Package ‘CRF’

October 12, 2022
Version 0.4-3
Title Conditional Random Fields

Description Implements modeling and computational tools for conditional
random fields (CRF) model as well as other probabilistic undirected
graphical models of discrete data with pairwise and unary potentials.

ByteCompile TRUE

Depends R (>=3.0.0)

Imports Matrix

Suggests knitr, rmarkdown, Rglpk
VignetteBuilder knitr

License GPL (>=2)

BugReports https://github.com/wulingyun/CRF/issues

URL https://github.com/wulingyun/CRF

RoxygenNote 7.0.1

Encoding UTF-8

Author Ling-Yun Wu [aut, cre]

Maintainer Ling-Yun Wu <wulingyun@gmail.com>
Repository CRAN

Repository/R-Forge/Project crf
Repository/R-Forge/Revision 51
Repository/R-Forge/DateTimeStamp 2019-11-30 02:18:39
Date/Publication 2019-12-01 20:10:23 UTC

NeedsCompilation yes

https://github.com/wulingyun/CRF/issues
https://github.com/wulingyun/CRF

2 R topics documented:

R topics documented:

CRF-package e 3
Chain e 5
clamp.crf . . oL L 6
clamp.reset e e 7
Clique e e e 8
crfnll . . 8
crfupdate L. 9
decode.block 11
decode.chain L 12
decode.conditional 12
decode.cutset e 13
decode.exact. L e 14
decode.greedy 15
decode.icm e 15
decodedlp 16
decodejunction e 17
decodedbp e e 18
decode.marginal e 18
decoderbp L e e 19
decode.sample 20
decode.trbp 21
decode.tree L e 21
duplicate.crf e e e e 22
getlogPotential L 23
getpotential L e e e 23
infer.chaino 24
inferconditional 25
infercutset 26
inferexact 27
inferjunction L e e e 28
inferdbp e 29
inferrbp Lo e 30
infersample 31
infertrbp L 32
infertree L L 33
Loop . . o o e e 34
make.crf L e 34
make.features L. L e e 36
make.par. e e e e e 37
mrfnll . .. 37
mrf.stat . ..o e 38
mrfupdate L. e e e 39
Rain o o e 40
sample.chain L e 40
sample.conditional 41

sample.Cutset 42

CRF-package 3

SAMPIE.XACt e e e e e e e e e e e 43
sample.gibbs 43
samplejunction L. e e e e e e e 44
sample.tree L L L e e e e 45
Small e e e 46
sub.erf .. L L 46
train.crf . . oL L L e 47
train.mrf L L L e e e 48
Tree e e e e e 49

Index 50

CRF-package CRF - Conditional Random Fields
Description

Library of Conditional Random Fields model

Details

CRF is R package for various computational tasks of conditional random fields as well as other
probabilistic undirected graphical models of discrete data with pairwise and unary potentials. The
decoding/inference/sampling tasks are implemented for general discrete undirected graphical mod-
els with pairwise potentials. The training task is less general, focusing on conditional random fields
with log-linear potentials and a fixed structure. The code is written entirely in R and C++. The
initial version is ported from UGM written by Mark Schmidt.

Decoding: Computing the most likely configuration

decode.exact Exact decoding for small graphs with brute-force search
decode.chain Exact decoding for chain-structured graphs with the Viterbi algorithm

decode. tree Exact decoding for tree- and forest-structured graphs with max-product belief
propagation

decode.conditional Conditional decoding (takes another decoding method as input)
decode. cutset Exact decoding for graphs with a small cutset using cutset conditioning
decode. junction Exact decoding for low-treewidth graphs using junction trees
decode.sample Approximate decoding using sampling (takes a sampling method as input)
decode.marginal Approximate decoding using inference (takes an inference method as in-
put)

decode. 1bp Approximate decoding using max-product loopy belief propagation

decode. trbp Approximate decoding using max-product tree-reweighted belief propagtion
decode.greedy Approximate decoding with greedy algorithm

decode. icm Approximate decoding with the iterated conditional modes algorithm

decode.block Approximate decoding with the block iterated conditional modes algorithm

CRF-package

decode. ilp Exact decoding with an integer linear programming formulation and approximate
using LP relaxation

Inference: Computing the partition function and marginal probabilities

infer.exact Exact inference for small graphs with brute-force counting

infer.chain Exact inference for chain-structured graphs with the forward-backward algo-
rithm

infer.tree Exact inference for tree- and forest-structured graphs with sum-product belief
propagation

infer.conditional Conditional inference (takes another inference method as input)
infer.cutset Exact inference for graphs with a small cutset using cutset conditioning
infer.junction Exact decoding for low-treewidth graphs using junction trees
infer.sample Approximate inference using sampling (takes a sampling method as input)
infer.1lbp Approximate inference using sum-product loopy belief propagation

infer.trbp Approximate inference using sum-product tree-reweighted belief propagation

Sampling: Generating samples from the distribution

sample.exact Exact sampling for small graphs with brute-force inverse cumulative distribu-
tion

sample.chain Exact sampling for chain-structured graphs with the forward-filter backward-
sample algorithm

sample. tree Exact sampling for tree- and forest-structured graphs with sum-product belief
propagation and backward-sampling

sample.conditional Conditional sampling (takes another sampling method as input)
sample. cutset Exact sampling for graphs with a small cutset using cutset conditioning
sample. junction Exact sampling for low-treewidth graphs using junction trees

sample.gibbs Approximate sampling using a single-site Gibbs sampler

Training: Given data, computing the most likely estimates of the parameters

train.crf Train CRF model
train.mrf Train MRF model

Tools: Tools for building and manipulating CRF data

make. crf Generate CRF from the adjacent matrix

make. features Make the data structure of CRF features

make . par Make the data structure of CRF parameters

duplicate.crf Duplicate an existing CRF

clamp.crf Generate clamped CRF by fixing the states of some nodes
clamp.reset Reset clamped CRF by changing the states of clamped nodes
sub.crf Generate sub CRF by selecting some nodes

mrf.update Update node and edge potentials of MRF model

crf.update Update node and edge potentials of CRF model

Chain 5

Author(s)

Ling-Yun Wu <wulingyun@gmail.com>

References

J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for
segmenting and labeling sequence data. In the proceedings of International Conference on Machine
Learning (ICML), pp. 282-289, 2001.

Mark Schmidt. UGM: A Matlab toolbox for probabilistic undirected graphical models. http:
//www.cs.ubc.ca/~schmidtm/Software/UGM.html, 2007.

Examples

library(CRF)

data(Small)
decode.exact(Smalls$crf)
infer.exact(Small$crf)
sample.exact(Small$crf, 100)

Chain Chain CRF example

Description

This data set gives a chain CRF example

Usage

data(Chain)

Format
A list containing two elements:

e crf The CRF

e answer A list of 4 elements:

decode The most likely configuration

node.bel The node belief

edge.bel The edge belief

logZ The logarithmic value of CRF normalization factor Z

http://www.cs.ubc.ca/~schmidtm/Software/UGM.html
http://www.cs.ubc.ca/~schmidtm/Software/UGM.html

6 clamp.crf

clamp.crf Make clamped CRF

Description

Generate clamped CRF by fixing the states of some nodes

Usage
clamp.crf(crf, clamped)

Arguments
crf The CRF generated by make.crf
clamped The vector of fixed states of nodes
Details

The function will generate a clamped CRF from a given CRF by fixing the states of some nodes.
The vector clamped contains the desired state for each node while zero means the state is not fixed.
The node and edge potentials are updated to the conditional potentials based on the clamped vector.

Value

The function will return a new CRF with additional components:

original The original CRF.

clamped The vector of fixed states of nodes.

node.id The vector of the original node ids for nodes in the new CRF.

node.map The vector of the new node ids for nodes in the original CRF.

edge.id The vector of the original edge ids for edges in the new CRF.

edge.map The vector of the new edge ids for edges in the original CRF.
See Also

make.crf, sub.crf, clamp.reset

Examples

library(CRF)
data(Small)
crf <- clamp.crf(Smallscrf, c(o, o, 1, 1))

clamp.reset 7

clamp.reset Reset clamped CRF

Description

Reset clamped CRF by changing the states of clamped nodes

Usage

clamp.reset(crf, clamped)

Arguments
crf The clamped CRF generated by clamp.crf
clamped The vector of fixed states of nodes

Details

The function will reset a clamped CRF by changing the states of fixed nodes. The vector clamped
contains the desired state for each node while zero means the state is not fixed. The node and edge
potentials are updated to the conditional potentials based on the clamped vector.

Value

The function will return the same clamped CRF.

See Also

make.crf, clamp.crf

Examples

library(CRF)

data(Small)

crf <- clamp.crf(Small$crf, c(0, o, 1, 1))
clamp.reset(crf, c(0,0,2,2))

crf.nll

Clique Cliqgue CRF example

Description

This data set gives a clique CRF example

Usage

data(Clique)

Format
A list containing two elements:

e crf The CRF

e answer A list of 4 elements:

decode The most likely configuration

node.bel The node belief

edge.bel The edge belief

logZ The logarithmic value of CRF normalization factor Z

crf.nll Calculate CRF negative log likelihood

Description

Calculate the negative log likelihood of CRF model

Usage

crf.nll(
par,
crf,
instances,
node.fea = NULL,
edge.fea = NULL,
node.ext = NULL,
edge.ext = NULL,
infer.method = infer.chain,

crf.update 9

Arguments
par The parameter vector of CRF
crf The CRF
instances The training data matrix of CRF model
node.fea The list of node features
edge.fea The list of edge features
node.ext The list of extended information of node features
edge.ext The list of extended information of edge features

infer.method The inference method used to compute the likelihood

Extra parameters need by the inference method

Details

This function calculates the negative log likelihood of CRF model as well as the gradient. This
function is intended to be called by optimization algorithm in training process.

In the training data matrix instances, each row is an instance and each column corresponds a node
in CRF. The variables node. fea, edge. fea, node.ext, edge.ext are lists of length equal to the
number of instances, and their elements are defined as in crf. update respectively.

Value

This function will return the value of CRF negative log-likelihood.

See Also

crf.update, train.crf

crf.update Update CRF potentials

Description

Update node and edge potentials of CRF model

Usage
crf.update(
crf,
node.fea = NULL,
edge.fea = NULL,
node.ext = NULL,
edge.ext = NULL

10 crf.update

Arguments
crf The CRF
node. fea The node features matrix with dimension (n.nf, n.nodes)
edge.fea The edge features matrix with dimension (n.ef, n.edges)
node.ext The extended information of node features
edge.ext The extended information of edge features

Details

This function updates node.pot and edge.pot of CRF model by using the current values of pa-
rameters and features.

There are two ways to model the relationship between parameters and features. The first one ex-
ploits the special structure of features to reduce the memory usage. However it may not suitable for
all circumstances. The other one is more straighforward by explicitly specifying the coefficients of
each parameter to calculate the potentials, and may use much more memory. Two approaches can
be used together.

The first way uses the objects node.par and edge.par to define the structure of features and pro-
vides the feature information in variables node. fea and edge. fea. The second way directly pro-
vides the feature information in variables node.ext and edge.ext without any prior assumption
on feature structure. node.ext is a list and each element has the same structure as node.pot.
edge.ext is a list and each element has the same structure as edge. pot.

In detail, the node potential is updated as follows:

node.pot[n,i] = exp(Zpar[node.par[n, i, f]]*node. fealf, n]—i—Zpar[k]*node.ext[[k:H[n7 i])
! k

and the edge potential is updated as follows:

edge.pot([e)[i, j] = exp(d_ par(edge.par([e]][i, j, fl]vedge. feal f,]+ _ par[k]xedge.ext[[k]][[e])[i, 1))
f k

Value

This function will directly modify the CRF and return the same CRFE.

See Also

crf.nll, train.crf

decode.block 11

decode.block Decoding method using block iterated conditional modes algorithm

Description

Computing the most likely configuration for CRF

Usage

decode.block(
crf,
blocks,
decode.method = decode.tree,
restart = 0,
start = apply(crf$node.pot, 1, which.max),

Arguments
crf The CRF
blocks A list of vectors, each vector containing the nodes in a block

decode.method The decoding method to solve the clamped CRF
restart Non-negative integer to control how many restart iterations are repeated
start An initial configuration, a good start will significantly reduce the seraching time

The parameters for decode.method

Details

Approximate decoding with the block iterated conditional modes algorithm

Value

This function will return the most likely configuration, which is a vector of length crf$n.nodes.

Examples

library(CRF)
data(Small)
d <- decode.block(Small$crf, list(c(1,3), c(2,4)))

12 decode.conditional

decode.chain Decoding method for chain-structured graphs

Description

Computing the most likely configuration for CRF

Usage

decode.chain(crf)

Arguments

crf The CRF

Details

Exact decoding for chain-structured graphs with the Viterbi algorithm.

Value

This function will return the most likely configuration, which is a vector of length crf$n.nodes.

Examples

library(CRF)
data(Small)
d <- decode.chain(Smalls$crf)

decode.conditional Conditional decoding method

Description

Computing the most likely configuration for CRF

Usage
decode.conditional(crf, clamped, decode.method, ...)
Arguments
crf The CRF
clamped The vector of fixed values for clamped nodes, O for unfixed nodes

decode.method The decoding method to solve clamped CRF
The parameters for decode . method

decode.cutset 13

Details

Conditional decoding (takes another decoding method as input)

Value

This function will return the most likely configuration, which is a vector of length crf$n. nodes.
Examples

library(CRF)
data(Small)
d <- decode.conditional(Small$crf, c(0,1,0,0), decode.exact)

decode.cutset Decoding method for graphs with a small cutset

Description

Computing the most likely configuration for CRF

Usage
decode.cutset(
crf,
cutset,
engine = "default”,
start = apply(crf$node.pot, 1, which.max)
)
Arguments
crf The CRF
cutset A vector of nodes in the cutset
engine The underlying engine for cutset decoding, possible values are "default", "none",
"exact", "chain", and "tree".
start An initial configuration, a good start will significantly reduce the seraching time
Details

Exact decoding for graphs with a small cutset using cutset conditioning

Value

This function will return the most likely configuration, which is a vector of length crf$n.nodes.

14 decode.exact

Examples

library(CRF)
data(Small)
d <- decode.cutset(Smalls$crf, c(2))

decode.exact Decoding method for small graphs

Description

Computing the most likely configuration for CRF

Usage

decode.exact(crf)

Arguments

crf The CRF

Details

Exact decoding for small graphs with brute-force search

Value

This function will return the most likely configuration, which is a vector of length crf$n.nodes.

Examples

library(CRF)
data(Small)
d <- decode.exact(Smallscrf)

decode.greedy 15

decode.greedy Decoding method using greedy algorithm

Description

Computing the most likely configuration for CRF

Usage

decode.greedy(crf, restart = @, start = apply(crf$node.pot, 1, which.max))

Arguments

crf The CRF

restart Non-negative integer to control how many restart iterations are repeated

start An initial configuration, a good start will significantly reduce the seraching time
Details

Approximate decoding with greedy algorithm

Value

This function will return the most likely configuration, which is a vector of length crf$n.nodes.

Examples

library(CRF)
data(Small)
d <- decode.greedy(Small$crf)

decode.icm Decoding method using iterated conditional modes algorithm

Description

Computing the most likely configuration for CRF

Usage

decode.icm(crf, restart = 0, start = apply(crf$node.pot, 1, which.max))

16 decode.ilp

Arguments

crf The CRF

restart Non-negative integer to control how many restart iterations are repeated

start An initial configuration, a good start will significantly reduce the seraching time
Details

Approximate decoding with the iterated conditional modes algorithm

Value

This function will return the most likely configuration, which is a vector of length crf$n.nodes.

Examples

library(CRF)
data(Small)
d <- decode.icm(Small$crf)

decode.ilp Decoding method using integer linear programming

Description

Computing the most likely configuration for CRF

Usage
decode.ilp(crf, lp.rounding = FALSE)

Arguments

crf The CRF

lp.rounding Boolean variable to indicate whether LP rounding is need.
Details

Exact decoding with an integer linear programming formulation and approximate using LP relax-
ation

Value

This function will return the most likely configuration, which is a vector of length crf$n.nodes.

decode.junction

Examples

Not run:

library(CRF)

data(Small)

d <- decode.ilp(Small$crf)

End(Not run)

17

decode. junction Decoding method for low-treewidth graphs

Description

Computing the most likely configuration for CRF

Usage

decode. junction(crf)

Arguments

crf The CRF

Details

Exact decoding for low-treewidth graphs using junction trees

Value

This function will return the most likely configuration, which is a vector of length crf$n.nodes.

Examples

library(CRF)
data(Small)
d <- decode.junction(Smalls$crf)

18 decode.marginal

decode. 1bp Decoding method using loopy belief propagation

Description

Computing the most likely configuration for CRF

Usage
decode.lbp(crf, max.iter = 10000, cutoff = 1e-04, verbose = 0)

Arguments

crf The CRF

max.iter The maximum allowed iterations of termination criteria

cutoff The convergence cutoff of termination criteria

verbose Non-negative integer to control the tracing informtion in algorithm
Details

Approximate decoding using max-product loopy belief propagation

Value

This function will return the most likely configuration, which is a vector of length crf$n.nodes.
Examples

library(CRF)
data(Small)
d <- decode.lbp(Small$crf)

decode.marginal Decoding method using inference

Description

Computing the most likely configuration for CRF

Usage

decode.marginal(crf, infer.method, ...)

decode.rbp 19

Arguments

crf The CRF
infer.method The inference method

The parameters for infer.method

Details

Approximate decoding using inference (takes an inference method as input)

Value

This function will return the most likely configuration, which is a vector of length crf$n.nodes.

Examples

library(CRF)
data(Small)
d <- decode.marginal(Small$crf, infer.exact)

decode.rbp Decoding method using residual belief propagation

Description

Computing the most likely configuration for CRF

Usage
decode.rbp(crf, max.iter = 10000, cutoff = 1e-04, verbose = 0)

Arguments

crf The CRF

max.iter The maximum allowed iterations of termination criteria

cutoff The convergence cutoff of termination criteria

verbose Non-negative integer to control the tracing informtion in algorithm
Details

Approximate decoding using max-product residual belief propagation

Value

This function will return the most likely configuration, which is a vector of length crf$n.nodes.

20 decode.sample

Examples

library(CRF)
data(Small)
d <- decode.rbp(Small$crf)

decode.sample Decoding method using sampling

Description

Computing the most likely configuration for CRF

Usage

decode.sample(crf, sample.method, ...)
Arguments

crf The CRF

sample.method The sampling method

The parameters for sample.method

Details

Approximate decoding using sampling (takes a sampling method as input)

Value

This function will return the most likely configuration, which is a vector of length crf$n.nodes.

Examples

library(CRF)
data(Small)
d <- decode.sample(Small$crf, sample.exact, 10000)

decode.trbp 21

decode. trbp Decoding method using tree-reweighted belief propagation

Description

Computing the most likely configuration for CRF

Usage

decode.trbp(crf, max.iter = 10000, cutoff = 1e-04, verbose = 0)

Arguments

crf The CRF

max.iter The maximum allowed iterations of termination criteria

cutoff The convergence cutoff of termination criteria

verbose Non-negative integer to control the tracing informtion in algorithm
Details

Approximate decoding using max-product tree-reweighted belief propagtion

Value

This function will return the most likely configuration, which is a vector of length crf$n.nodes.
Examples

library(CRF)
data(Small)
d <- decode.trbp(Small$crf)

decode.tree Decoding method for tree- and forest-structured graphs

Description

Computing the most likely configuration for CRF

Usage

decode. tree(crf)

22 duplicate.crf

Arguments

crf The CRF

Details

Exact decoding for tree- and forest-structured graphs with max-product belief propagation

Value

This function will return the most likely configuration, which is a vector of length crf$n.nodes.

Examples

library(CRF)
data(Small)
d <- decode.tree(Small$crf)

duplicate.crf Duplicate CRF

Description

Duplicate an existing CRF

Usage

duplicate.crf(crf)

Arguments

crf The existing CRF

Details

This function will duplicate an existing CRF. Since CRF is implemented as an environment, normal
assignment will only copy the pointer instead of the real data. This function will generate a new
CREF and really copy all data.

Value

The function will return a new CRF with copied data

See Also

make.crf

get.logPotential 23

get.logPotential Calculate the log-potential of CRF

Description

Calculate the logarithmic potential of a CRF with given configuration

Usage

get.logPotential(crf, configuration)

Arguments

crf The CRF

configuration The vector of states of nodes

Details

The function will calculate the logarithmic potential of a CRF with given configuration, i.e., the
assigned states of nodes in the CRF.

Value

The function will return the log-potential of CRF with given configuration

See Also

get.potential

get.potential Calculate the potential of CRF

Description

Calculate the potential of a CRF with given configuration

Usage

get.potential(crf, configuration)

Arguments

crf The CRF

configuration The vector of states of nodes

24 infer.chain

Details

The function will calculate the potential of a CRF with given configuration, i.e., the assigned states
of nodes in the CRF.

Value

The function will return the potential of CRF with given configuration

See Also

get.logPotential

infer.chain Inference method for chain-structured graphs

Description

Computing the partition function and marginal probabilities

Usage

infer.chain(crf)

Arguments

crf The CRF

Details

Exact inference for chain-structured graphs with the forward-backward algorithm

Value

This function will return a list with components:

node.bel Node belief. It is a matrix with crf'$n.nodes rows and crf$max. state columns.

edge.bel Edge belief. It is a list of matrices. The size of list is crf$n.edges and the ma-
trix i has crf$n.states[crf$edges[i,1]]rowsand crf$n.states[crf$edges[i,2]]
columns.

logz The logarithmic value of CRF normalization factor Z.

Examples
library(CRF)
data(Small)

i <- infer.chain(Small$crf)

infer.conditional 25

infer.conditional Conditional inference method

Description

Computing the partition function and marginal probabilities

Usage
infer.conditional(crf, clamped, infer.method, ...)
Arguments
crf The CRF
clamped The vector of fixed values for clamped nodes, O for unfixed nodes

infer.method The inference method to solve the clamped CRF

The parameters for infer.method

Details

Conditional inference (takes another inference method as input)

Value

This function will return a list with components:

node.bel Node belief. It is a matrix with crf'$n.nodes rows and crf$max. state columns.

edge.bel Edge belief. It is a list of matrices. The size of list is crf$n.edges and the ma-
trix i has crf$n.states[crf$edges[i,1]]rowsand crf$n.states[crf$edges[i,2]]
columns.

logz The logarithmic value of CRF normalization factor Z.

Examples
library(CRF)
data(Small)

i <- infer.conditional(Small$crf, c(0,1,0,0), infer.exact)

26 infer.cutset

infer.cutset Inference method for graphs with a small cutset

Description

Computing the partition function and marginal probabilities

Usage
infer.cutset(crf, cutset, engine = "default"”)
Arguments
crf The CRF
cutset A vector of nodes in the cutset
engine The underlying engine for cutset decoding, possible values are "default", "none",
"exact", "chain", and "tree".
Details

Exact inference for graphs with a small cutset using cutset conditioning

Value

This function will return a list with components:

node.bel Node belief. Itis a matrix with crf$n.nodes rows and crf$max. state columns.

edge.bel Edge belief. It is a list of matrices. The size of list is crf$n. edges and the ma-
trix i has crf$n.states[crf$edges[i,1]]rowsand crf$n.states[crf$edges[i,2]]
columns.

logZz The logarithmic value of CRF normalization factor Z.

Examples
library(CRF)
data(Small)

i <- infer.cutset(Small$crf, c(2))

infer.exact 27

infer.exact Inference method for small graphs

Description

Computing the partition function and marginal probabilities

Usage

infer.exact(crf)

Arguments

crf The CRF

Details

Exact inference for small graphs with brute-force counting

Value

This function will return a list with components:

node.bel Node belief. It is a matrix with crf$n.nodes rows and crf$max. state columns.

edge.bel Edge belief. It is a list of matrices. The size of list is crf$n.edges and the ma-
trix i has crf$n.states[crf$edges[i,1]] rowsand crf$n.states[crf$edges[i,2]]
columns.

logz The logarithmic value of CRF normalization factor Z.

Examples
library(CRF)
data(Small)

i <- infer.exact(Small$crf)

28 infer.junction

infer. junction Inference method for low-treewidth graphs

Description

Computing the partition function and marginal probabilities

Usage

infer. junction(crf)

Arguments

crf The CRF

Details

Exact decoding for low-treewidth graphs using junction trees

Value

This function will return a list with components:

node.bel Node belief. It is a matrix with crf$n.nodes rows and crf$max. state columns.

edge.bel Edge belief. It is a list of matrices. The size of list is crf$n.edges and the ma-
trix i has crf$n.states[crf$edges[i,1]] rowsand crf$n.states[crf$edges[i,2]]
columns.

logz The logarithmic value of CRF normalization factor Z.

Examples
library(CRF)
data(Small)

i <- infer.junction(Smalls$crf)

infer.Ibp 29

infer.1lbp Inference method using loopy belief propagation

Description

Computing the partition function and marginal probabilities

Usage

infer.lbp(crf, max.iter = 10000, cutoff = 1e-04, verbose = @, maximize = FALSE)

Arguments
crf The CRF
max.iter The maximum allowed iterations of termination criteria
cutoff The convergence cutoff of termination criteria
verbose Non-negative integer to control the tracing informtion in algorithm
maximize Logical variable to indicate using max-product instead of sum-product
Details

Approximate inference using sum-product loopy belief propagation

Value

This function will return a list with components:

node.bel Node belief. It is a matrix with crf'$n.nodes rows and crf$max. state columns.

edge.bel Edge belief. It is a list of matrices. The size of list is crf$n.edges and the ma-
trix i has crf$n.states[crf$edges[i,1]1]rowsand crf$n.states[crf$edges[i,2]]
columns.

logz The logarithmic value of CRF normalization factor Z.

Examples
library(CRF)
data(Small)

i <~ infer.lbp(Smallscrf)

30 infer.rbp

infer.rbp Inference method using residual belief propagation

Description

Computing the partition function and marginal probabilities

Usage

infer.rbp(crf, max.iter = 10000, cutoff = 1e-04, verbose = @, maximize = FALSE)

Arguments
crf The CRF
max.iter The maximum allowed iterations of termination criteria
cutoff The convergence cutoff of termination criteria
verbose Non-negative integer to control the tracing informtion in algorithm
maximize Logical variable to indicate using max-product instead of sum-product
Details

Approximate inference using sum-product residual belief propagation

Value

This function will return a list with components:

node.bel Node belief. It is a matrix with crf'$n.nodes rows and crf$max. state columns.

edge.bel Edge belief. It is a list of matrices. The size of list is crf$n.edges and the ma-
trix i has crf$n.states[crf$edges[i,1]1]rowsand crf$n.states[crf$edges[i,2]]
columns.

logz The logarithmic value of CRF normalization factor Z.

Examples
library(CRF)
data(Small)

i <~ infer.rbp(Smallscrf)

infer.sample 31

infer.sample Inference method using sampling

Description

Computing the partition function and marginal probabilities

Usage

infer.sample(crf, sample.method, ...)
Arguments

crf The CRF

sample.method The sampling method

The parameters for sample.method

Details

Approximate inference using sampling (takes a sampling method as input)

Value

This function will return a list with components:

node.bel Node belief. It is a matrix with crf$n.nodes rows and crf$max. state columns.

edge.bel Edge belief. It is a list of matrices. The size of list is crf$n.edges and the ma-
trix i has crf$n.states[crf$edges[i,1]1]rowsand crf$n.statesl[crf$edgesl[i,2]1]
columns.

logz The logarithmic value of CRF normalization factor Z.

Examples
library(CRF)
data(Small)

i <- infer.sample(Small$crf, sample.exact, 10000)

32 infer.trbp

infer.trbp Inference method using tree-reweighted belief propagation

Description

Computing the partition function and marginal probabilities

Usage

infer.trbp(
crf,
max.iter = 10000,
cutoff = 1e-04,
verbose = 0,
maximize = FALSE

)
Arguments

crf The CRF

max.iter The maximum allowed iterations of termination criteria

cutoff The convergence cutoff of termination criteria

verbose Non-negative integer to control the tracing informtion in algorithm

maximize Logical variable to indicate using max-product instead of sum-product
Details

Approximate inference using sum-product tree-reweighted belief propagation

Value

This function will return a list with components:

node.bel Node belief. Itis a matrix with crf$n.nodes rows and crf$max. state columns.

edge.bel Edge belief. It is a list of matrices. The size of list is crf$n.edges and the ma-
trix i has crf$n.states[crf$edges[i,1]]rowsand crf$n.states[crf$edgesl[i,2]]
columns.

logz The logarithmic value of CRF normalization factor Z.

Examples
library(CRF)
data(Small)

i <- infer.trbp(Small$crf)

infer.tree 33

infer.tree Inference method for tree- and forest-structured graphs

Description

Computing the partition function and marginal probabilities

Usage

infer.tree(crf)

Arguments

crf The CRF

Details

Exact inference for tree- and forest-structured graphs with sum-product belief propagation

Value

This function will return a list with components:

node.bel Node belief. It is a matrix with crf$n.nodes rows and crf$max. state columns.

edge.bel Edge belief. It is a list of matrices. The size of list is crf$n.edges and the ma-
trix i has crf$n.states[crf$edges[i,1]] rowsand crf$n.states[crf$edges[i,2]]
columns.

logz The logarithmic value of CRF normalization factor Z.

Examples
library(CRF)
data(Small)

i <= infer.tree(Small$crf)

34

make.crf

Loop Loop CRF example

Description

This data set gives a loop CRF example

Usage

data(Loop)

Format

A list containing two elements:

e crf The CRF
¢ answer A list of 4 elements:

— decode The most likely configuration

node.bel The node belief

edge.bel The edge belief

logZ The logarithmic value of CRF normalization factor Z

make.crf Make CRF

Description

Generate CRF from the adjacent matrix

Usage

make.crf(adj.matrix = NULL, n.states = 2, n.nodes = 2)

Arguments

adj.matrix The adjacent matrix of CRF network.

n.states The state numbers of nodes.

n.nodes The number of nodes, which is only used to generate linear chain CRF when

adj.matrixis NULL.

make.crf 35

Details
The function will generate an empty CRF from a given adjacent matrix. If the length of nstates is
less than n.nodes, it will be used repeatly. All node and edge potentials are initilized as 1.

Since the CRF data are often very huge, CRF is implemented as an environment. The assignment of
environments will only copy the addresses instead of real data, therefore the variables using normal
assignment will refer to the exactly same CRF. For complete duplication of the data, please use
duplicate.crf.

Value

The function will return a new CREF, which is an environment with components:

n.nodes The number of nodes.

n.edges The number of edges.

n.states The number of states for each node. It is a vector of length n.nodes.

max.state The maximum number of states. It is equal to max(n.states).

edges The node pair of each edge. It is a matrix with 2 columns and n.edges rows.
Each row denotes one edge. The node with smaller id is put in the first column.

n.adj The number of adjacent nodes for each node. It is a vector of length n.nodes.

adj.nodes The list of adjacent nodes for each node. It is a list of length n.nodes and the

i-th element is a vector of length n.adj[i].

adj.edges The list of adjacent edges for each node. It is similiar to adj.nodes while
contains the edge ids instead of node ids.

node.pot The node potentials. It is a matrix with dimmension (n.nodes, max.state).
Each row node.pot[i,] denotes the node potentials of the i-th node.

edge.pot The edge potentials. Itis alist of n. edges matrixes. Each matrix edge .pot[[i]],
with dimension (n.states[edges[i,1]], n.states[edges[i,2]1]), denotes
the edge potentials of the i-th edge.

See Also

duplicate.crf, clamp.crf, sub.crf

Examples

library(CRF)

nNodes <- 4
nStates <- 2

adj <- matrix(@, nrow=nNodes, ncol=nNodes)
for (i in 1:(nNodes-1))

{

adjlfi,i+1] <- 1

adj[i+1,i] <- 1

3

36 make.features

crf <- make.crf(adj, nStates)

crf$node.pot[1,] <- c(1, 3)
crf$node.pot[2,] <- c(9, 1)
crf$node.pot[3,] <- c(1, 3)
crf$node.pot[4,] <- c(9, 1)

for (i in 1:crf$n.edges)

{
crf$edge.pot[[i]1[1,] <- c(2, 1)
crf$edge.pot[[i11[2,] <- c(1, 2)
3
make. features Make CREF features
Description

Make the data structure of CRF features

Usage

make.features(crf, n.nf = 1, n.ef = 1)

Arguments
crf The CRF
n.nf The number of node features
n.ef The number of edge features
Details

This function makes the data structure of features need for modeling and training CRF.
The parameters n.nf and n.ef specify the number of node and edge features, respectively.

The objects node.par and edge. par define the corresponding parameters used with each feature.
node.par is a 3-dimensional arrays, and element node.par[n, i, f] is the index of parameter asso-
ciated with the corresponding node potential node.pot[n, i] and node feature f. edge.par is a list
of 3-dimensional arrays, and element edge.par[[e]][i, j, f] is the index of parameter associated
with the corresponding edge potential edge.pot[[e]][i, j] and edge feature f. The value O is
used to indicate the corresponding node or edge potential does not depend on that feature.

For detail of calculation of node and edge potentials from features and parameters, please see
crf.update.

Value

This function will directly modify the CRF and return the same CRF.

make.par 37

See Also

crf.update, make.par, make.crf

make. par Make CRF parameters

Description

Make the data structure of CRF parameters

Usage

make.par(crf, n.par = 1)

Arguments

crf The CRF

n.par The number of parameters
Details

This function makes the data structure of parameters need for modeling and training CRF. The
parameters are stored in par, which is a numeric vector of length n.par.

Value

This function will directly modify the CRF and return the same CRFE.

See Also

crf.update, make.features, make.crf

mrf.nll Calculate MRF negative log-likelihood

Description

Calculate the negative log-likelihood of MRF model

Usage

mrf.nll(par, crf, instances, infer.method = infer.chain, ...)

38 mrf.stat

Arguments
par The parameter vector of CRF
crf The CRF
instances The training data matrix of MRF model

infer.method The inference method used to compute the likelihood

Extra parameters need by the inference method

Details

This function calculates the negative log-likelihood of MRF model as well as the gradient. This
function is intended to be called by optimization algorithm in training process. Before calling this
function, the MREF sufficient statistics must be calculated and stored in object par.stat of CRF.

In the training data matrix instances, each row is an instance and each column corresponds a node
in CRF.

Value

This function will return the value of MRF negative log-likilihood.

See Also

mrf.stat, mrf.update, train.mrf

mrf.stat Calculate MRF sufficient statistics

Description

Calculate the sufficient statistics of MRF model

Usage

mrf.stat(crf, instances)

Arguments

crf The CRF

instances The training data matrix of MRF model
Details

This function calculates the sufficient statistics of MRF model. This function much be called before
the first calling to mrf.nll. In the training data matrix instances, each row is an instance and each
column corresponds a node in CRF.

mrf.update 39

Value

This function will return the value of MRF sufficient statistics.

See Also

mrf.nll, train.mrf

mrf.update Update MRF potentials

Description

Update node and edge potentials of MRF model

Usage

mrf.update(crf)

Arguments

crf The CRF

Details

The function updates node . pot and edge.pot of MRF model.

Value

This function will directly modify the CRF and return the same CRF.

See Also

mrf.nll, train.mrf

40 sample.chain

Rain Rain data

Description

This data set gives an example of rain data used to train CRF and MRF models

Usage

data(Rain)

Format

A list containing two elements:

* rain A matrix of 28 columns containing raining data (1: rain, 2: sunny). Each row is an
instance of 28 days for one month.

* months A vector containing the months of each instance.

References

Mark Schmidt. UGM: A Matlab toolbox for probabilistic undirected graphical models. http:
//www.cs.ubc.ca/~schmidtm/Software/UGM.html, 2007.

sample.chain Sampling method for chain-structured graphs

Description

Generating samples from the distribution

Usage

sample.chain(crf, size)

Arguments

crf The CRF

size The sample size
Details

Exact sampling for chain-structured graphs with the forward-filter backward-sample algorithm

http://www.cs.ubc.ca/~schmidtm/Software/UGM.html
http://www.cs.ubc.ca/~schmidtm/Software/UGM.html

sample.conditional 41

Value
This function will return a matrix with size rows and crf$n.nodes columns, in which each row is

a sampled configuration.

Examples

library(CRF)
data(Small)
s <- sample.chain(Small$crf, 100)

sample.conditional Conditional sampling method

Description

Generating samples from the distribution

Usage

sample.conditional(crf, size, clamped, sample.method, ...)
Arguments

crf The CRF

size The sample size

clamped The vector of fixed values for clamped nodes, O for unfixed nodes

sample.method The sampling method to solve the clamped CRF

The parameters for sample.method

Details

Conditional sampling (takes another sampling method as input)

Value
This function will return a matrix with size rows and crf$n.nodes columns, in which each row is

a sampled configuration.

Examples

library(CRF)
data(Small)
s <- sample.conditional(Small$crf, 100, c(0,1,0,0), sample.exact)

42

sample.cutset

sample.cutset

Sampling method for graphs with a small cutset

Description

Generating samples from the distribution

Usage
sample.cutset(crf, size, cutset, engine = "default”)
Arguments
crf The CRF
size The sample size
cutset A vector of nodes in the cutset
engine The underlying engine for cutset sampling, possible values are "default"”, "none",
"exact", "chain", and "tree".
Details

Exact sampling for graphs with a small cutset using cutset conditioning

Value

This function will return a matrix with size rows and crf$n.nodes columns, in which each row is
a sampled configuration.

Examples

library(CRF)
data(Small)

s <- sample.cutset(Small$crf, 100, c(2))

sample.exact 43

sample.exact Sampling method for small graphs

Description

Generating samples from the distribution

Usage

sample.exact(crf, size)

Arguments

crf The CRF

size The sample size
Details

Exact sampling for small graphs with brute-force inverse cumulative distribution

Value
This function will return a matrix with size rows and crf$n.nodes columns, in which each row is

a sampled configuration.

Examples

library(CRF)
data(Small)
s <- sample.exact(Small$crf, 100)

sample.gibbs Sampling method using single-site Gibbs sampler

Description

Generating samples from the distribution

Usage

sample.gibbs(

crf,

size,

burn.in = 1000,

start = apply(crf$node.pot, 1, which.max)
)

44 sample.junction

Arguments
crf The CRF
size The sample size
burn.in The number of samples at the beginning that will be discarded
start An initial configuration
Details

Approximate sampling using a single-site Gibbs sampler

Value
This function will return a matrix with size rows and crf$n.nodes columns, in which each row is

a sampled configuration.

Examples

library(CRF)
data(Small)
s <- sample.gibbs(Small$crf, 100)

sample. junction Sampling method for low-treewidth graphs

Description

Generating samples from the distribution

Usage

sample. junction(crf, size)

Arguments

crf The CRF

size The sample size
Details

Exact sampling for low-treewidth graphs using junction trees

Value

This function will return a matrix with size rows and crf$n.nodes columns, in which each row is
a sampled configuration.

sample.tree 45

Examples

library(CRF)
data(Small)
s <- sample. junction(Small$crf, 100)

sample.tree Sampling method for tree- and forest-structured graphs

Description

Generating samples from the distribution

Usage

sample.tree(crf, size)

Arguments

crf The CRF

size The sample size
Details

Exact sampling for tree- and forest-structured graphs with sum-product belief propagation and
backward-sampling

Value

This function will return a matrix with size rows and crf$n.nodes columns, in which each row is
a sampled configuration.

Examples

library(CRF)
data(Small)
s <- sample.tree(Small$crf, 100)

46

sub.crf

Small Small CRF example

Description

This data set gives a small CRF example

Usage
data(Small)

Format
A list containing two elements:

e crf The CRF
e answer A list of 4 elements:

— decode The most likely configuration

node.bel The node belief

edge.bel The edge belief

logZ The logarithmic value of CRF normalization factor Z

sub.crf Make sub CRF

Description

Generate sub CRF by selecting some nodes

Usage

sub.crf(crf, subset)

Arguments
crf The CRF generated by make.crf
subset The vector of selected node ids
Details

The function will generate a new CRF from a given CRF by selecting some nodes. The vector
subset contains the node ids selected to generate the new CRF. Unlike clamp.crf, the potentials

of remainning nodes and edges are untouched.

train.crf

Value

The function will return a new CRF with additional components:

original The original CRF data.

node.id The vector of the original node ids for nodes in the new CRFE.

node . map The vector of the new node ids for nodes in the original CRF.

edge. id The vector of the original edge ids for edges in the new CRF.

edge.map The vector of the new edge ids for edges in the original CRF.
See Also

make.crf, clamp.crf

Examples

library(CRF)
data(Small)
crf <- sub.crf(Smallscrf, c(2, 3))

47

train.crf Train CRF model

Description

Train the CRF model to estimate the parameters

Usage

train.crf(
crf,
instances,
node.fea = NULL,
edge.fea = NULL,

node.ext = NULL,
edge.ext = NULL,
nll = crf.nll,

infer.method = infer.chain,

D

trace = 0

48

Arguments

crf
instances
node.fea
edge.fea
node.ext
edge.ext
nll

infer.method

trace

Details

train.mrf

The CRF

The training data matrix of CRF model

The list of node features

The list of edge features

The list of extended information of node features
The list of extended information of edge features
The function to calculate negative log likelihood

The inference method used to compute the likelihood
Extra parameters need by the inference method

Non-negative integer to control the tracing informtion of the optimization pro-
cess

This function train the CRF model.

In the training data matrix instances, each row is an instance and each column corresponds a node
in CRF. The variables node. fea, edge.fea, node.ext, edge.ext are lists of length equal to the
number of instances, and their elements are defined as in crf. update respectively.

Value

This function will directly modify the CRF and return the same CRFE.

See Also

crf.update, crf.nll, make.crf

train.mrf

Train MRF model

Description

Train the MRF model to estimate the parameters

Usage

train.mrf(
crf,
instances,

nll = mrf.nll,
infer.method = infer.chain,

D

trace = 0

Tree 49

Arguments
crf The CRF
instances The training data matrix of CRF model
nll The function to calculate negative log likelihood

infer.method The inference method used to compute the likelihood
Extra parameters need by the inference method

trace Non-negative integer to control the tracing informtion of the optimization pro-
cess

Details

This function trains the Markov Random Fields (MRF) model, which is a simple variant of CRF
model.

In the training data matrix instances, each row is an instance and each column corresponds a node
in CRF.

Value

This function will directly modify the CRF and return the same CRF.

See Also

mrf.update, mrf.stat, mrf.nll, make.crf

Tree Tree CRF example

Description

This data set gives a tree CRF example

Usage

data(Tree)

Format
A list containing two elements:

e crf The CRF

e answer A list of 4 elements:

decode The most likely configuration

node.bel The node belief

edge.bel The edge belief

logZ The logarithmic value of CRF normalization factor Z

Index

+ datasets
Chain, 5
Clique, 8
Loop, 34
Rain, 40
Small, 46
Tree, 49

+ package
CRF-package, 3

Chain, 5
clamp.crf, 4,6,7, 35,46, 47
clamp.reset, 4, 6,7
Clique, 8

CRF (CRF-package), 3
CRF-package, 3
crf.nll, 8, 10, 48
crf.update, 4, 9,9, 36, 37,48

decode.block, 3, 11
decode.chain, 3, 12
decode.conditional, 3, 12
decode.cutset, 3, 13
decode.exact, 3, 14
decode.greedy, 3, 15
decode.icm, 3, 15
decode.ilp, 4, 16
decode. junction, 3, 17
decode. lbp, 3, 18
decode.marginal, 3, 18
decode. rbp, 19

decode. sample, 3, 20
decode. trbp, 3, 21
decode. tree, 3, 21
duplicate.crf, 4,22, 35

get.logPotential, 23, 24
get.potential, 23, 23

infer.chain, 4, 24

infer.conditional, 4, 25
infer.cutset, 4, 26
infer.exact, 4, 27
infer.junction, 4, 28
infer.1lbp, 4, 29
infer.rbp, 30
infer.sample, 4, 31
infer.trbp, 4, 32
infer.tree, 4, 33

Loop, 34

make.crf, 4,6, 7,22, 34, 37, 4649

make. features, 4, 36, 37
make.par, 4, 37, 37
mrf.nll, 37, 38, 39, 49
mrf.stat, 38, 38, 49
mrf.update, 4, 38, 39, 49

Rain, 40

sample.chain, 4, 40
sample.conditional, 4, 41
sample.cutset, 4,42
sample.exact, 4, 43
sample.gibbs, 4, 43
sample. junction, 4, 44
sample.tree, 4, 45
Small, 46
sub.crf, 4, 6, 35,46

train.crf, 4,9, 10,47

train.mrf, 4, 38, 39, 48
Tree, 49

50

	CRF-package
	Chain
	clamp.crf
	clamp.reset
	Clique
	crf.nll
	crf.update
	decode.block
	decode.chain
	decode.conditional
	decode.cutset
	decode.exact
	decode.greedy
	decode.icm
	decode.ilp
	decode.junction
	decode.lbp
	decode.marginal
	decode.rbp
	decode.sample
	decode.trbp
	decode.tree
	duplicate.crf
	get.logPotential
	get.potential
	infer.chain
	infer.conditional
	infer.cutset
	infer.exact
	infer.junction
	infer.lbp
	infer.rbp
	infer.sample
	infer.trbp
	infer.tree
	Loop
	make.crf
	make.features
	make.par
	mrf.nll
	mrf.stat
	mrf.update
	Rain
	sample.chain
	sample.conditional
	sample.cutset
	sample.exact
	sample.gibbs
	sample.junction
	sample.tree
	Small
	sub.crf
	train.crf
	train.mrf
	Tree
	Index

