors are stable cycles of states in a Boolean network. As they comprise the states in which
the network resides most of the time, attractors in models of gene-regulatory networks are expected
to be linked to phenotypes [8, 11]. Transitions from all states in a Boolean network eventually
lead to an attractor, as the number of states in a network is finite. All states that lead to a certain
attractor form its basin of attraction. BoolNet is able to identify attractors in synchronous and
asynchronous Boolean networks. There are three types of attractors in these networks:

Simple attractors occur in synchronous and temporal Boolean networks and consist of a set of
states whose synchronous transitions form a cycle.

Complex or loose attractors are the counterpart of simple attractors in asynchronous net-
works. As there is usually more than one possible transition for each state in an asynchronous
network, a complex attractor is formed by two or more overlapping loops. Precisely, a com-
plex attractor is a set of states in which all asynchronous state transitions lead to another
state in the set, and a state in the set can be reached from all other states in the set.

Steady-state attractors are attractors that consist of only one state. All transitions from this
state result in the state itself. These attractors are the same both for synchronous and
asynchronous update of a network. Steady states are a special case of both simple attractors
and complex attractors.

The getAttractors() function incorporates several methods for the identification of attractors
in synchronous and asynchronous networks. We present these methods using the included mam-
malian cell cycle network as an example. This network has one steady-state attractor, one simple
synchronous attractor consisting of 7 states, and one complex asynchronous attractor with 112
states (see [5]).

We first demonstrate the use of exhaustive synchronous search. This means that the software
starts from all possible states of the network and performs synchronous state transitions until a
simple or steady-state attractor is reached.
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> data(cellcycle)

> attr <- getAttractors(cellcycle)

> attr

Attractor 1 is a simple attractor consisting of 1 state(s) and has a basin of

512 state(s):

|--<---------|

V |

0100010100 |

V |

|-->---------|

Genes are encoded in the following order: CycD Rb E2F CycE CycA p27 Cdc20 Cdh1

UbcH10 CycB

Attractor 2 is a simple attractor consisting of 7 state(s) and has a basin of

512 state(s):

|--<---------|

V |

1001100000 |

1000100011 |

1000101011 |

1000001110 |

1010000110 |

1011000100 |

1011100100 |

V |

|-->---------|

Genes are encoded in the following order: CycD Rb E2F CycE CycA p27 Cdc20 Cdh1

UbcH10 CycB

Typing attr calls a special print method that presents the attractor in a human-readable way.
Here, a state in an attractor is represented by a binary vector, where each entry of the vector codes
for one gene. An alternative is to print only the names of the active genes (i.e., the genes that
are set to 1) instead of the full vector by calling the print() method explicitly with a changed
parameter:

> print(attr, activeOnly=TRUE)

Attractor 1 is a simple attractor consisting of 1 state(s) and has a basin of

512 state(s).

Active genes in the attractor state(s):

State 1: Rb, p27, Cdh1

Attractor 2 is a simple attractor consisting of 7 state(s) and has a basin of

512 state(s).

Active genes in the attractor state(s):

State 1: CycD, CycE, CycA

State 2: CycD, CycA, UbcH10, CycB

State 3: CycD, CycA, Cdc20, UbcH10, CycB

State 4: CycD, Cdc20, Cdh1, UbcH10

State 5: CycD, E2F, Cdh1, UbcH10

State 6: CycD, E2F, CycE, Cdh1

State 7: CycD, E2F, CycE, CycA, Cdh1
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We can see that the search identified both synchronous attractors.

The AttractorInfo structure stores the attractors in an encoded form. The function
getAttractorSequence() can be used to obtain the sequence of states that constitute a spe-
cific synchronous attractor as a table:

> getAttractorSequence(attr, 2)

CycD Rb E2F CycE CycA p27 Cdc20 Cdh1 UbcH10 CycB

1 1 0 0 1 1 0 0 0 0 0

2 1 0 0 0 1 0 0 0 1 1

3 1 0 0 0 1 0 1 0 1 1

4 1 0 0 0 0 0 1 1 1 0

5 1 0 1 0 0 0 0 1 1 0

6 1 0 1 1 0 0 0 1 0 0

7 1 0 1 1 1 0 0 1 0 0

retrieves the states that make up the second (i.e., the 7-state attractor) as a data frame with the
genes in the columns and the successive states in the rows.

The advantage of the exhaustive search method is that the complete transition table is calculated
and stored in the return value. This table stores information that is used by a number of analysis
methods described below.

You can extract the transition table in a data frame and print it out using

> tt <- getTransitionTable(attr)

> tt

State Next state Attr. basin # trans. to attr.

0000000000 => 0110010111 1 4

[...]

1111111111 => 1000001110 2 1

Genes are encoded in the following order: CycD Rb E2F CycE

CycA p27 Cdc20 Cdh1 UbcH10 CycB

In the printed table, the first column denotes the initial state, the second column contains the
state after the transition, the first column contains the number of the attractor that is finally
reached from this state, and the fourth column lists the number of state transitions required to
attain this attractor.

A table of the same structure is returned by

> getBasinOfAttraction(attr, 1)

which extracts all states from the transition table that belong to the basin of attraction of attractor
one (i.e., whose attractor number in column 3 is 1).

If you are interested in information on a single state (here: the state with all genes set to 1), you
can type

> getStateSummary(attr, c(1,1,1,1,1,1,1,1,1,1))

State Next state Attr. basin # trans. to attr.

1111111111 => 1000001110 2 1

Genes are encoded in the following order: CycD Rb E2F CycE

CycA p27 Cdc20 Cdh1 UbcH10 CycB
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The visualization function getStateGraph() makes use of the transition table as well: It plots a
transition graph in which the basins of attraction are drawn in different colors, and the attractors
are highlighted. The result of

> plotStateGraph(attr)

is depicted at the top of Figure 4. The blue basin belongs to attractor 1, and the green basin
belongs to attractor 2.

The above call does not ensure that the basins of attraction are clearly separated in the plot. If
this is desired, one can choose to use a piecewise layout, which means that the layouting function
is applied separately to each basin of attraction, and the basins are drawn side by side. The result
of

> plotStateGraph(attr, piecewise=TRUE)

is depicted at the bottom of Figure 4.

Exhaustive search consumes a high amount of time and memory with increasing size of the network,
which makes it intractable for large networks (BoolNet currently supports networks with up to 29
genes for exhaustive search due to memory restrictions in R). Therefore, BoolNet also allows for
heuristic search of attractors, which works for larger networks as well. Heuristic synchronous search
starts from a predefined small set of states and identifies the attractors to which state transitions
from these states lead. The start states can either be supplied, or they can be calculated randomly.

> attr <- getAttractors(cellcycle, method="random", startStates=100)

chooses 100 random start states for the heuristic search and usually identifies both attractors.

> attr <- getAttractors(cellcycle,

+ method="chosen",

+ startStates=list(rep(0,10),rep(1,10)))

starts from the states (0,0,0,0,0,0,0,0,0,0) and (1,1,1,1,1,1,1,1,1,1) and again identifies
both synchronous attractors.

For the previous calls, only the subset of the transition table traversed by the heuristic is returned.
This means that there is no guarantee that, e.g. getBasinOfAttraction() returns the complete
basin of attraction of an attractor in heuristic mode.

Synchronous attractors can be visualized by plotting a table of changes of gene values in the states
of the attractor:

> plotAttractors(attr, subset=2)

plots the state changes of the simple attractor with 7 states, as depicted in Figure 5. Similarly,

> attractorsToLaTeX(attr, subset=2, file="attractors.tex")

exports the same state table to a LATEX document.

To identify asynchronous attractors, another special heuristic algorithm is included. This algo-
rithm again starts from a small subset of states and makes a number of random transitions to
reach an attractor with a high probability. After that, a validation step is performed to analyze
whether a complex attractor has been identified.

The command

> attr <- getAttractors(cellcycle,

+ type="asynchronous",

+ method="random",

+ startStates=500)
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Attractor 1

Attractor 2

Attractor 1

Attractor 2

Figure 4: The state graph of the mammalian cell cycle network using the regular layout (top) and
using a piecewise layout (bottom). Each node represents a state of the network, and each arrow is
a state transition. The colors mark different basins of attraction. Attractors are highlighted using
bold lines.
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Figure 5: Visualization of the state changes in an attractor. The columns of the table represent
consecutive states of the attractor.

conducts an asynchronous search with 500 random start states on the mammalian cell cycle net-
work. In this case, the algorithm has identified both the steady-state attractor and the complex
attractor:

> attr

Attractor 1 is a simple attractor consisting of 1 state(s):

|--<---------|

V |

0100010100 |

V |

|-->---------|

Genes are encoded in the following order: CycD Rb E2F CycE

CycA p27 Cdc20 Cdh1 UbcH10 CycB

Attractor 2 is a complex/loose attractor consisting of 112 state(s)

and 338 transition(s):

1011101111 => 1011101110

[...]

1000000000 => 1010000000

Genes are encoded in the following order: CycD Rb E2F CycE

CycA p27 Cdc20 Cdh1 UbcH10 CycB
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Figure 6: Graph representation of the complex attractor in the mammalian cell cycle network.
Each node represents a state of the complex attractor, and each arrow represents a state transition.

For the complex attractor, the involved transitions are printed out. By default, the algorithm
tries to avoid self-loops, i.e. transitions that lead to the same state again. This means that self-
loop transitions are only allowed if there is no other transition that leads to a different state. If
you would like to allow the algorithm to enter self-loops even if transitions to different states are
possible, you can call

> attr <- getAttractors(cellcycle,

+ type="asynchronous",

+ method="random",

+ startStates=500,

+ avoidSelfLoops=FALSE)

In the resulting complex attractor with 112 states, there are 450 transitions instead of 338 tran-
sitions, which is due to the additional self-loops.

The asynchronous heuristic search does not return a transition table, such that the above analysis
methods cannot be applied here.

As there are multiple possible transitions for each state, complex attractors cannot be visualized
as in Figure 5. For this reason, plotAttractors() supports a graph mode that visualizes the
transitions among the states in the attractor:

> plotAttractors(attr, subset=2, mode="graph", drawLabels=FALSE)

plots the 112-state attractor as depicted in Figure 6. We omit the state labels (i.e. the gene
values) due to the high number of states. This plot again requires the igraph package.

Although getAttractors() can also be applied to temporal networks and other networks that
are in a symbolic representation (i.e. SymbolicBooleanNetwork objects), this function is only a
shortcut to the simulation function simulateSymbolicModel() in this case. It is advised to use
simulateSymbolicModel() directly , as it provides more options. For the temporal model of the
IGF pathway included in BoolNet, an exhaustive simulation can be performed as follows:
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> sim <- simulateSymbolicModel(igf)

> sim

Simulation of a symbolic Boolean network

Sequences for 2048 start states (print with sequences=TRUE to show them)

Graph containing 320 state transitions (print with graph=TRUE to show them)

2 Attractors:

Attractor 1 is a simple attractor consisting of 1 state(s) and has a basin of

160 state(s):

|--<-----|

V |

000000 |

V |

|-->-----|

Genes are encoded in the following order: IGF IRS PI3K Akt mTORC1 mTORC2

Attractor 2 is a simple attractor consisting of 14 state(s) and has a basin of

160 state(s):

|--<-----|

V |

100000 |

110000 |

111000 |

111101 |

111101 |

111100 |

111110 |

111110 |

101110 |

100110 |

100010 |

100010 |

100000 |

100000 |

V |

|-->-----|

Genes are encoded in the following order: IGF IRS PI3K Akt mTORC1 mTORC2

By default, the result object of class SymbolicSimulation comprises several components:

• A list of sequences sequences from each start state to the corresponding attractor. If this
component is not desired, the parameter returnSequences can be set to false.

• A graph structure graph that comprises all traversed state transitions. If this component is
not desired, the parameter returnGraph can be set to false.

• The identified attractors attractors. If this component is not desired, the parameter
returnAttractors can be set to false.

In this case, the network has two attractors: A steady state describes the inactive state of the
pathway. The circular attractor describes the activation and inactivation of the PI3K-Akt-mTOR
signalling cascade initiated by IGF.
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All visualization and analysis function described above can also be applied to the simulation results
obtained by simulateSymbolicModel. For example, the cascade attractor can be visualized via

> plotAttractors(sim, subset=2)

Similarly,

> plotStateGraph(sim)

plots the state transition graph of the network. Unlike in classical synchronous networks, a state
can have multiple successor states (outgoing edges) in temporal networks, as a state transition
may also depend on the history of states before the current state. The two plots are shown in
Figure 7.

For temporal networks, it is often infeasible to perform an exhaustive search, as the search space is
not only exponential in the number of genes, but also in the time delays. Hence, the search can also
be restricted to randomly generated or prespecified start states similarly to getAttractors(). If
time delays of more than 1 are included in the network, not only single start states are generated,
but the required history of states is generated as well. For example,

> sim <- simulateSymbolicModel(igf, method="random", startStates=2)

generates two start state matrices, each comprising 3 states (the maximum delay of the IGF
network), and uses them as the basis for a simulation. This can be seen when examining the
sequences to the attractors:

> sim$sequences

[[1]]

IGF IRS PI3K Akt mTORC1 mTORC2

t = -2 1 1 1 0 0 0

t = -1 1 1 1 1 1 0

t = 0 0 1 1 1 0 0

t = 1 0 0 1 1 0 0

t = 2 0 0 0 1 1 0

t = 3 0 0 0 0 1 0

t = 4 0 0 0 0 1 0

t = 5 0 0 0 0 0 0

t = 6 0 0 0 0 0 0

t = 7 0 0 0 0 0 0

[[2]]

IGF IRS PI3K Akt mTORC1 mTORC2

t = -2 1 0 0 0 1 0

t = -1 1 0 0 1 1 0

t = 0 0 0 0 1 1 0

t = 1 0 0 0 0 0 0

t = 2 0 0 0 0 1 0

t = 3 0 0 0 0 0 0

t = 4 0 0 0 0 0 0

t = 5 0 0 0 0 0 0

Both sequences comprise start states t = −2, t = −1 and t = 0.

Classical synchronous Boolean networks can also be simulated using the symbolic simula-
tor simulateSymbolicModel() if they are in a symbolic form. However, in most cases,
getAttractors() will be faster and will consume less memory for synchronous networks without
temporal elements. Only if the number of inputs to genes is very high and exhaustive simulation
is not required, it may be advisable to use the symbolic simulator.
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Figure 7: Top: Visualization of an attractor that describes the activation and inactivation of the
PI3K-Akt-mTOR signalling cascade through IGF and IRS. The columns of the table represent
consecutive states of the attractor. On top, the percentage of states leading to the attractor is
supplied.
Bottom: The state transition graph of the IGF pathway network. Each node represents a state of
the network, and each arrow is a state transition. The colors mark different basins of attraction.
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3.3 Markov chain simulations

Another way of identifying relevant states in Boolean networks are Markov chain simulations.
Instead of identifying cycles explicitly, these simulations calculate the probability that a certain
state is reached after a predefined number of iterations. Of course, states in an attractor have a
high probability of being reached if the number of iterations is chosen large enough. Markov chain
simulations for probabilistic Boolean networks were introduced by Shmulevich et al. [15]. As a
special case of probabilistic Boolean networks, these simulations are also suited for synchronous
Boolean networks.

The following performs a Markov experiment with the predefined number of 1000 iterations on
the example PBN described in [15]:

> data(examplePBN)

> sim <- markovSimulation(examplePBN)

> sim

States reached at the end of the simulation:

x1 x2 x3 Probability

1 0 0 0 0.15

2 1 1 1 0.85

Probabilities of state transitions in the network:

State Next state Probability

000 => 000 1.0

001 => 110 1.0

010 => 110 1.0

011 => 000 0.2

011 => 100 0.3

011 => 001 0.2

011 => 101 0.3

100 => 010 1.0

101 => 110 0.5

101 => 111 0.5

110 => 100 0.5

110 => 101 0.5

111 => 111 1.0

Only states with a non-zero probability are listed in the two tables. The first table shows the
states that are reached after 1000 iterations. The second table is a transition table annotated with
transition probabilities. This table can be suppressed by the parameter returnTable=FALSE. The
results correspond exactly to those in [15].

If the transition table is included in the simulation results, we can plot a graph of the network:

> plotPBNTransitions(sim)

This graph is displayed in Figure 8. The vertices are the states of the graph. The edges represent
transitions and are annotated with the corresponding transition probabilities. For this plot, the
igraph package must be installed.
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Figure 8: State transition graph of the example probabilistic Boolean network included in BoolNet.
Each node represents a state of the network, and each arrow is a possible state transition, annotated
by the transition probability.

We can also use Markov chain simulations to identify the attractor states in the mammalian cell
cycle network:

> data(cellcycle)

> sim <- markovSimulation(cellcycle,

+ numIterations=1024,

+ returnTable=FALSE)

> sim

States reached at the end of the simulation:

CycD Rb E2F CycE CycA p27 Cdc20 Cdh1 UbcH10 CycB Probability

1 1 0 0 1 1 0 0 0 0 0 0.00781250

2 1 0 1 1 0 0 0 1 0 0 0.17187500

3 1 0 1 1 1 0 0 1 0 0 0.02343750

4 0 1 0 0 0 1 0 1 0 0 0.50000000

5 1 0 1 0 0 0 0 1 1 0 0.15625000

6 1 0 0 0 0 0 1 1 1 0 0.10937500

7 1 0 0 0 1 0 0 0 1 1 0.00390625

8 1 0 0 0 1 0 1 0 1 1 0.02734375

We set the maximum number of iterations to 1024, which is the number of states in the network.
In a deterministic network, this guarantees that all states are found.

The fourth state in the returned table is the steady-state attractor identified previously. It has a
probability of 0.5, as the basin of attraction is exactly half of the states. The other 7 states belong
to the simple synchronous attractor.
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It is also possible to restrict the simulation to a certain set of input states instead of using all
possible input states. In the following example, we only consider the state with all genes set to 1,
and identify the state belonging to the steady-state attractor again:

> sim <- markovSimulation(cellcycle,

+ numIterations=1024,

+ returnTable=FALSE,

+ startStates=list(rep(1,10)))

> sim

States reached at the end of the simulation:

CycD Rb E2F CycE CycA p27 Cdc20 Cdh1 UbcH10 CycB Probability

1 1 0 1 0 0 0 0 1 1 0 1

3.4 Robustness assessment

A biological network is assumed to be robust to small amounts of noise. The plausibility of
network models is therefore often assessed by testing its robustness to noise and mismeasurements.
Typically, artificial noise is applied, and its influence on the behaviour of a network is measured.

There are two major ways of applying random noise: Either the current state of a network in a
simulation can be perturbed, or the network structure itself can be perturbed. BoolNet includes
functions for both types of robustness assessment.

The function perturbTrajectories measures the influence of noise that is applied to the current
network state. It generates a set of initial states and creates perturbed copies of these states
by randomly flipping bits. It then measures the influence of the flips on the further dynamic
behaviour of the network. For example

> data(cellcycle)

> r <- perturbTrajectories(cellcycle,

+ measure="hamming",

+ numSamples=100,

+ flipBits=1)

randomly generates 100 states and 100 copies with one bitflip and performs a single state transition
for each state. It then measures the normalized Hamming distance (the fraction of different bits)
between each state and the corresponding perturbed copy. A robust network is assumed to yield
a low Hamming distance. The average distance can be viewed by typing

> r$value

[1] 0.115

A related measure is the average sensitivity. This measure assesses only a single transition function
and counts the number of successor states that differ between the original states and the perturbed
copies for the corresponding gene. E.g.,

> r <- perturbTrajectories(cellcycle,

+ measure="sensitivity",

+ numSamples=100,

+ flipBits=1,

+ gene="CycE")

> r$value

[1] 0.11
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measures the average sensitivity of the transition function for gene CycE.

The long-term behaviour can be evaluated by comparing the attractors that are reached from the
initial states and their perturbed copies.

> r <- perturbTrajectories(cellcycle,

+ measure="attractor",

+ numSamples=100,

+ flipBits=1)

> r$value

[1] 0.9

measures the fraction of pairs of states and perturbed copies that yield the same attractors. It
can be assumed that small changes in the state should not influence the long-term behaviour of
the network, and hence the attractors should mostly be the same.

The second class of perturbations adds random noise to the network itself. This is implemented in
the perturbNetwork() function. Unlike perturbTrajectories(), this function does not perform
any simulations, but returns a perturbed copy of the network that can be analyzed further.

BoolNet includes a set of different perturbation options that can be combined. For example,

> perturbedNet <- perturbNetwork(cellcycle,

+ perturb="functions",

+ method="bitflip")

chooses a function of the network at random and flips a single bit in this function. By setting the
parameter maxNumBits, you can also flip more than one bit at a time.

Instead of flipping bits,

> perturbedNet <- perturbNetwork(cellcycle,

+ perturb="functions",

+ method="shuffle")

randomly permutes the output values of the chosen transition functions. This preserves the num-
bers of 0s and 1s, but may change the Boolean function completely. These kinds of perturbations
are supported for synchronous and asynchronous networks as well as for probabilistic networks.

For synchronous networks, a further perturbation mode is available:

> perturbedNet <- perturbNetwork(cellcycle,

+ perturb="transitions",

+ method="bitflip",

+ numStates=10)

Here, BoolNet calculates the complete transition table of the network and then flips a single bit
in 10 states of the transition table. From this modified table, a network is reconstructed. Changes
of this type only affect a few states (which might not be the case when perturbing the functions
directly as above), but possibly several of the transition functions. As in the previous examples,
it is also possible to modify the number of bits to be flipped or to choose method="shuffle".
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A detailed listing of a perturbation experiment is shown below. In this experiment, 1000 per-
turbed copies of the cell cycle network are created, and the occurrences of the original syn-
chronous attractors are counted in the perturbed copies. This is similar to the simulation in
perturbTrajectories() with measure="attractor". However, instead of comparing the out-
comes of different initial states in the same network, it compares all attractors of different perturbed
networks to all attractors of the original network by exhaustive search.

> # Perform a robustness test on a network

> # by counting the numbers of perturbed networks

> # containing the attractors of the original net

>

> library(BoolNet)

> # load mammalian cell cycle network

> data(cellcycle)

> # get attractors in original network

> attrs <- getAttractors(cellcycle, canonical=TRUE)

> # create 1000 perturbed copies of the network and search for attractors

> perturbationResults <- sapply(1:1000, function(i)

+ {

+ # perturb network and identify attractors

+ perturbedNet <- perturbNetwork(cellcycle, perturb="functions", method="bitflip")

+ perturbedAttrs <- getAttractors(perturbedNet, canonical=TRUE)

+

+ # check whether the attractors in the original network exist in the perturbed network

+ attractorIndices <- sapply(attrs$attractors,function(attractor1)

+ {

+ index <- which(sapply(perturbedAttrs$attractors, function(attractor2)

+ {

+ identical(attractor1, attractor2)

+ }))

+ if (length(index) == 0)

+ NA

+ else

+ index

+ })

+ return(attractorIndices)

+ })

> # perturbationResults now contains a matrix

> # with the first 2 columns specifying the indices or the

> # original attractors in the perturbed network

> # (or NA if the attractor was not found) and the next 2

> # columns counting the numbers of states

> # in the basin of attraction (or NA if the attractor was not found)

>

> # measure the total numbers of occurrences of the original attractors in the perturbed copies

> numOccurrences <- apply(perturbationResults[seq_along(attrs$attractors),,drop=FALSE], 1,

+ function(row)sum(!is.na(row)))

> # print original attractors

> cat("Attractors in original network:\n")

> print(attrs)

> # print information

> cat("Number of occurrences of the original attractors",

+ "in 1000 perturbed copies of the network:\n")

> for (i in 1:length(attrs$attractors))

+ {

+ cat("Attractor ",i,": ",numOccurrences[i],"\n",sep="")

+ }
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The results of such an experiment could look like this:

Attractors in original network:

Attractor 1 is a simple attractor consisting of 1 state(s)

and has a basin of 512 state(s):

[...]

Attractor 2 is a simple attractor consisting of 7 state(s)

and has a basin of 512 state(s):

[...]

Number of occurrences of the original attractors in 1000

perturbed copies of the network:

Attractor 1: 622

Attractor 2: 589

We see that the steady-state attractor is slightly more robust to perturbations than the simple
attractor with 7 states, as it can be identified in a higher number of perturbed copies.

3.5 Identifying specific properties of biological networks

The described robustness measures could also be used to identify specific properties of real-world
networks in comparison to arbitrary (random) networks. For example, one could assume that
attractors in biological networks are more robust to perturbations than attractors in random net-
works with a similar structure, as they should be capable of compensating for small dysfunctions
of their components. Similarly to the above code, one could execute a number of random pertur-
bations on the biological network and measure the percentage of original attractors found in the
perturbed copies. Afterwards, one could repeat this process on a number of randomly generated
networks – i.e., generate perturbed copies from each of the random networks, and measure the
percentage of attractors in the copies. If the percentage of the biological network is higher than
most of the percentages of the random network, this suggests that the biological network exhibits
a higher robustness. This is a kind of computer-intensive test.

BoolNet comprises a generic facility for such computer-intensive tests. This facility already in-
cludes several tests (mainly for synchronous Boolean networks) and can be extended by custom
test functions. The outlined example of attractor robustness is one of the integrated functions:

> data(cellcycle)

> res <- testNetworkProperties(cellcycle,

+ numRandomNets=100,

+ testFunction="testAttractorRobustness",

+ testFunctionParams = list(copies=100, perturb="functions"))

creates a set of 100 random networks (each with the same number of input genes for the functions
as the cell cycle network) and creates 100 perturbed copies for each of these networks and for the
cell cycle network by applying perturbNetwork() with perturb="functions". For each network,
it then calculates the percentage of attractors that can still be found in the perturbed copies.

The function plots a histogram of this robustness measures of the random networks (see Figure 9,
top panel). The corresponding value of the original cell cycle network is plotted as a red line, and
the 95% quantile is plotted as a blue line.

We can see that the average percentage of found attractors is significantly higher in the biological
network with a p-value of 0.01.
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Figure 9: Top: Attractor robustness of randomly generated networks (histogram) in comparison
to the mammalian cell cycle network (red line).
Bottom: Normalized Hamming distance of randomly generated networks (histogram) in compar-
ison to the mammalian cell cycle network (red line).
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It is also possible to perturb the states instead of the networks themselves by setting
perturb to "trajectories". In this case, the function applies perturbTrajectories() with
measure="attractor" to the biological network and the randomly generated networks. It then
tests whether the fraction of state pairs that yield the same attractor is higher in the biological
network than in the randomly generated networks.

The second built-in test function also tests the robustness of the network behaviour by perturb-
ing the network states: testTransitionRobustness() applies perturbTrajectories() with
measure="hamming" to each network. It then checks whether random bit flips yield a higher
Hamming distance of the successor states in randomly generated networks than in the biological
model, i.e. whether noise in the states influences the randomly generated networks stronger than
the biological model. In contrast to the previous measures for which a greater value was assumed
in the biological model, the Hamming distance is assumed to be smaller. Hence, we must specify
the test alternative as alternative="less".

> testNetworkProperties(cellcycle,

+ numRandomNets=100,

+ testFunction="testTransitionRobustness",

+ testFunctionParams=list(numSamples=100),

+ alternative="less")

The results are shown in the bottom panel of Figure 9. Again, the result is highly significant
(indeed, the Hamming distances are always lower in the biological network), which means that the
biological network is considerably more robust to noise in the states than the randomly generated
models.

Another network property can also be tested using a built-in function: When looking at the state
graph of a biological network (which can be generated using plotStateGraph()), it can often
be observed that many state transitions lead to the same successor states, which means that the
dynamics of the network quickly concentrate on a few states after a number of state transitions.
We call the number of states whose synchronous state transitions lead to a state s the in-degree
of state s. We expect the biological network to have a few states with a high in-degree and many
states with a low in-degree. A characteristic to summarize the in-degrees is the Gini index, which
is a measure of inhomogeneity. If all states have an in-degree of 1, the Gini index is 0; if all state
transitions lead to only one state, the Gini index is 1.

> testNetworkProperties(cellcycle,

+ numRandomNets=100,

+ testFunction="testIndegree")

plots an histogram of Gini indices in 100 random networks and draws the Gini index of the cell
cycle network as a red line, as depicted in the top panel of Figure 10.

The histogram shows that the Gini index of the in-degrees is always higher in the biological
network. This is probably due to the special structure of functions in biological networks.

Instead of accumulating the in-degrees using the Gini index, it is also possible to compare the
distributions of the in-degrees across the networks. For this purpose, the Kullback-Leibler distances
of the in-degrees of the supplied network and each of the random networks are calculated and
plotted in a histogram. The Kullback-Leibler distance (also called relative entropy) is an asymetric
measure of similarity of two distributions [4]. If the distributions are equal, the Kullback-Leibler
distance is 0, otherwise it is greater than 0.

> testNetworkProperties(cellcycle,

+ numRandomNets=100,

+ testFunction="testIndegree",

+ accumulation="kullback_leibler")
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Figure 10: Top: Gini indices of state in-degrees of randomly generated networks (histogram) in
comparison to the mammalian cell cycle network (red line)
Bottom: Kullback-Leibler distances of in-degrees of the mammalian cell cycle network and 100
random networks.
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results in the plot displayed in the bottom panel of Figure 10.

It is possible to switch between the histogram of an accumulated characteristic (e.g. the Gini
index) and the histogram of the Kullback-Leibler distances for all tests.

You can also easily implement your own tests. To do this, the only thing you have to do is imple-
ment a custom testing function that replaces testIndegree() or testAttractorRobustness().
Testing functions have the following signature:

function(network, accumulate=TRUE, params)

The first parameter is the network that should be tested. The parameter accumulate specifies
whether a single characteristic value (e.g., the Gini index of the in-degrees) should be calculated,
or whether a distribution of values (e.g., a vector of all in-degrees) should be returned. The third
parameter is a list of further arguments needed by your function.

If, for example, we would like to compare the sizes of the basins of attractions of synchronous
attractors in biological and random networks, we would write a function like this:

> testBasinSizes <- function(network, accumulate=TRUE, params)

+ {

+ attr <- getAttractors(network)

+ basinSizes <- sapply(attr$attractors, function(a)

+ {

+ a$basinSize

+ })

+ if (accumulate)

+ return(mean(basinSizes))

+ else

+ return(basinSizes)

+ }

This function calculates the mean basin size as a characteristic value if accumulation is required,
or returns the sizes of all basins of attraction in a vector otherwise. It does not need any further
parameters in params.

Now, we can start a test using

> testNetworkProperties(cellcycle,

+ numRandomNets=100,

+ testFunction="testBasinSizes",

+ xlab="Average size of basins of attraction")

to produce the plot shown in Figure 11. Apparently, the average basin sizes do not differ as much
as the built-in test characteristics between the random networks and the cell cycle network.

By writing custom test functions, you can extend the test facility to perform a wide variety
computer-intensive test. Of course, it is also possible to plot the Kullback-Leibler distances with
such new methods by using accumulation="kullback_leibler".

testNetworkProperties() accepts most of the parameters of generateRandomNKNetwork().
If necessary, you can generate more specialized kinds of random networks which resemble the
original network in certain aspects, for example by specifying a generation function or by set-
ting a proportion of 0 and 1 in the function outputs similar to the original network using
functionGeneration="biased".
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Figure 11: A custom test statistic measuring the basin sizes on randomly generated networks
(histogram) and the mammalian cell cycle network (red line).
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4 Import and export

4.1 Saving networks in the BoolNet file format

Corresponding to the loadNetwork() command, a network can be saved using saveNetwork().
This stores the network in the network file format described in Section 5 and can be applied to all
types of networks supported by BoolNet. For example, the cell cycle network can be saved using

> saveNetwork(cellcycle, file="cellcycle.txt")

The function stores the expressions that describe the transition functions. In some cases, there
may not always be a valid symbolic description of the networks (e.g. for networks returned by
generateRandomNKNetwork() when the readableFunctions parameter was not set). In this case,
saveNetwork() can generate symbolic representations of the transition functions in Disjunctive
Normal Form (DNF):

> net <- generateRandomNKNetwork(n=10, k=3, readableFunctions=FALSE)

> saveNetwork(net, file="randomnet.txt", generateDNF=TRUE)

The generateDNF parameter can also be used to detail which type of DNF formulae should be
exported: generateDNF="canonical" exports canonical DNF formulae. generateDNF="short"

minimizes the canonical functions by joining terms. By simply setting generateDNF=TRUE, formu-
lae with up to 12 inputs are minimized, and formulae with more than 12 inputs are exported in a
canonical form, as a minization is very time-consuming in this case.

4.2 Import from and export to SBML

BoolNet provides an interface to the widely used Systems Biology Markup Language (SBML)
via the import function loadSBML() and the export function saveSBML(). As the core SBML
does not fully support Boolean models, import and export of SBML models is based on
the sbml-qual package which extends SBML by several qualitative modeling approaches,
such as general logical models and Petri nets. For a full description of sbml-qual, refer to
http://sbml.org/Documents/Specifications/SBML_Level_3/Packages/Qualitative_Models_(qual).

BoolNet only supports a subset of sbml-qual. It can read and write logical models with two
possible values for each state, which are equivalent to Boolean networks. Logical models with
more than two values for a gene or Petri nets cannot currently be handled by BoolNet.

An export to SBML is usually not associated with any loss of information. For example, we can
write the cell cycle network to a file and re-import it into BoolNet:

> toSBML(cellcycle, file="cellcycle.sbml")

> sbml_cellcycle <- loadSBML("cellcycle.sbml")

> sbml_cellcycle

Apart from some additional brackets, the re-imported network coincides with the original network.

Similar to the saveNetwork() function, toSBML() exports a symbolic representation of the network
transition functionss, which may not always be available. As for saveNetwork(), there is a
parameter generateDNF that can be set to generate a symbolic representation in Disjunctive
Normal Form from the truth tables.

4.3 Importing networks from BioTapestry

BioTapestry is a widely-used application for visual modeling of gene-regulatory networks [13].
It can be freely accessed at http://www.biotapestry.org. Although its primary purpose is
visualization, the software supports specifying logical functions for the genes. BoolNet can read
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in the top-level (“Full genome”) plot of a BioTapestry file (*.btp) and convert it into a Boolean
network.

As an example, we assume the following BioTapestry model with 5 genes (2 inputs and 3 dependent
genes):

The corresponding BioTapestry file is included in BoolNet. You can determine its path using

> system.file("doc/example.btp", package="BoolNet")

to access it in BioTapestry or BoolNet.

For the import, BoolNet needs to know the type of influence a gene has on another gene. Therefore,
imported networks should only use links that are either enhancers or repressors. Neutral links are
ignored in the import.

We now set further simulation parameters for the model. These parameters are imported by
BoolNet to construct the functions of the Boolean network. First, we want to change the function
of Gene 2 to OR. Right-click on Gene 2 and choose Simulation Properties....
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In the properties dialog, choose the Logic tab, and select OR for the logical function.

Now set the function of Gene 1 to XOR (exclusive or) in the same way.
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You can also specify initial values for constant genes, i.e., genes with no input links. Choose the
simulation properties of Input 1, and change to the Parameters tab. Choose initVal and set it
to 1.

Press Return to store the result, and exit the dialog with OK. This will create a fixed gene with
value 1 (i.e., an over-expressed gene) in the BoolNet import. Note that values other than 0 and 1
are ignored by the import, as well as initialization values for non-constant genes.

We assume that you save the network to a file “example.btp” in your working directory. In R, type

> net <- loadBioTapestry("example.btp")

to import the network. Alternatively, replace the file name by the command on page 41 to use
the file in the package if you do not want to create the file yourself.

The imported network looks like this:

> net

Boolean network with 5 genes

Involved genes:

Input 1 Input 2 Gene 1 Gene 2 Gene 3
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Transition functions:

Input 1 = 1

Input 2 = Input 2

Gene 1 = (!Gene 1 & !Input 1 & Input 2) | (!Gene 1 & Input 1 & !Input 2)

| (Gene 1 & !Input 1 & !Input 2) | (Gene 1 & Input 1 & Input 2)

Gene 2 = Gene 1 & Gene 3 & !Input 2

Gene 3 = Gene 1 | Gene 2

Knocked-out and over-expressed genes:

Input 1 = 1

We can see that Input 1 is specified as an over-expressed constant gene. Input 2 is modeled
as depending only on itself, i.e. it keeps its initial value. Gene 1 is a representation of the XOR
function in Disjunctive Normal Form (DNF), using only logical ANDs, logical ORs, and negations.
Gene 2 and Gene 3 consist of conjunctions and disjunctions of their inputs respectively. In addition
to this textual description, we can visually verify the network by plotting its wiring:

> plotNetworkWiring(net)

The resulting plot is shown in Figure 12.

Input_1

Input_2

Gene_1

Gene_2

Gene_3

Figure 12: The wiring graph of the imported network specified in BioTapestry.

You can now use the imported network just like any other network in BoolNet.

44



4.4 Exporting network simulations to Pajek

For further analysis, network simulations can be exported to Pajek, a Windows application that
provides visualization and analysis methods for graph structures [3]. For more information on
Pajek, please refer to http://pajek.imfm.si/doku.php.

The export function writes the state transition graph to a Pajek file (*.net). This requires a
synchronous exhaustive attractor search in BoolNet to build the full transition table.

To export the mammalian cell cycle network to Pajek, call

> data(cellcycle)

> attr <- getAttractors(cellcycle)

> toPajek(attr, file="cellcycle.net")

This will export the graph of the state transitions, which is usually sufficient for plotting. If you
want to include the state information (i.e., the gene assignment vectors), call

> toPajek(attr, file="cellcycle.net", includeLabels=TRUE)

Now, start Pajek, load the network with File | Network | Read, and check out the tools pro-
vided by this application. For example, visualizations can be accessed using the menu item Draw

| Draw.

Figure 13 shows a plot of the cell cycle network with the Kamada-Kawai layout (Menu entry
Layout | Energy | Kamada-Kawai | Separate Components).

Figure 13: A visualization of the mammalian cell cycle network in Pajek.

45

http://pajek.imfm.si/doku.php


References

[1] M. Aldana. Boolean dynamics of networks with scale-free topology. Physica D, 185(1):45–66,
2003.

[2] M. Aldana, S. Coppersmith, and L. P. Kadanoff. Boolean dynamics with random coupling.
In E. Kaplan, J. E. Marsden, and K. R. Sreenivasan, editors, Perspectives and Problems in
Nonlinear Science. Springer, 2003.

[3] V. Batagelij and A. Mrvar. Pajek – Program for Large Network Analysis. Connections,
21(2):47–57, 1998.

[4] T. M. Cover and J. A. Thomas. Information Theory. Wiley, New York, 1991.

[5] A. Fauré, A. Naldi, C. Chaouiya, and D. Thieffry. Dynamical analysis of a generic Boolean
model for the control of the mammalian cell cycle. Bioinformatics, 22(14):e124–e131, 2006.

[6] S. Kauffman, C. Peterson, B. Samuelsson, and C. Troein. Genetic networks with canalyzing
Boolean rules are always stable. PNAS, 101(49):17102—-17107, 2004.

[7] S. A. Kauffman. Metabolic Stability and Epigensis in Randomly Constructed Genetic Nets.
Journal of Theoretical Biology, 22(3):437–467, 1969.

[8] S. A. Kauffman. The Origins of Order: Self-Organization and Selection in Evolution. Oxford
University Press, 1993.

[9] S. Kim, J. Kim, and K.-H. Cho. Inferring gene regulatory networks from temporal expression
profiles under time-delay and noise. Computational Biology and Chemistry, 31:239–245, 2007.

[10] H. Lähdesmäki, I. Shmulevich, and O. Yli-Harja. On Learning Gene Regulatory Networks
Under the Boolean Network Model. Machine Learning, 52(1-2):147–167, 2003.

[11] F. Li, T. Long, Q. Ouyang, and C. Tang. The yeast cell-cycle network is robustly designed.
PNAS, 101:4781–4786, 2004.

[12] S. Liang, S. Fuhrman, and R. Somogyi. REVEAL, a general reverse engineering algorithm
for inference of genetic network architectures. Pacific Symposium on Biocomputing, 3:18–29,
1998.

[13] W. J. R. Longabaugh, E. H. Davidson, and H. Bolouri. Computational representation of
developmental genetic regulatory networks. Developmental Biology, 283(1):1–16, 2005.

[14] M. Maucher, B. Kracher, M. Kühl, and H. A. Kestler. Inferring Boolean network structure
via correlation. Bioinformatics, 27(11):1529–1536, 2011.

[15] I. Shmulevich, E. R. Dougherty, S. Kim, and W. Zhang. Probabilistic Boolean networks: a
rule-based uncertainty model for gene-regulatory networks. Bioinformatics, 18(2):261–274,
2002.

[16] P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen, P. O. Brown,
D. Botstein, and B. Futcher. Comprehensive Identification of Cell Cycle-regulated Genes of
the Yeast Saccharomyces cerevisiae by Microarray Hybridization. Molecular Biology of the
Cell, 9(12):3273–3297, 1998.

46



5 Appendix

5.1 Network file format

This section provides a full language description for the network file format of BoolNet. The
language is described in Extended Backus-Naur Form (EBNF).

For synchronous, asynchronous and probabilistic Boolean networks, the supported format is as
follows:

Network = Header Newline {Rule Newline | Comment Newline};

Header = "targets" Separator "factors";

Rule = GeneName Separator BooleanExpression [Separator Probability];

Comment = "#" String;

BooleanExpression = GeneName

| "!" BooleanExpression

| "(" BooleanExpression ")"

| BooleanExpression " & " BooleanExpression

| BooleanExpression " | " BooleanExpression;

| "all(" BooleanExpression {"," BooleanExpression} ")"

| "any(" BooleanExpression {"," BooleanExpression} ")"

| "maj(" BooleanExpression {"," BooleanExpression} ")"

| "sumgt(" BooleanExpression {"," BooleanExpression} "," Integer ")"

| "sumlt(" BooleanExpression {"," BooleanExpression} "," Integer ")";

GeneName = ? A gene name from the list of involved genes ?;

Separator = ",";

Integer = ? An integer value?;

Probability = ? A floating-point number ?;

String = ? Any sequence of characters (except a line break) ?;

Newline = ? A line break character ?;
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The extended format for temporal networks includes additional time specifications and temporal
predicates is defined as follows:

Network = Header Newline

{Function Newline | Comment Newline};

Header = "targets" Separator "factors";

Function = GeneName Separator BooleanExpression;

Comment = "#" String;

BooleanExpression = GeneName

| GeneName TemporalSpecification

| BooleanOperator

| TemporalOperator

BooleanOperator = BooleanExpression

| "!" BooleanExpression

| "(" BooleanExpression ")"

| BooleanExpression " & " BooleanExpression

| BooleanExpression " | " BooleanExpression;

TemporalOperator = "all" [TemporalIteratorDef]

"(" BooleanExpression {"," BooleanExpression} ")"

| "any" [TemporalIteratorDef]

"(" BooleanExpression {"," BooleanExpression} ")"

| "maj" [TemporalIteratorDef]

"(" BooleanExpression {"," BooleanExpression} ")"

| "sumgt" [TemporalIteratorDef]

"(" BooleanExpression {"," BooleanExpression} "," Integer ")"

| "sumlt" [TemporalIteratorDef]

"(" BooleanExpression {"," BooleanExpression} "," Integer ")"

| "timeis" "(" Integer ")"

| "timegt" "(" Integer ")"

| "timelt" "(" Integer ")";

TemporalIteratorDef = "[" TemporalIterator "=" Integer ".." Integer "]";

TemporalSpecification = "[" TemporalOperand {"+" TemporalOperand | "-" TemporalOperand} "]";

TemporalOperand = TemporalIterator | Integer

TemporalIterator = ? An alphanumeric string ?;

GeneName = ? A gene name from the list of involved genes ?;

Separator = ",";

Integer = ? An integer value?;

String = ? Any sequence of characters (except a line break) ?;

Newline = ? A line break character ?;

48


	Introduction
	Assembling networks
	Assembling a network from expert knowledge
	Reconstructing a network from time series
	Creating random networks
	Knock-out and overexpression of genes

	Network analysis
	Simulation of state transitions
	Identification of attractors
	Markov chain simulations
	Robustness assessment
	Identifying specific properties of biological networks

	Import and export
	Saving networks in the BoolNet file format
	Import from and export to SBML
	Importing networks from BioTapestry
	Exporting network simulations to Pajek

	Appendix
	Network file format


