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Introduction

CI’s methods are increasingly recognized as a useful tool in policy analysis and
public communication (Nardo et al., 2005) for a variety of policy matters such as
public units benchmark, industrial competitiveness, sustainable development,
quality of life assessment, globalization and innovation. They provide simple
comparisons of units that can be used to illustrate complex and sometimes
elusive issues in wide ranging fields, e.g. the environmental, economical, social
or technological development. These indicators often seem easier to interpret
by the general public finding a common trend in many separate indicators and
have proven useful in benchmarking country performance.
Along such lines the Joint Research Centre of European Commission asserts that
”no uniformly agreed methodology exists to weight individual indicators before
aggregating them into a composite indicator”1.

Several steps are involved in creating composite indicators: investigating the
structure of simple indicators by means of multivariate statistics, handling the
problem of missing data that can be missing either in a random or in a non-
random fashion, bringing the indicators to the same unit by normalization and
finally selecting an appropriate weighting and aggregation model. (for a com-
plete explanation of every step, please see Nardo et al., 2005).
A much wider ranging literature is found for the aggregation methods than the
one regarding weight systems; however, the two aspects are related and inter-
woven and often lead to the same solutions.
Several weighting techniques exist in literature2, derived both from statistical
methodologies, such as factor analysis, DEA and unobserved components models
(UCM), or from more specific methods like budget allocation processes (BAP),
analytic hierarchy processes (AHP) or conjoint analysis (CA).

1http://composite-indicators.jrc.ec.europa.eu/S6_weighting.htm
2For a complete review, please see Nardo et al. (2005) and Freudenberg (2003) for major

applications and papers.

1

http://composite-indicators.jrc.ec.europa.eu/S6_weighting.htm


The applicative difficulties in applying composite indicators (CI) methods de-
rived from the production frontier analysis (i.e. Benefit of the Doubt - BoD)
have often discouraged the practical adoption of the more complex methods,
while having desirable properties.
Compind package make comparable and easily calculable composite indicators
developed with a plurality of methods and supports researcher into robustness
analysis through repeated simulations on subsamples of units or variables.
Given that, the first question is: why a frontier CI package in R? Answer is
easy: R is the most comprehensive statistical analysis package available (over
4800 packages), R is free, cross-platform and open source software, but especially
R is a programming language (no specific pull-down menu software) allowing to
rethinking CI not only as an evaluation tool, but as a part of the main research
flow making easy carry on sensitivity analysis through bootstrap replications.

So the subsequent question become: how design a CI package in R? In our
opinion, the package would have these basis properties:

� It has to be as simple as possible to use;

� The syntax has to be easy and independent (as possible) from the chosen
method;

� Package must cover several steps of the CI calculation (not only the weight-
ing and aggregation step).

Given these premises, Compind R package contains a plurality of methods can
be divided into:

� Frontier methods;

� Non frontier methods;

� Utilities.
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1 Frontier methods

Table 1 shows the BoD-frontier functions implemented in Compind: more specif-
ically, the functions differ due to the possibility of constraining the sets of varia-
tion of individual weights (Weight constraints), of being robust with respect to
outliers or out-of-scale data (Robust), of being able to natively include indicators
with negative polarity (Bad output), to take into account external factors (Con-
ditional) and finally to impose a direction defined by the user in the relationship
between simple indicators (Directional).

BoD function Weight Robust Bad Conditional Directional
constraints output

ci bod
ci bod constr X
ci bod constr bad X X
ci bod dir X
ci rbod X
ci rbod constr bad X X X
ci rbod constr bad Q X X X X
ci rbod dir X X
ci rbod spatial X Spatial

Table 1: Frontier functions by additional capabilities

However, not all combinations have been developed: it is our intention,
however, in the next versions to develop them.

1.1 Benefit of the Doubt approach

”The Benefit of the Doubt approach is formally tantamount to the original input-
oriented CRS-DEA3 model of Charnes et al. (1978), with all questionnaire items
considered as outputs and a dummy input equal to one for all observations”,
Witte & Rogge (2009).

In particular BoD approach offers several advantages:

1. Weights are endogenously determined by the observed performances and
benchmark is not based on theoretical bounds, but it’s a linear combina-
tion of the observed best performances.

2. Principle is easy to communicate: since we are not sure about the right
weights, we look for ”benefit of the doubt” weights (such that your overall
relative performance index is as high as possible).

3. BoD CI is weak monotone.

3Constant Returns to Scale Data Envelopment Analysis.
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So, let’s draw a sample of 100 units for two simple indicators i1 and i2 ∈ [0, 1]
and two ”particular” rows: the first one is an outlier, while the second one have
a NA on the second indicator.

i1 <- seq(0.3, 0.5, len = 100) - rnorm (100, 0.2, 0.05)

i2 <- seq(0.3, 1, len = 100) - rnorm (100, 0.2, 0.05)

dati = data.frame(i1, i2)

random1 = data.frame(i1=0.6, i2=1)

random2 = data.frame(i1=0.5, i2=NA)

Indic = rbind(dati,random1,random2)

As pointed out by the OECD Handbook on Constructing Composite Indi-
cators, dataset must not contain missing data; to overcome this issue researcher
can make imputation or delete the observations. For this reason, all the Compind
functions alert users to the presence of missing values within the data (depend-
ing on the function the calculation can stop or not).

CI1 = ci_bod(Indic)

## Pay attention: NA values at column: 102 , row 2 . Composite indicator

has been computed, but results may be misleading, Please refer to OECD

handbook, pg. 26.

Given that, in this example, missing row has been deleted and the BoD
composite indicator by ci_bod function recalculated; Figure 1 show the sample
data highlighting the contribution of the outlier on the composite scores of the
other units.

Indic = Indic[complete.cases(Indic),]

CI1 = ci_bod(Indic)

Indic_CI = data.frame(Indic, CI_est= CI1$ci_bod_est)

ggplot(data = Indic_CI, aes(x = i1, y = i2)) +

geom_point(aes(colour = CI_est),size=3)

It may be readily noted that the BoD composite score depends exclusively
on the frontier’s distance; in this framework one drawback is directly linked
with the DEA problem solution: since the weights are unit specific, cross-unit
comparisons are not possible and the values of the scoreboard depend on the
benchmark performance.
There are also three other drawbacks we will discuss in the following para-
graphs: the multiplicity of equilibria, the lack of robustness and perfect non
compensability among indicators.

1.2 Multiplicity of equilibria: Variance weighted BoD

As pointed out before, BoD formulation can hide the problem of the multiplicity
of equilibria thus weights are not uniquely determined (even though the CI is
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Figure 1: Simple indicators and BoD CI

unique). The weight values for the units are to be chosen from many (infinite)
possibilities. It is also worth noting that multiple solutions are likely to depend
upon the set of constraints imposed on the weights of the maximization problem:
the wider the range of the variation of weights, the lower the possibility of
obtaining a unique solution.

The optimization process could lead to many zero weights (see table 2) if no
restrictions on the weights are imposed.

Weights Freq
1 0 - 1 75
2 1.667 - 0 26

Table 2: BoD weights

There is a wide choice for incorporating “value judgements” in a DEA clas-
sical model and in general in efficiency analysis (please see Allen et al., 1997,
Estellita-Lins et al., 2007 and Thanassoulis et al., 2004); three basic approaches
are the most used:

� Direct restrictions on the weights;

� Adjustment of the observed input-output levels;

� Restrictions on the virtual inputs and outputs.

In recent years many additional weighting schema have been proposed (i.e.
Rogge, 2012); Mazziotta & Vidoli (2009), for example, proposed the inclusion of
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additional ”Assurance regions”, type I (AR I) constraints in order to highlight
indicators with a higher sample variance than the others.

The basic thesis involves weighting simple indicators by their own sample
variance; thus, indicators with a high variability will strongly affect the com-
posite indicator. There are however consequences to this approach: our mea-
surement has to be read as a ”gap indicator” among the unit characteristics.
The preliminary hypothesis is that every single indicator Iq, q = 1, . . . , Q is a
probabilistic variable, following a Normal Gaussian distribution4:

Iq ∼ N(µIq , σIq ),∀q = 1, . . . , Q (1)

In this way, the variance of each indicator can be computed in a standard
probabilistic setting and the unbiased variance confidence interval is:

P (
n− 1

χ2
n−1,1−α/2

S
2
< σ2 <

n− 1

χ2
n−1,α/2

) = 1− α (2)

which, for the sake of compactness, can be written:

P (lowIq < σ2 < highIq ) = 1− α (3)

Even when the underlying distribution is not Normal, the procedure can be
still used to obtain the approximate confidence bounds for the variance esti-
mated. If the distribution is not too far from the Normal one, we have tested
the robustness of our procedure. We can use lowIq and highIq for each indicator
to reconstruct the marginal rates of substitution among indicators:

lowIi
highIj

≤ wIi
wIj
≤

lowIj
highIi

,∀i, j = 1, . . . , Q (4)

When the confidence interval inferior limit of the variance is contrasted with
the maximum of another, one assumes a ”benefit of doubt” attitude in that an
exact relationship among weights is not imposed, thereby establishing a range
in which every unit obtains the maximum relative weight.

In Compind package the implementation of this model thought the ci_bod_var_w
function is easy and quite similar to the BoD model; Figure 2 shows how the
variance weighted CI is, for construction, lower than the BoD one.

CI_w1 = ci_bod_var_w(Indic)

Indic_CI2 = data.frame(Indic_CI, CI_w_est= CI_w1$ci_bod_var_w_est)

ggplot(data = Indic_CI2, aes(x = CI_est, y = CI_w_est)) +

geom_point(size=3)+

geom_abline(intercept = 0, slope = 1, linetype="dashed")+

xlab("BoD estimated CI") +

ylab("Variance weighted BoD estimated CI")

4To bypass this assumption, future developments of this methodology may involve the
analysis of the kernel density estimate of the simple indicators and their own sample variance.
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Figure 2: BoD and Variance weighted BoD estimated CI

1.3 Robust BoD

As mentioned in paragraph 1.1, one of the main drawbacks of DEA/FDH non-
parametric estimators is their sensitivity to extreme values and outliers.

To introduce Robust BoD we first expose the simplified idea (based on the
Order-m idea, Daraio & Simar, 2005).

Figure 3: Outlier effects in a frontier framework

We extend the Daraio & Simar (2005) idea into CI’s framework by repeatedly
and with replacement drawing m observations from the original sample of n
observations, choosing only from those observations which are obtaining higher
basic indicators (I1, I2) - red lines - than the evaluated observation C.

In other words and practically speaking:
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Figure 4: Support of the generic unit C

� we draw m observation only from those observations which are obtaining
higher basic indicators than the evaluated observation C;

� we label this set as SETbm;

� we estimate BoD scores relative to this sub-sample SETbm for B times;

� having obtained the B scores, we compute the arithmetic average.

Figure 5: Order-m calculation criteria

This is certainly a less extreme benchmark for the unit C than the ”absolute”
maximum achievable level of output.
Unit C is compared to a set of m peers (potential competitors) having higher
basic indicators than its level and we take as a benchmark, the expectation of
the maximum achievable CI in place of the absolute maximum CI.
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Figure 6: BoD and Robust BoD estimated CI

Compind package lets to calculate Robust BoD via ci_rbod function; two other
options, respect to the ci_bod function, are available: M to fix the number of
peers for the generic unit i in each sample and B to indicate the number of
bootstrap replicates.

CI_r1 = ci_rbod(Indic, B=100)

Indic_CI3 = data.frame(Indic_CI2, CI_r_est= CI_r1$ci_rbod_est)

ggplot(data = Indic_CI3, aes(x = CI_est, y = CI_r_est)) +

geom_point(size=3)+

xlab("BoD estimated CI") +

ylab("Robust BoD estimated CI")

Figure 6 allows to detect the outlier (with robust score greater than 1) and,
above all, to obtain a score distribution (see Figure 7) not affected by outliers.

per_plot = melt(data.frame(Indic_CI3$CI_est,Indic_CI3$CI_r_est))

ggplot(per_plot, aes(x=value, fill=as.factor(variable))) +

geom_density(alpha=.5)+

labs(x = "Composite indicator", y="Kernel density")+

theme(legend.position="bottom")+

scale_fill_manual(values=c("#999999", "#E69F00"),

name="CI estimated value",

labels=c("BoD", "Robust BoD"))
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Figure 7: BoD and Robust BoD CI kernel density

1.4 Directional BoD

Most of aggregation methods assume, in weighting phase, the compensability
among simple indicators (Bouyssou & Vansnick, 1986) namely allowing lower
values in some indicators to be compensated by higher values in others. This
property, even not verified in the practical application, is not appropriate espe-
cially if CI has to be interpreted as ”importance coefficients” (Munda & Nardo,
2005).
In last years multiple solutions have been proposed to avoid this strong assump-
tion introducing weight constraints, weighting each tensor that links the single
point to the frontier (see e.g. Tsutsui et al., 2009) or including a penalty ac-
cording to the different mix of simple indicators (De Muro et al., 2010).
Given that in practical application most often exist a preference structure and
with the aim to respect the weakly positive monotonicity property (Casadio
Tarabusi & Guarini, 2013), Fusco (2015) suggest to include in the BoD model
a ”directional” penalty using the directional distance function introduced by
Chambers et al. (1998).
Even if in literature a crucial question in a directional approach is the correct
choice of the direction, this issue is irrelevant with the illustration of this pack-
age and for this reason it’s left to the research decisions.
To better illustrate the characteristics of the Directional BoD method the Euro-
pean regional transport data, year 2012, for 34 NUTS1 regions has been used5;
Figure 8 relates the kilometres of roads and railways highlighting as, for most
of the regions, the ”desired” ratio can be set equal to 2 to 10.

5In the ode below function normalise ci has been used; see paragraph 3 for more info.
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Figure 8: Eu regional transport data, year 2012

data(EU_NUTS1)

data_norm = normalise_ci(EU_NUTS1,c(2:3),

polarity = c("POS","POS"), method=2)

ggplot(data = data_norm$ci_norm, aes(x = roads, y = trains)) +

geom_point(size=3)+

geom_abline(intercept=0, slope=0.2, linetype="dashed")+

annotate("text", x=0.7, y=0.2, label="Main direction")+

xlab("Roads") +

ylab("Trains")

Function ci_bod_dir allows to calculate Directional BoD given a direction
dir, expressed as the ratio between the first and the second indicator; Figure
9 highlight as the main differences between BoD CI and Directional BoD CI
occur for the units with the lowest values along the chosen direction.

CI_bod_est = ci_bod(data_norm$ci_norm,c(1:2))

CI_bod_dir_est = ci_bod_dir(data_norm$ci_norm,c(1:2),

dir = c(1,0.2))

Diff = CI_bod_dir_est$ci_bod_dir_est - CI_bod_est$ci_bod_est

Indic_tot = data.frame(data_norm, Diff)

ggplot(data = Indic_tot,

aes(x = ci_norm.roads, y = ci_norm.trains)) +

geom_point(aes(colour = Diff),size=3)+

theme(legend.position="bottom")+
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Figure 9: Eu regional transport data - difference between BoD and Directional
BoD

scale_colour_continuous(name="Difference")+

xlab("Roads") +

ylab("Trains")

1.5 Directional Robust BoD

Directional Robust BoD method, proposed in Vidoli et al. (2015), is the logical
union between the Robust BoD and the directional BoD methods; Figure 10
compares the directional measure with the directional robust one, highlighting
how, even in this case, the main differences occur for the units with the lowest
values.

CI_rbod_dir_est = ci_rbod_dir(data_norm$ci_norm,c(1:2),

dir = c(1,0.2))

Indic_tot = data.frame(data_norm,

CI_dir = CI_bod_dir_est$ci_bod_dir_est,

CI_rdir = CI_rbod_dir_est$ci_rbod_dir_est)

ggplot(data = Indic_tot, aes(x = CI_dir, y = CI_rdir)) +

geom_point(size=3)+

geom_abline(intercept = 0, slope = 1, linetype="dashed")+

xlab("Directional BoD estimated CI") +

ylab("Directional Robust BoD estimated CI")
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Figure 10: Directional BoD vs Directional Robust BoD estimated CI

2 Non frontier methods

This section provides some functions commonly used in the calculation of com-
posite indicators; Compind implements the main methodologies proposed in the
OECD manual more closely linked with mathematical procedure avoiding all
methods which in some way would provide for a subjective choice of the weights.

2.1 Weighting method based on Factor Analysis

Factor Analysis (FA) aims to describe a set of Q indicators i1, i2, . . . , iQ in
terms of a smaller number of m factors and to highlight the relationship between
these variables. Contrary to the Principal Component Analysis, the FA model
assumes that the data is based on the underlying factors of the model, and that
the data variance can be decomposed into that accounted for by common and
unique factors.
On the issue of how factors should be retained in the analysis without losing
too much information, methodologists are divided; Compind package with the
ci_factor function offers three possibilities: 1) method="ONE" (default) the
composite indicator estimated values are equal to first component scores; 2)
method="ALL" the composite indicator estimated values are equal to component
scores multiplied by its proportion variance and 3) method="CH" it can be choose
the number of the component to take into account.

After choosing five indicators it was applied factorial analysis choosing to
weigh the scores on the three components with the associated loadings.
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data(EU_2020)

data_norm=normalise_ci(EU_2020,c(47:51),

polarity = c("POS","POS","POS","POS","POS"),

method=2)

CI1 = ci_factor(data_norm$ci_norm,c(1:5),method="CH", dim=3)

summ = summary(as.data.frame(CI1$ci_factor_est))

print(xtable(summ,caption = "Factor Analysis scores based

on first 3 components",label="tab_factor1"),

include.rownames=FALSE)

V1
Min. :-1.6549
1st Qu.:-0.4842
Median : 0.1630
Mean : 0.0000
3rd Qu.: 0.4416
Max. : 1.1475

Table 3: Factor Analysis scores based on first 3 components

The associated loadings ..

round(CI1$loadings_fact,3)

[1] 0.698 0.285 0.010
The robustness of the results can be tested even varying the number of com-

ponents; in this case it was decided to retain only the first factor (method="ONE").

CI2 = ci_factor(data_norm$ci_norm,c(1:5),method="ONE")

summ2 = summary(as.data.frame(CI2$ci_factor_est))

print(xtable(summ2,caption = "Factor Analysis scores based

on first component",label="tab_factor2"),

include.rownames=FALSE)

CI2$ci factor est
Min. :-3.1144
1st Qu.:-0.2607
Median : 0.1247
Mean : 0.0000
3rd Qu.: 0.6264
Max. : 1.3446

Table 4: Factor Analysis scores based on first component

It can be noted however very good correlation between the two scores (0.926).
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2.2 Weighting method based on geometric aggregation

Geometric aggregation (GA) is a simple method less compensatory approach
than the additive ones; in other terms, units with low scores in some indicators
would prefer a linear rather than a geometric aggregation, that is an increase in
an indicator value would have higher marginal utility on the composite indicator
if the indicator value is low.
Since in GA compensability degree is not constant, because is higher for com-
posite indexes with high values and vice versa, units with low scores tend to
prefer use of linear aggregation, trying to improve their position in ranking.
The implementation in Compind package is trivial.

data(EU_NUTS1)

CI_geom_estimated = ci_geom_gen(EU_NUTS1,c(2:3),meth = "EQUAL")

summary(CI_geom_estimated$ci_mean_geom_est)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 420.5 914.2 1118.6 1256.9 1455.1 3820.9

2.3 Mazziotta-Pareto Index (MPI) method

The MPI is a non-compensative composite index which, starting from a linear
aggregation, introduces a penalty for the units with unbalanced values of the
indicators (De Muro et al., 2010). It is composed of two parts (a measure of
the mean level and a measure of the amount of unbalance) and, differently
from other methods, may be used for building both ”positive” and ”negative”
composite indices (penalty direction).
MPI method need to normalize simple indicator following two standardizations
methods:

� For classic MPI it must use normalize_ci function with method=1, z.mean=100
and z.std=10;

� For Correct MPI it must use normalize_ci function with min-max stan-
dardization (method=2).

data(EU_NUTS1)

data_norm = normalise_ci(EU_NUTS1,c(2:3),

c("NEG","POS"),

method=1,z.mean=100, z.std=10)

CI_pi_estimated = ci_mpi(data_norm$ci_norm, penalty="NEG")

2.4 Adjusted Mazziotta-Pareto Index (AMPI) method

The AMPI method is a non-compensative composite index which introduces a
penalty for the units with unbalanced values of the indicators (De Muro et al.,
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2010). It is composed of two parts (a measure of the mean level and a measure of
the amount of unbalance) and, differently from other methods, may be used for
building both ”positive” and ”negative” composite indices (penalty direction).
Differently from the MPI method, AMPI allows to take into account the time
dimension in order to make the estimates over the years comparables.
Normalizing data before use AMPI method is here not needed, because this
method use a particular method that is embedded in the code itself.
Data has to be passed in Long format indicating the time variable; switching
from wide to long is very simple in R using the reshape function (see below).

data(EU_2020)

data_test = EU_2020[,c("employ_2010","employ_2011",

"finalenergy_2010","finalenergy_2011")]

EU_2020_long<-reshape(data_test,

varying=c("employ_2010","employ_2011",

"finalenergy_2010",

"finalenergy_2011"),

direction="long",

idvar="geo",

sep="_")

CI <- ci_ampi(EU_2020_long,

indic_col=c(2:3),

gp=c(50, 100),

time=EU_2020_long[,1],

polarity= c("POS", "POS"),

penalty="POS")

xtable(CI$ci_ampi_est)

Results are offered showing the units in row and the estimates for each year
in column (see table below).

2.5 Mean-min Function

The Mean-Min Function (MMF), proposed by Casadio Tarabusi & Guarini
(2013), can be seen as an intermediate method between arithmetic mean, ac-
cording to which no unbalance is penalized, and min function, according to
which the penalization is maximum. It depends on two parameters that are
respectively related to the intensity of penalization of unbalance (α, 0 ≤ α ≤ 1)
and the intensity of complementarity (β, β ≥ 0) among indicators.
MMF index can be expressed as:

MMFi = MZi − α( 2

√
(MZi −minj(zij)) + β2 − β) (5)
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2010 2011
1 156.05 152.17
2 155.89 152.12
3 138.84 131.66
4 132.74 121.60
5 146.91 140.27
6 163.43 152.53
7 159.32 153.25
8 136.34 139.08
9 130.57 123.59

10 128.99 115.36
11 125.51 119.56
12 143.31 136.40
13 115.57 109.49
14 122.44 119.19
15 161.06 146.64
16 131.64 129.24
17 129.75 130.65
18 147.90 138.34
19 119.77 116.98
20 118.90 118.52
21 166.17 155.68
22 160.49 151.14
23 129.96 125.47
24 147.24 135.89
25 127.16 121.48
26 146.71 134.21
27 130.57 126.28
28 154.67 147.55
29 170.52 162.23
30 155.80 146.74

where Z is the normalized matrix of the data.
The function reduces to the arithmetic mean for α = 0 (in this case β is irrele-
vant) and to the minimum function for α = 1 and β = 0. Moreover, with α = 1
the function has incomplete compensability; with β = 0 and 0 ≤ α ≤ 1 it has
proportional compensability.
Therefore, authors write that: ”by choosing the values of parameters appropri-
ately one can obtain the form of this aggregation function that best suits the
specific theoretical approach”.
Once fixed α and β, the implementation in Compind package is trivial.

data(EU_NUTS1)

CI_mean_min_estimated = ci_mean_min(EU_NUTS1,c(2:3),

alpha=0.5, beta=1)
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2.6 Wroclaw Taxonomic Method

Wroclaw Taxonomic Method is a technique originally developed at the Univer-
sity of Wroclaw, which has experienced a fairly widespread in Italy, especially for
the development of economic and social indicators (see e.g. Schifini D’Andrea,
1982; Quirino, 1990; Mazziotta, 1998) and recently by Cwiakala-Malys, 2009.
It’s based on a very simple principle: the benchmark is the one that has the
least distance from an ”ideal” unit, characterized by the best performance for
all the indicators considered; following the calculation of (Euclidean) distances
of all units by the ”ideal” one, it can build a list in which the different units are
ordered in proportion with the distance from the optimum situation.
The implementation in Compind package is trivial.

data(EU_NUTS1)

CI_wroclaw_estimated = ci_wroclaw(EU_NUTS1,c(2:3))

2.7 SMAA - Stochastic multiobjective acceptability anal-
ysis

The application of the Stochastic multiobjective acceptability analysis (SMAA)
to the composite indicators is relatively recent: for more information, please see
Greco et al. (2017).

The implementation of the standard SMAA in Compind package is trivial.

data(EU_NUTS1)

test <- ci_smaa_constr(EU_NUTS1,c(2,3), label= EU_NUTS1[,1], rep=100)

source("http://www.phaget4.org/R/myImagePlot.R")

myImagePlot(test$ci_smaa_constr_rank_freq)
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Compind package allows also to constraint the range of allowable weights
specifying the upper and/or the lower bound.

data(EU_NUTS1)

test2 <- ci_smaa_constr(EU_NUTS1,c(2,3), label= EU_NUTS1[,1], rep=100, low_w=c(0,0.2))

source("http://www.phaget4.org/R/myImagePlot.R")

myImagePlot(test2$ci_smaa_constr_rank_freq)
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3 Utilities: Normalisation and polarity functions

Although presented at the end, the normalize_ci is a crucial function that lets
to normalise simple indicators according to the polarity of each one.
Compind provides three different methods: the standardization or z-scores (method=1),
the min-max method (method=2) and the ranking method (method=3); each
method provides for the indication of the polarity of the single indicator in
order to obtain standardized indicators with the same polarity.
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4 Compind web application

Figure 11: Compind web application

The Compind package has also been made simpler and more immediate
through the design of a web interface written in Shiny - https://fvidoli.

shinyapps.io/compind_app/ - that allows to calculate the composite indicators
through a guided and intuitive procedure.
Help and relative tutorial are available directly via the interface; not all methods
have been implemented yet.
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