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Abstract

This is a short overview of the R add-on package BradleyTerry2, which facilitates
the specification and fitting of Bradley-Terry logit, probit or cauchit models to pair-
comparison data. Included are the standard ‘unstructured’ Bradley-Terry model, struc-
tured versions in which the parameters are related through a linear predictor to ex-
planatory variables, and the possibility of an order or ‘home advantage’ effect or other
‘contest-specific’ effects. Model fitting is either by maximum likelihood, by penalized
quasi-likelihood (for models which involve a random effect), or by bias-reduced maximum
likelihood in which the first-order asymptotic bias of parameter estimates is eliminated.
Also provided are a simple and efficient approach to handling missing covariate data, and
suitably-defined residuals for diagnostic checking of the linear predictor.

Keywords: generalized linear model, logistic regression, penalized quasi-likelihood, ranking,
tournament analysis, working residuals.

1. Introduction

The Bradley-Terry model (Bradley and Terry 1952) assumes that in a ‘contest’ between
any two ‘players’, say player i and player j (i, j ∈ {1, . . . ,K}), the odds that i beats j
are αi/αj , where αi and αj are positive-valued parameters which might be thought of as
representing ‘ability’. A general introduction can be found in Bradley (1984) or Agresti
(2002). Applications are many, ranging from experimental psychology to the analysis of
sports tournaments to genetics (for example, the allelic transmission/disequilibrium test of
Sham and Curtis 1995 is based on a Bradley-Terry model in which the ‘players’ are alleles).
In typical psychometric applications the ‘contests’ are comparisons, made by different human
subjects, between pairs of items.

The model can alternatively be expressed in the logit-linear form

logit[pr(i beats j)] = λi − λj , (1)

where λi = logαi for all i. Thus, assuming independence of all contests, the parameters
{λi} can be estimated by maximum likelihood using standard software for generalized linear
models, with a suitably specified model matrix. The primary purpose of the BradleyTerry2
package (Turner and Firth 2012), implemented in the R statistical computing environment
(Ihaka and Gentleman 1996; R Development Core Team 2012), is to facilitate the specification
and fitting of such models and some extensions.

https://github.com/hturner/BradleyTerry2
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The BradleyTerry2 package supersedes the earlier BradleyTerry package (Firth 2005), provid-
ing a more flexible user interface to allow a wider range of models to be fitted. In particular,
BradleyTerry2 allows the inclusion of simple random effects so that the ability parameters
can be related to available explanatory variables through a linear predictor of the form

λi =

p∑
r=1

βrxir + Ui. (2)

The inclusion of the prediction error Ui allows for variability between players with equal covari-
ate values and induces correlation between comparisons with a common player. BradleyTerry2
also allows for general contest-specific effects to be included in the model and allows the logit
link to be replaced, if required, by a different symmetric link function (probit or cauchit).

The remainder of the paper is organised as follows. Section 2 demonstrates how to use
the BradleyTerry2 package to fit a standard (i.e., unstructured) Bradley-Terry model, with
a separate ability parameter estimated for each player, including the use of bias-reduced
estimation for such models. Section 3 considers variations of the standard model, including
the use of player-specific variables to model ability and allowing for contest-specific effects
such as an order effect or judge effects. Sections 4 and 5 explain how to obtain important
information about a fitted model, in particular the estimates of ability and their standard
errors, and player-level residuals, whilst Section 6 notes the functions available to aid model
search. Section 7 explains in more detail how set up data for use with the BradleyTerry2
package, Section 8 lists the functions provided by the package and finally Section 9 comments
on two directions for further development of the software.

2. Standard Bradley-Terry model

2.1. Example: Analysis of journal citations

The following data come from page 448 of Agresti (2002), extracted from the larger table of
Stigler (1994). The data are counts of citations among four prominent journals of statistics
and are included the BradleyTerry2 package as the data set citations:

R> library("BradleyTerry2")

R> data("citations", package = "BradleyTerry2")

R> citations

citing

cited Biometrika Comm Statist JASA JRSS-B

Biometrika 714 730 498 221

Comm Statist 33 425 68 17

JASA 320 813 1072 142

JRSS-B 284 276 325 188
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Thus, for example, Biometrika was cited 498 times by papers in Journal of the American
Statistical Association (JASA) during the period under study. In order to fit a Bradley-
Terry model to these data using BTm from the BradleyTerry2 package, the data must first
be converted to binomial frequencies. That is, the data need to be organised into pairs
(player1, player2) and corresponding frequencies of wins and losses for player1 against
player2. The BradleyTerry2 package provides the utility function countsToBinomial to
convert a contingency table of wins to the format just described:

R> citations.sf <- countsToBinomial(citations)

R> names(citations.sf)[1:2] <- c("journal1", "journal2")

R> citations.sf

journal1 journal2 win1 win2

1 Biometrika Comm Statist 730 33

2 Biometrika JASA 498 320

3 Biometrika JRSS-B 221 284

4 Comm Statist JASA 68 813

5 Comm Statist JRSS-B 17 276

6 JASA JRSS-B 142 325

Note that the self-citation counts are ignored – these provide no information on the ability
parameters, since the abilities are relative rather than absolute quantities. The binomial
response can then be modelled by the difference in player abilities as follows:

R> citeModel <- BTm(cbind(win1, win2), journal1, journal2, ~ journal,

+ id = "journal", data = citations.sf)

R> citeModel

Bradley Terry model fit by glm.fit

Call: BTm(outcome = cbind(win1, win2), player1 = journal1, player2 = journal2,

formula = ~journal, id = "journal", data = citations.sf)

Coefficients:

journalComm Statist journalJASA journalJRSS-B

-2.9491 -0.4796 0.2690

Degrees of Freedom: 6 Total (i.e. Null); 3 Residual

Null Deviance: 1925

Residual Deviance: 4.293 AIC: 46.39

The coefficients here are maximum likelihood estimates of λ2, λ3, λ4, with λ1 (the log-ability
for Biometrika) set to zero as an identifying convention.

The one-sided model formula

~ journal
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specifies the model for player ability, in this case the ‘citeability’ of the journal. The id

argument specifies that "journal" is the name to be used for the factor that identifies the
player – the values of which are given here by journal1 and journal2 for the first and second
players respectively. Therefore in this case a separate citeability parameter is estimated for
each journal.

If a different ‘reference’ journal is required, this can be achieved using the optional refcat
argument: for example, making use of update to avoid re-specifying the whole model,

R> update(citeModel, refcat = "JASA")

Bradley Terry model fit by glm.fit

Call: BTm(outcome = cbind(win1, win2), player1 = journal1, player2 = journal2,

formula = ~journal, id = "journal", refcat = "JASA", data = citations.sf)

Coefficients:

journalBiometrika journalComm Statist journalJRSS-B

0.4796 -2.4695 0.7485

Degrees of Freedom: 6 Total (i.e. Null); 3 Residual

Null Deviance: 1925

Residual Deviance: 4.293 AIC: 46.39

– the same model in a different parameterization.

The use of the standard Bradley-Terry model for this application might perhaps seem rather
questionable – for example, citations within a published paper can hardly be considered in-
dependent, and the model discards potentially important information on self-citation. Stigler
(1994) provides arguments to defend the model’s use despite such concerns.

2.2. Bias-reduced estimates

Estimation of the standard Bradley-Terry model in BTm is by default computed by maximum
likelihood, using an internal call to the glm function. An alternative is to fit by bias-reduced
maximum likelihood (Firth 1993): this requires additionally the brglm package (Kosmidis
2007), and is specified by the optional argument br = TRUE. The resultant effect, namely
removal of first-order asymptotic bias in the estimated coefficients, is often quite small. One
notable feature of bias-reduced fits is that all estimated coefficients and standard errors are
necessarily finite, even in situations of ‘complete separation’ where maximum likelihood esti-
mates take infinite values (Heinze and Schemper 2002).

For the citation data, the parameter estimates are only very slightly changed in the bias-
reduced fit:

R> update(citeModel, br = TRUE)

Bradley Terry model fit by brglm.fit
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Call: BTm(outcome = cbind(win1, win2), player1 = journal1, player2 = journal2, formula = ~journal, id = "journal", data = citations.sf, br = TRUE)

Coefficients:

journalComm Statist journalJASA journalJRSS-B

-2.9444 -0.4791 0.2685

Degrees of Freedom: 6 Total (i.e. Null); 3 Residual

Deviance: 4.2957

Penalized Deviance: -11.4816 AIC: 46.3962

Here the bias of maximum likelihood is small because the binomial counts are fairly large.
In more sparse arrangements of contests – that is, where there is less or no replication of the
contests – the effect of bias reduction would typically be more substantial than the insignificant
one seen here.

3. Abilities predicted by explanatory variables

3.1. ‘Player-specific’ predictor variables

In some application contexts there may be ‘player-specific’ explanatory variables available,
and it is then natural to consider model simplification of the form

λi =

p∑
r=1

βrxir + Ui, (3)

in which ability of each player i is related to explanatory variables xi1, . . . , xip through a
linear predictor with coefficients β1, . . . , βp; the {Ui} are independent errors. Dependence of
the player abilities on explanatory variables can be specified via the formula argument, using
the standard S -language model formulae. The difference in the abilities of player i and player
j is modelled by

p∑
r=1

βrxir −
p∑

r=1

βrxjr + Ui − Uj , (4)

where Ui ∼ N(0, σ2) for all i. The Bradley-Terry model is then a generalized linear mixed
model, which the BTm function currently fits by using the penalized quasi-likelihood algorithm
of Breslow and Clayton (1993).

As an illustration, consider the following simple model for the flatlizards data, which
predicts the fighting ability of Augrabies flat lizards by body size (snout to vent length):

R> options(show.signif.stars = FALSE)

R> data("flatlizards", package = "BradleyTerry2")

R> lizModel <- BTm(1, winner, loser, ~ SVL[..] + (1|..),

+ data = flatlizards)

Here the winner of each fight is compared to the loser, so the outcome is always 1. The special
name ‘..’ appears in the formula as the default identifier for players, in the absence of a user-
specified id argument. The values of this factor are given by winner for the winning lizard
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and loser for the losing lizard in each contest. These factors are provided in the data frame
contests that is the first element of the list object flatlizards. The second element of
flatlizards is another data frame, predictors, containing measurements on the observed
lizards, including SVL, which is the snout to vent length. Thus SVL[..] represents the snout
to vent length indexed by lizard (winner or loser as appropriate). Finally a random intercept
for each lizard is included using the bar notation familiar to users of the lme4 package (Bates,
Mächler, and Bolker 2011). (Note that a random intercept is the only random effect structure
currently implemented in BradleyTerry2.)

The fitted model is summarized below:

R> summary(lizModel)

Call:

BTm(outcome = 1, player1 = winner, player2 = loser, formula = ~SVL[..] +

(1 | ..), data = flatlizards)

Fixed Effects:

Estimate Std. Error z value Pr(>|z|)

SVL[..] 0.2051 0.1158 1.772 0.0765

(Dispersion parameter for binomial family taken to be 1)

Random Effects:

Estimate Std. Error z value Pr(>|z|)

Std. Dev. 1.126 0.261 4.314 1.6e-05

Number of iterations: 8

The coefficient of snout to vent length is weakly significant; however, the standard deviation of
the random effect is quite large, suggesting that this simple model has fairly poor explanatory
power. A more appropriate model is considered in the next section.

3.2. Missing values

The contest data may include all possible pairs of players and hence rows of missing data
corresponding to players paired with themselves. Such rows contribute no information to the
Bradley-Terry model and are simply discarded by BTm.

Where there are missing values in player-specific predictor (or explanatory) variables which
appear in the formula, it will typically be very wasteful to discard all contests involving players
for which some values are missing. Instead, such cases are accommodated by the inclusion of
one or more parameters in the model. If, for example, player 1 has one or more of its predictor
values x11, . . . , x1p missing, then the combination of Equations 1 and 4 above yields

logit[pr(1 beats j)] = λ1 −

(
p∑

r=1

βrxjr + Uj

)
, (5)
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for all other players j. This results in the inclusion of a ‘direct’ ability parameter for each
player having missing predictor values, in addition to the common coefficients β1, . . . , βp – an
approach which will be appropriate when the missingness mechanism is unrelated to contest
success. The same device can be used also to accommodate any user-specified departures
from a structured Bradley-Terry model, whereby some players have their abilities determined
by the linear predictor but others do not.

In the original analysis of the flatlizards data (Whiting, Stuart-Fox, O’Connor, Firth,
Bennett, and Blomberg 2006), the final model included the first and third principal compo-
nents of the spectral reflectance from the throat (representing brightness and UV intensity
respectively) as well as head length and the snout to vent length seen in our earlier model.
The spectroscopy data was missing for two lizards, therefore the ability of these lizards was
estimated directly. The following fits this model, with the addition of a random intercept as
before:

R> lizModel2 <- BTm(1, winner, loser,

+ ~ throat.PC1[..] + throat.PC3[..] +

+ head.length[..] + SVL[..] + (1|..),

+ data = flatlizards)

R> summary(lizModel2)

Call:

BTm(outcome = 1, player1 = winner, player2 = loser, formula = ~throat.PC1[..] +

throat.PC3[..] + head.length[..] + SVL[..] + (1 | ..), data = flatlizards)

Fixed Effects:

Estimate Std. Error z value Pr(>|z|)

..lizard096 3.668e+01 3.875e+07 0.000 1.0000

..lizard099 9.531e-01 1.283e+00 0.743 0.4576

throat.PC1[..] -8.689e-02 4.120e-02 -2.109 0.0349

throat.PC3[..] 3.735e-01 1.527e-01 2.445 0.0145

head.length[..] -1.382e+00 7.390e-01 -1.870 0.0614

SVL[..] 1.722e-01 1.373e-01 1.254 0.2098

(Dispersion parameter for binomial family taken to be 1)

Random Effects:

Estimate Std. Error z value Pr(>|z|)

Std. Dev. 1.1099 0.3223 3.443 0.000575

Number of iterations: 8

Note that BTm detects that lizards 96 and 99 have missing values in the specified predictors
and automatically includes separate ability parameters for these lizards. This model was
found to be the single best model based on the principal components of reflectance and the
other predictors available and indeed the standard deviation of the random intercept is much
reduced, but still highly significant. Allowing for this significant variation between lizards
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with the same predictor values produces more realistic (i.e., larger) standard errors for the
parameters when compared to the original analysis of Whiting et al. (2006). Although this
affects the significance of the morphological variables, it does not affect the significance of the
principal components, so in this case does not affect the main conclusions of the study.

3.3. Order effect

In certain types of application some or all contests have an associated ‘bias’, related to the
order in which items are presented to a judge or with the location in which a contest takes
place, for example. A natural extension of the Bradley-Terry model (Equation 1) is then

logit[pr(i beats j)] = λi − λj + δz, (6)

where z = 1 if i has the supposed advantage and z = −1 if j has it. (If the ‘advantage’ is in
fact a disadvantage, δ will be negative.) The scores λi then relate to ability in the absence of
any such advantage.

As an example, consider the baseball data given in Agresti (2002), page 438:

R> data("baseball", package = "BradleyTerry2")

R> head(baseball)

home.team away.team home.wins away.wins

1 Milwaukee Detroit 4 3

2 Milwaukee Toronto 4 2

3 Milwaukee New York 4 3

4 Milwaukee Boston 6 1

5 Milwaukee Cleveland 4 2

6 Milwaukee Baltimore 6 0

The data set records the home wins and losses for each baseball team against each of the 6
other teams in the data set. The head function is used to show the first 6 records, which are
the Milwaukee home games. We see for example that Milwaukee played 7 home games against
Detroit and won 4 of them. The ‘standard’ Bradley-Terry model without a home-advantage
parameter will be fitted if no formula is specified in the call to BTm:

R> baseballModel1 <- BTm(cbind(home.wins, away.wins), home.team, away.team,

+ data = baseball, id = "team")

R> summary(baseballModel1)

Call:

BTm(outcome = cbind(home.wins, away.wins), player1 = home.team,

player2 = away.team, id = "team", data = baseball)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.6539 -0.0508 0.4133 0.9736 2.5509
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Coefficients:

Estimate Std. Error z value Pr(>|z|)

teamBoston 1.1077 0.3339 3.318 0.000908

teamCleveland 0.6839 0.3319 2.061 0.039345

teamDetroit 1.4364 0.3396 4.230 2.34e-05

teamMilwaukee 1.5814 0.3433 4.607 4.09e-06

teamNew York 1.2476 0.3359 3.715 0.000203

teamToronto 1.2945 0.3367 3.845 0.000121

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 78.015 on 42 degrees of freedom

Residual deviance: 44.053 on 36 degrees of freedom

AIC: 140.52

Number of Fisher Scoring iterations: 4

The reference team is Baltimore, estimated to be the weakest of these seven, with Milwaukee
and Detroit the strongest.

In the above, the ability of each team is modelled simply as ~ team where the values of the
factor team are given by home.team for the first team and away.team for the second team
in each game. To estimate the home-advantage effect, an additional variable is required to
indicate whether the team is at home or not. Therefore data frames containing both the
team factor and this new indicator variable are required in place of the factors home.team

and away.team in the call to BTm. This is achieved here by over-writing the home.team and
away.team factors in the baseball data frame:

R> baseball$home.team <- data.frame(team = baseball$home.team, at.home = 1)

R> baseball$away.team <- data.frame(team = baseball$away.team, at.home = 0)

The at.home variable is needed for both the home team and the away team, so that it can be
differenced as appropriate in the linear predictor. With the data organised in this way, the
ability formula can now be updated to include the at.home variable as follows:

R> baseballModel2 <- update(baseballModel1, formula = ~ team + at.home)

R> summary(baseballModel2)

Call:

BTm(outcome = cbind(home.wins, away.wins), player1 = home.team,

player2 = away.team, formula = ~team + at.home, id = "team",

data = baseball)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.03819 -0.40577 0.04326 0.61163 2.26001

Coefficients:
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Estimate Std. Error z value Pr(>|z|)

teamBoston 1.1438 0.3378 3.386 0.000710

teamCleveland 0.7047 0.3350 2.104 0.035417

teamDetroit 1.4754 0.3446 4.282 1.85e-05

teamMilwaukee 1.6196 0.3474 4.662 3.13e-06

teamNew York 1.2813 0.3404 3.764 0.000167

teamToronto 1.3271 0.3403 3.900 9.64e-05

at.home 0.3023 0.1309 2.308 0.020981

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 78.015 on 42 degrees of freedom

Residual deviance: 38.643 on 35 degrees of freedom

AIC: 137.11

Number of Fisher Scoring iterations: 4

This reproduces the results given on page 438 of Agresti (2002): the home team has an
estimated odds-multiplier of exp(0.3023) = 1.35 in its favour.

3.4. More general (contest-specific) predictors

The ‘home advantage’ effect is a simple example of a contest-specific predictor. Such predictors
are necessarily interactions, between aspects of the contest and (aspects of) the two ‘players’
involved.

For more elaborate examples of such effects, see ?chameleons and ?CEMS. The former includes
an ‘experience’ effect, which changes through time, on the fighting ability of male chameleons.
The latter illustrates a common situation in psychometric applications of the Bradley-Terry
model, where subjects express preference for one of two objects (the ‘players’), and it is the
influence on the results of subject attributes that is of primary interest.

As an illustration of the way in which such effects are specified, consider the following model
specification taken from the examples in ?CEMS, where data on students’ preferences in relation
to six European management schools is analysed.

R> data("CEMS", package = "BradleyTerry2")

R> table8.model <- BTm(outcome = cbind(win1.adj, win2.adj),

+ player1 = school1, player2 = school2, formula = ~ .. +

+ WOR[student] * LAT[..] + DEG[student] * St.Gallen[..] +

+ STUD[student] * Paris[..] + STUD[student] * St.Gallen[..] +

+ ENG[student] * St.Gallen[..] + FRA[student] * London[..] +

+ FRA[student] * Paris[..] + SPA[student] * Barcelona[..] +

+ ITA[student] * London[..] + ITA[student] * Milano[..] +

+ SEX[student] * Milano[..],

+ refcat = "Stockholm", data = CEMS)

This model reproduces results from Table 8 of Dittrich, Hatzinger, and Katzenbeisser (2001)
apart from minor differences due to the different treatment of ties. Here the outcome is
the binomial frequency of preference for school1 over school2, with ties counted as half a



Heather Turner, David Firth 11

‘win’ and half a ‘loss’. The formula specifies the model for school ‘ability’ or worth. In this
formula, the default label ‘..’ represents the school (with values given by school1 or school2
as appropriate) and student is a factor specifying the student that made the comparison.
The remaining variables in the formula use R’s standard indexing mechanism to include
student-specific variables, e.g., WOR: whether or not the student was in full-time employment,
and school-specific variables, e.g., LAT: whether the school was in a ‘Latin’ city. Thus there
are three types of variables: contest-specific (school1, school2, student), subject-specific
(WOR, DEG, . . . ) and object-specific (LAT, St.Gallen, . . . ). These three types of variables are
provided in three data frames, contained in the list object CEMS.

4. Ability scores

The function BTabilities extracts estimates and standard errors for the log-ability scores
λ1, . . . , λK . These will either be ‘direct’ estimates, in the case of the standard Bradley-Terry
model or for players with one or more missing predictor values, or ‘model-based’ estimates of
the form λ̂i =

∑p
r=1 β̂rxir for players whose ability is predicted by explanatory variables.

As a simple illustration, team ability estimates in the home-advantage model for the baseball
data are obtained by:

R> BTabilities(baseballModel2)

ability s.e.

Baltimore 0.0000000 0.0000000

Boston 1.1438027 0.3378422

Cleveland 0.7046945 0.3350014

Detroit 1.4753572 0.3445518

Milwaukee 1.6195550 0.3473653

New York 1.2813404 0.3404034

Toronto 1.3271104 0.3403222

This gives, for each team, the estimated ability when the team enjoys no home advantage.

Similarly, estimates of the fighting ability of each lizard in the flatlizards data under the
model based on the principal components of the spectral reflectance from the throat are
obtained as follows:

R> head(BTabilities(lizModel2), 4)

ability s.e.

lizard003 1.562453 0.5227564

lizard005 0.869896 0.5643448

lizard006 -0.243853 0.5939836

lizard009 1.211622 0.6476100

The ability estimates in an unstructured Bradley-Terry model are particularly well suited to
presentation using the device of quasi-variances (Firth and de Menezes 2004). The qvcalc
package (Firth 2010, version 0.8-5 or later) contains a function of the same name which does
the necessary work:
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Figure 1: Estimated relative abilities of baseball teams.

> library("qvcalc")

> baseball.qv <- qvcalc(BTabilities(baseballModel2))

> plot(baseball.qv,

+ levelNames = c("Bal", "Bos", "Cle", "Det", "Mil", "NY", "Tor"))

The ‘comparison intervals’ as shown in Figure 1 are based on ‘quasi standard errors’, and can
be interpreted as if they refer to independent estimates of ability for the journals. This has
the advantage that comparison between any pair of journals is readily made (i.e., not only
comparisons with the ‘reference’ journal). For details of the theory and method of calculation
see Firth and de Menezes (2004).

5. Residuals

There are two main types of residuals available for a Bradley-Terry model object.

First, there are residuals obtained by the standard methods for models of class "glm". These
all deliver one residual for each contest or type of contest. For example, Pearson residuals for
the model lizModel2 can be obtained simply by

R> res.pearson <- round(residuals(lizModel2), 3)

R> head(cbind(flatlizards$contests, res.pearson), 4)
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winner loser res.pearson

1 lizard048 lizard006 0.556

2 lizard060 lizard011 0.664

3 lizard023 lizard012 0.220

4 lizard030 lizard012 0.153

More useful for diagnostics on the linear predictor
∑
βrxir are ‘player’-level residuals, obtained

by using the function residuals with argument type = "grouped". These residuals can then
be plotted against other player-specific variables.

R> res <- residuals(lizModel2, type = "grouped")

R> # with(flatlizards$predictors, plot(throat.PC2, res))

R> # with(flatlizards$predictors, plot(head.width, res))

These residuals estimate the error in the linear predictor; they are obtained by suitable
aggregation of the so-called ‘working’ residuals from the model fit. The weights attribute
indicates the relative information in these residuals – weight is roughly inversely proportional
to variance – which may be useful for plotting and/or interpretation; for example, a large
residual may be of no real concern if based on very little information. Weighted least-squares
regression of these residuals on any variable already in the model is null. For example:

R> lm(res ~ throat.PC1, weights = attr(res, "weights"),

+ data = flatlizards$predictors)

Call:

lm(formula = res ~ throat.PC1, data = flatlizards$predictors,

weights = attr(res, "weights"))

Coefficients:

(Intercept) throat.PC1

-3.614e-15 -2.454e-15

R> lm(res ~ head.length, weights = attr(res, "weights"),

+ data = flatlizards$predictors)

Call:

lm(formula = res ~ head.length, data = flatlizards$predictors,

weights = attr(res, "weights"))

Coefficients:

(Intercept) head.length

-3.644e-15 -6.726e-14

As an illustration of evident non-null residual structure, consider the unrealistically simple
model lizModel that was fitted in Section 3 above. That model lacks the clearly signifi-
cant predictor variable throat.PC3, and the plot shown in Figure 2 demonstrates this fact
graphically:
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Figure 2: Lizard residuals for the simple model lizModel, plotted against throat.PC3.

> lizModel.residuals <- residuals(lizModel, type = "grouped")

> plot(flatlizards$predictors$throat.PC3, lizModel.residuals)

The residuals in the plot exhibit a strong, positive regression slope in relation to the omitted
predictor variable throat.PC3.

6. Model search

In addition to update() as illustrated in preceding sections, methods for the generic functions
add1(), drop1() and anova() are provided. These can be used to investigate the effect of
adding or removing a variable, whether that variable is contest-specific, such as an order
effect, or player-specific; and to compare the fit of nested models.

7. Setting up the data

7.1. Contest-specific data

The outcome argument of BTm represents a binomial response and can be supplied in any
of the formats allowed by the glm function. That is, either a two-column matrix with the
columns giving the number of wins and losses (for player1 vs. player2), a factor where the
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first level denotes a loss and all other levels denote a win, or a binary variable where 0 denotes
a loss and 1 denotes a win. Each row represents either a single contest or a set of contests
between the same two players.

The player1 and player2 arguments are either factors specifying the two players in each
contest, or data frames containing such factors, along with any contest-specific variables that
are also player-specific, such as the at.home variable seen in Section 3.3. If given in data
frames, the factors identifying the players should be named as specified by the id argument
and should have identical levels, since they represent a particular sample of the full set of
players.

Thus for the model baseballModel2, which was specified by the following call:

R> baseballModel2$call

BTm(outcome = cbind(home.wins, away.wins), player1 = home.team,

player2 = away.team, formula = ~team + at.home, id = "team",

data = baseball)

the data are provided in the baseball data frame, which has the following structure:

R> str(baseball, vec.len = 2)

'data.frame': 42 obs. of 4 variables:

$ home.team:'data.frame': 42 obs. of 2 variables:

..$ team : Factor w/ 7 levels "Baltimore","Boston",..: 5 5 5 5 5 ...

..$ at.home: num 1 1 1 1 1 ...

$ away.team:'data.frame': 42 obs. of 2 variables:

..$ team : Factor w/ 7 levels "Baltimore","Boston",..: 4 7 6 2 3 ...

..$ at.home: num 0 0 0 0 0 ...

$ home.wins: int 4 4 4 6 4 ...

$ away.wins: int 3 2 3 1 2 ...

In this case home.team and away.team are both data frames, with the factor team specifying
the team and the variable at.home specifying whether or not the team was at home. So the
first comparison

R> baseball$home.team[1,]

team at.home

1 Milwaukee 1

R> baseball$away.team[1,]

team at.home

1 Detroit 0

is Milwaukee playing at home against Detroit. The outcome is given by
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R> baseball[1, c("home.wins", "away.wins")]

home.wins away.wins

1 4 3

Contest-specific variables that are not player-specific – for example, whether it rained or not
during a contest – should only be used in interactions with variables that are player-specific,
otherwise the effect on ability would be the same for both players and would cancel out.
Such variables can conveniently be provided in a single data frame along with the outcome,
player1 and player2 data.

An offset in the model can be specified by using the offset argument to BTm. This facility is
provided for completeness: the authors have not yet encountered an application where it is
needed.

To use only certain rows of the contest data in the analysis, the subset argument may be used
in the call to BTm. This should either be a logical vector of the same length as the binomial
response, or a numeric vector containing the indices of rows to be used.

7.2. Non contest-specific data

Some variables do not vary by contest directly, but rather vary by a factor that is contest-
specific, such as the player ID or the judge making the paired comparison. For such variables,
it is more economical to store the data by the levels of the contest-specific factor and use
indexing to obtain the values for each contest.

The CEMS example in Section 3.4 provides an illustration of such variables. In this example
student-specific variables are indexed by student and school-specific variables are indexed
by .., i.e., the first or second school in the comparison as appropriate. There are then two
extra sets of variables in addition to the usual contest-specific data as described in the last
section. A good way to provide these data to BTm is as a list of data frames, one for each set
of variables, e.g.,

R> str(CEMS, vec.len = 2)

List of 3

$ preferences:'data.frame': 4545 obs. of 8 variables:

..$ student : num [1:4545] 1 1 1 1 1 ...

..$ school1 : Factor w/ 6 levels "Barcelona","London",..: 2 2 4 2 4 ...

..$ school2 : Factor w/ 6 levels "Barcelona","London",..: 4 3 3 5 5 ...

..$ win1 : num [1:4545] 1 1 NA 0 0 ...

..$ win2 : num [1:4545] 0 0 NA 1 1 ...

..$ tied : num [1:4545] 0 0 NA 0 0 ...

..$ win1.adj: num [1:4545] 1 1 NA 0 0 ...

..$ win2.adj: num [1:4545] 0 0 NA 1 1 ...

$ students :'data.frame': 303 obs. of 8 variables:

..$ STUD: Factor w/ 2 levels "other","commerce": 1 2 1 2 1 ...

..$ ENG : Factor w/ 2 levels "good","poor": 1 1 1 1 2 ...

..$ FRA : Factor w/ 2 levels "good","poor": 1 2 1 1 2 ...
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..$ SPA : Factor w/ 2 levels "good","poor": 2 2 2 2 2 ...

..$ ITA : Factor w/ 2 levels "good","poor": 2 2 2 1 2 ...

..$ WOR : Factor w/ 2 levels "no","yes": 1 1 1 1 1 ...

..$ DEG : Factor w/ 2 levels "no","yes": 2 1 2 1 1 ...

..$ SEX : Factor w/ 2 levels "female","male": 2 1 2 1 2 ...

$ schools :'data.frame': 6 obs. of 7 variables:

..$ Barcelona: num [1:6] 1 0 0 0 0 ...

..$ London : num [1:6] 0 1 0 0 0 ...

..$ Milano : num [1:6] 0 0 1 0 0 ...

..$ Paris : num [1:6] 0 0 0 1 0 ...

..$ St.Gallen: num [1:6] 0 0 0 0 1 ...

..$ Stockholm: num [1:6] 0 0 0 0 0 ...

..$ LAT : num [1:6] 1 0 1 1 0 ...

The names of the data frames are only used by BTm if they match the names specified in
the player1 and player2 arguments, in which case it is assumed that these are data frames
providing the data for the first and second player respectively. The rows of data frames in
the list should either correspond to the contests or the levels of the factor used for indexing.

Player-specific offsets should be included in the formula by using the offset function.

7.3. Converting data from a ‘wide’ format

The BTm function requires data in a ‘long’ format, with one row per contest, provided either
directly as in Section 7.1 or via indexing as in Section 7.2. In studies where the same set of
paired comparisons are made by several judges, as in a questionnaire for example, the data
may be stored in a ‘wide’ format, with one row per judge.

As an example, consider the cemspc data from the prefmod package (Hatzinger and Dittrich
2012), which provides data from the CEMS study in a wide format. Each row corresponds to
one student; the first 15 columns give the outcome of all pairwise comparisons between the
6 schools in the study and the last two columns correspond to two of the student-specific vari-
ables: ENG (indicating the student’s knowledge of English) and SEX (indicating the student’s
gender).

The following steps convert these data into a form suitable for analysis with BTm. First a new
data frame is created from the student-specific variables and these variables are converted to
factors:

R> library("prefmod")

R> student <- cemspc[c("ENG", "SEX")]

R> student$ENG <- factor(student$ENG, levels = 1:2,

+ labels = c("good", "poor"))

R> student$SEX <- factor(student$SEX, levels = 1:2,

+ labels = c("female", "male"))

This data frame is put into a list, which will eventually hold all the necessary data. Then a
student factor is created for indexing the student data to produce contest-level data. This
is put in a new data frame that will hold the contest-specific data.
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R> cems <- list(student = student)

R> student <- gl(303, 1, 303 * 15) #303 students, 15 comparisons

R> contest <- data.frame(student = student)

Next the outcome data is converted to a binomial response, adjusted for ties. The result is
added to the contest data frame.

R> win <- cemspc[, 1:15] == 0

R> lose <- cemspc[, 1:15] == 2

R> draw <- cemspc[, 1:15] == 1

R> contest$win.adj <- c(win + draw/2)

R> contest$lose.adj <- c(lose + draw/2)

Then two factors are created identifying the first and second school in each comparison. The
comparisons are in the order 1 vs. 2, 1 vs. 3, 2 vs. 3, 1 vs. 4, . . . , so the factors can be created
as follows:

R> lab <- c("London", "Paris", "Milano", "St. Gallen", "Barcelona",

+ "Stockholm")

R> contest$school1 <- factor(sequence(1:5), levels = 1:6, labels = lab)

R> contest$school2 <- factor(rep(2:6, 1:5), levels = 1:6, labels = lab)

Note that both factors have exactly the same levels, even though only five of the six players
are represented in each case. In other words, the numeric factor levels refer to the same players
in each case, so that the player is unambiguously identified. This ensures that player-specific
parameters and player-specific covariates are correctly specified.

Finally the contest data frame is added to the main list:

R> cems$contest <- contest

This creates a single data object that can be passed to the data argument of BTm. Of course,
such a list could be created on-the-fly as in data = list(contest, student), which may
be more convenient in practice.

7.4. Converting data from the format required by the earlier BradleyTerry
package

The BradleyTerry package described in Firth (2005) required contest/comparison results to
be in a data frame with columns named winner, loser and Freq. The following example
shows how xtabs and countsToBinomial can be used to convert such data for use with the
BTm function in BradleyTerry2:

> library("BradleyTerry") ## the /old/ BradleyTerry package

> ## load data frame with columns "winner", "loser", "Freq"

> data("citations", package = "BradleyTerry")

> ## convert to 2-way table of counts

> citations <- xtabs(Freq ~ winner + loser, citations)

> ## convert to a data frame of binomial observations

> citations.sf <- countsToBinomial(citations)
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The citations.sf data frame can then be used with BTm as shown in Section 2.1.

8. A list of the functions provided in BradleyTerry2

The standard R help files provide the definitive reference. Here we simply list the main
user-level functions and their arguments, as a convenient overview:

BTabilities(model)

glmmPQL(fixed, random = NULL, family = "binomial",

data = NULL, subset = NULL, weights = NULL, offset = NULL,

na.action = NULL, start = NULL, etastart = NULL,

mustart = NULL, control = glmmPQL.control(...),

sigma = 0.1, sigma.fixed = FALSE, model = TRUE,

x = FALSE, contrasts = NULL, ...)

countsToBinomial(xtab)

plotProportions(win, tie = NULL, loss, player1, player2,

abilities = NULL, home.adv = NULL, tie.max = NULL,

tie.scale = NULL, tie.mode = NULL, at.home1 = NULL,

at.home2 = NULL, data = NULL, subset = NULL, bin.size = 20,

xlab = "P(player1 wins | not a tie)", ylab = "Proportion",

legend = NULL, col = 1:2, ...)

qvcalc(object, ...)

glmmPQL.control(maxiter = 50, IWLSiter = 10, tol = 1e-06,

trace = FALSE)

BTm(outcome = 1, player1, player2, formula = NULL,

id = "..", separate.ability = NULL, refcat = NULL,

family = "binomial", data = NULL, weights = NULL,

subset = NULL, na.action = NULL, start = NULL,

etastart = NULL, mustart = NULL, offset = NULL,

br = FALSE, model = TRUE, x = FALSE, contrasts = NULL,

...)

GenDavidson(win, tie, loss, player1, player2, home.adv = NULL,

tie.max = ~1, tie.mode = NULL, tie.scale = NULL,

at.home1 = NULL, at.home2 = NULL)

9. Some final remarks

9.1. A note on the treatment of ties

The present version of BradleyTerry2 provides no sophisticated facilities for handling tied
contests/comparisons; the well-known models of Rao and Kupper (1967) and Davidson (1970)
are not implemented here. At present the BTm function requires a binary or binomial response
variable, the third (‘tied’) category of response is not allowed.

In several of the data examples (e.g., ?CEMS, ?springall, ?sound.fields), ties are handled
by the crude but simple device of adding half of a ‘win’ to the tally for each player involved; in
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each of the examples where this has been done it is found that the result is very similar, after a
simple re-scaling, to the more sophisticated analyses that have appeared in the literature. Note
that this device when used with BTm typically gives rise to warnings produced by the back-end
glm function, about non-integer ‘binomial’ counts; such warnings are of no consequence and
can be safely ignored.

It is likely that a future version of BradleyTerry2 will have a more general method for handling
ties.

9.2. A note on ‘contest-specific’ random effects

The current version of BradleyTerry2 provides facilities for fitting models with random effects
in ‘player-specific’ predictor functions, as illustrated in Section 3. For more general, ‘contest-
specific’ random-effect structures, such as random ‘judge’ effects in psychological studies (e.g.,
Böckenholt 2001), BradleyTerry2 provides (through BTm) the necessary user interface but as
yet no back-end calculation. It is hoped that this important generalization can be made
successfully in a future version of BradleyTerry2.
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