Package 'CUSUMdesign'

October 12, 2022
Type Package
Title Compute Decision Interval and Average Run Length for CUSUM Charts
Version 1.1.5
Date 2020-02-22
Author Douglas M. Hawkins, David H. Olwell, and Boxiang Wang
Maintainer Boxiang Wang boxiang-wang@uiowa.edu

Description

Computation of decision intervals (H) and average run lengths (ARL) for CUSUM charts. Details of the method are seen in Hawkins and Olwell (2012): Cumulative sum charts and charting for quality improvement, Springer Science \& Business Media.
License GPL-2
Repository CRAN
NeedsCompilation yes
Date/Publication 2020-02-24 17:40:09 UTC

R topics documented:

getARL . 1
getH
Index 7
\qquad
getARL compute average run length (ARL) for CUSUM charts

Description

Compute average run lengths for CUSUM charts based on the Markov chain algorithm.

Usage

getARL(distr=NULL, K=NULL, H=NULL, Mean=NULL, std=NULL, prob=NULL, Var=NULL, mu=NULL, lambda=NULL, samp.size=NULL, is.upward=NULL, winsrl=NULL, winsru=NULL)

Arguments

distr Integer valued from 1 to 6: 1 refers to "normal mean", 2 refers to "normal variance", 3 refers to "Poisson", 4 refers to "binomial", 5 refers to "negative binomial", and 6 refers to "inverse Gaussian mean".
K A reference value, which is given by geth.
H A given decision interval, which is given by getH.
Mean Mean value, which has to be provided when distr $=1$ (normal mean), 3 (Poisson), and 5 (negative binomial). The value must be positive when distr $=3$ or distr $=5$.
std Standard deviation, which has to be provided when distr $=1$ (normal mean) and 2 (normal variance). The value must be positive.
prob \quad Success probability, which has to be provided when distr $=4$ (binomial); $0<$ prob $<=1$.
Var Variance, which has to be provided when distr $=5$ (negative binomial). The value has to be larger than Mean when distr $=5$.
mu A positive value representing the mean of inverse Gaussian distribution. The argument 'mu' has to be provided when distr $=6$ (inverse Gaussian mean).
lambda A positive value representing the shape parameter for inverse Gaussian distribution. The argument 'lambda' has to be provided when distr $=6$ (inverse Gaussian mean).
samp.size Sample size, an integer which has to be provided when distr $=2$ (normal variance) or distr $=4$ (binomial).
is.upward Logical value, whether to depict a upward or downward CUSUM.
winsrl Lower Winsorizing constant. Use NULL or -999 if Winsorization is not needed.
winsru Upper Winsorizing constant. Use NULL or 999 if Winsorization is not needed.

Details

Computes ARL when the reference value and decision interval are given. For each case, the necessary parameters are listed as follows.

Normal mean (distr $=1$): Mean, std, K, H.
Normal variance (distr = 2): samp. size, std, K, H.
Poisson (distr = 3): Mean, K, H.
Binomial (dist = 4): samp. size, prob, K, H.
Negative binomial (distr = 5): Mean, Var, K, H.
Inverse Gaussian mean $(\operatorname{distr}=6)$: mu, lambda, K, H.

Value

A list including three variables:

ARL_Z The computed zero-start average run length for CUSUM.
ARL_F The computed fast-initial-response (FIR) average run length for CUSUM.
ARL_S The computed steady-state average run length for CUSUM.

Author(s)

Douglas M. Hawkins, David H. Olwell, and Boxiang Wang
Maintainer: Boxiang Wang <boxiang-wang@uiowa. edu>

References

Hawkins, D. M. and Olwell, D. H. (1998) 'Cumulative Sum Charts and Charting for Quality Improvement (Information Science and Statistics)", Springer, New York.

See Also

```
getH
```


Examples

```
# normal mean
getARL(distr=1, K=11, H=5, Mean=10, std=2)
# normal variance
getARL(distr=2, K=3, H=1, std=2, samp.size=5, is.upward=TRUE)
# Poission
getARL(distr=3, K=3, H=1, std=2, Mean=5, is.upward=TRUE)
# Binomial
getARL(distr=4, K=0.8, H=1, prob=0.2, samp.size=100, is.upward=TRUE)
# Negative binomial
getARL(distr=5, K=3, H=6, Mean=2, Var=5, is.upward=TRUE)
# Inverse Gaussian mean
getARL(distr=6, K=2, H=4, mu=3, lambda=0.5, is.upward=TRUE)
```


Description

Compute decision intervals for CUSUM charts.

Usage

getH(distr=NULL, ARL=NULL, ICmean=NULL, ICsd=NULL,
OOCmean=NULL, OOCsd=NULL, ICprob=NULL, OOCprob=NULL,
ICvar=NULL, IClambda=NULL, samp.size=NULL,
ref=NULL, winsrl=NULL, winsru=NULL,
type=c("fast initial response", "zero start", "steady state"))

Arguments

distr Integer valued from 1 to 6: 1 refers to "normal mean", 2 refers to "normal variance", 3 refers to "Poisson", 4 refers to "binomial", 5 refers to "negative binomial", 6 refers to "inverse Gaussian mean".
ARL An integer for in control average run length.
ICmean In-control mean, which has to be provided when distr $=1$ (normal mean), 3 (Poisson), 5 (negative binomial), and 6 (inverse Gaussian mean). The value has to be positive when distr $=3$, distr $=5$, or distr $=6$.
ICsd In-control standard deviation, which has to be provided when distr $=1$ (normal mean) and 2 (normal variance). The value has to be positive.

00Cmean Out-of-control mean, which has to be provided when distr $=1$ (normal mean), 3 (Poisson), 5 (negative binomial), and 6 (Inverse Gaussian mean). When distr $=$ 3,5 , or 6 , the value has to be positive.
OOCsd Out-of-control standard deviation, which has to be provided when distr $=2$ (normal variance). The value has to be positive.
ICprob In-control success probability, which has to be provided when distr $=4$ (binomial); $0<$ prob $<=1$.
OOCprob Out-of-control success probability, which has to be provided when distr $=4$ (binomial); $0<$ prob $<=1$.
ICvar In-control variance, which has to be provided when distr $=5$ (negative binomial). The value has to be larger than the in-control mean 'ICmean'.
IClambda In-control shape parameter for inverse Gaussian distribution. The argument 'IClambda' has to be provided when distr $=6$ (inverse Gaussian mean).
samp.size Sample size, an integer which has to be provided when distr = 2 (normal variance) or distr $=4$ (binomial).
ref Optional reference value.
winsrl Lower Winsorizing constant. Use NULL or -999 if Winsorization is not needed.
winsru Upper Winsorizing constant. Use NULL or 999 if Winsorization is not needed.
type
A string for CUSUM type: "F" for fast-initial-response CUSUM, "Z" for zerostart CUSUM, and "S" for steady-state CUSUM. Default is "F".

Details

Computes the decision interval H when the reference value and the average run length are given. For each case, the necessary parameters are listed as follows.

Normal mean (distr = 1): ICmean, ICsd, 00Cmean.
Normal variance (distr = 2): samp. size, ICsd, OOCsd
Poisson (distr = 3): ICmean, 00Cmean.
Binomial (dist = 4): samp. size, ICprob, 00Cprob.
Negative binomial (distr = 5): ICmean, Icvar, 00Cmean.
Inverse Gaussian mean (distr $=6$): ICmean, IClambda, 00Cmean.

Value

A list including three variables:
DI Decision interval.
IC_ARL In-control average run length.
OOCARL_Z Out-of-control average run length for the zero-start CUSUM.
OOCARL_F Out-of-control average run length for the fast-initial-response (FIR) CUSUM.
OOCARL_S Out-of-control average run length for the steady-state CUSUM.

Author(s)

Douglas M. Hawkins, David H. Olwell, and Boxiang Wang
Maintainer: Boxiang Wang <boxiang-wang@uiowa. edu>

References

Hawkins, D. M. and Olwell, D. H. (1998) "Cumulative Sum Charts and Charting for Quality Improvement (Information Science and Statistics)", Springer, New York.

See Also

getARL

Examples

```
# normal mean
getH(distr=1, ICmean=10, ICsd=2, 00Cmean=15, ARL=1000, type="F")
# normal variance
getH(distr=2, ICsd=2, OOCsd=4, samp.size=5, ARL=1000, type="F")
```

```
# Poission
getH(distr=3, ICmean=2, 00Cmean=3, ARL=100, type="F")
# Binomial
getH(distr=4, ICprob=0.2, OOCprob=0.6, samp.size=100, ARL=1000, type="F")
# Negative binomial
getH(distr=5, ICmean=1, ICvar=3, 00Cmean=2, ARL=100, type="F")
# Inverse Gaussian mean
getH(distr=6, ICmean=1, IClambda=0.5, O0Cmean=2, ARL=1000, type="F")
```


Index

* ARL
getARL, 1
* CUSUM
getARL, 1 geth, 4
* Decision interval geth, 4
* Quality control
getARL, 1
geth, 4
getARL, 1,5
geth, 2, 3, 4

