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Chapter 1

Introduction

This package provides more than two hundred cross-over design from literature, a search algorithm to

�nd e�cient cross-over designs for various models and a graphical user interface (GUI) to �nd/generate

appropriate designs.

The computationally intensive parts of the package, i.e. the search algorithm, is written using the R packages

Rcpp and RcppArmadillo (Eddelbuettel and François [2011] and Eddelbuettel and Sanderson [2013]). The

GUI is written in Java and uses package rJava (Urbanek [2013]).

1.1 Installation

Once it is installed, whenever you start R you can load the Crossover package by entering library(Crossover)

into the R Console. The graphical user interface as shown in �gure 1.1 is started with the command

CrossoverGUI().

Figure 1.1: Cross-Over Design GUI.
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1.2 Overview

The catalogue, collected and compiled by Professor Byron Jones, contains 241 designs from the following

literature: Anderson and Preece [2002], Archdeacon et al. [1980], Atkinson [1966], Balaam [1968], Berenblut

[1964], Blaisdell Jr and Raghavarao [1980], Davis and Hall [1969], Federer and Atkinson [1964], Fletcher

[1987], Iqbal and Jones [1994], Lewis et al. [1988], Cochran et al. [1941], Patterson and Lucas [1962], Pigeon

[1985], Prescott [1999], Quenouille [1953], Russell [1991], Lucas [1956], Williams [1949], Prescott [1994], Bate

and Jones [2002]

Further 149 designs are constructed from partially balanced incomplete block designs from Clatworthy et al.

[1973] and balanced crossover designs.

1.2.1 Design selection in the GUI

The GUI will show appropriate designs from the catalogue according to the number of treatments, periods

and the range of sequences the user enters.1 Further functions from package crossdes (Sailer [2013]) are

called to create designs for the speci�ed values if possible.

In �gure 1.1 you can see the following four checkboxes, that allow you to see only speci�c subsets:

Designs from package archive The previously noted designs from literature are shown.

Designs generated by package crossdes Activating this option will result in short delays when display-

ing the catalogue, since the crossdes algorithms are called.

Designs manually entered All designs entered on tab "Input own design" are shown.

Designs from previous search runs All designs from previous search runs are shown.

The column av.e�.trt.pair shows the average e�ency of pairwise treatment parameter di�erences.

To de�ne these e�ciencies we compare a design D with an "ideal design" DI without period, subject or

carry-over e�ects, where each treatment i ∈ {1, . . . , v} occurs ni times in D and DI . For DI the variance

of the treatment parameter di�erence estimate τ̂i − τ̂j for treatment i and j is 1/ni + 1/nj . We de�ne the

e�ciency for a design D as the quotient of the variances under DI and D, i.e.

VarDI
(τ̂i − τ̂j)

VarD(τ̂i − τ̂j)
=

1
n i

+ 1
nj

VarD(τ̂i − τ̂j)
.

The tab "Input own design" provides you with the possibility to analyse and save your own designs easily

or to use them as starting points for the search algorithm.

The drop-down menu formodel let you specify which model you are interested. These models are described in

detail in chapter 2. In case of the placebo or proportionality model you can specify further model parameters

(namely the number of placebos and the proportionality parameter, respectively).

1A table referencing all available designs and the respective number of treatments, periods and sequences is available by
calling buildSummaryTable().
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1.2.2 Designs in R

Our crossover designs in R are numeric matrices, where the elements represent the treatments, the rows

represent the periods and the columns the subjects.

A data frame referencing all available designs and the respective number of treatments, periods and sequences

is available by calling the buildSummaryTable() function.

Designs referenced in this table can be accessed via the getDesign() function. For example the Williams

design for three treatments is represented by a 3× 6-matrix and assigns each of the three treatments once

to each of the six subjects:

getDesign("williams3t")

## s1 s2 s3 s4 s5 s6

## p1 1 2 3 3 1 2

## p2 2 3 1 2 3 1

## p3 3 1 2 1 2 3

## attr(,"reference")

## [1] "Williams, E.J. (1949) Experimental designs balanced for the estimation of residual effects of treatments. Australian Journal of Science Res(A), 2, 14900168.\n\nPatterson, H.D. and Lucas, H.L. (1962) Change-over designs. North Carolina Agricultural Experiment Station. Tech. Bull. No. 147."

## attr(,"signature")

## [1] "p = 3, n = 6, t = 3"

## attr(,"title")

## [1] "WILLIAMS DESIGN THREE TREATMENTS"

Each treatment occurs six times, two times in the each period and each treatment follows each other

treatment exactly two times.

If we are interested in the variance of the treatment parameter di�erence estimates, we can use the function

general.carryover:

design <- getDesign("williams3t")

general.carryover(design, model=1)

## $Var.trt.pair

## [,1] [,2] [,3]

## [1,] 0.0000 0.4167 0.4167

## [2,] 0.4167 0.0000 0.4167

## [3,] 0.4167 0.4167 0.0000

##

## $Var.car.pair

## [,1] [,2] [,3]

## [1,] 0.00 0.75 0.75

## [2,] 0.75 0.00 0.75

## [3,] 0.75 0.75 0.00

##

## $model

## [1] 1

We see that the Williams design is a balanced design.

The following nine models which are discussed in chapter 2 are implemented:

## 1: "Standard additive model"

## 2: "Self-adjacency model"

## 3: "Proportionality model"

## 4: "Placebo model"

## 5: "No carry-over into self model"

## 6: "Treatment decay model"

## 7: "Full set of interactions"

## 8: "Second-order carry-over effects"

## 9: "No carry-over effects"
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1.2.3 Algorithm Search

Figure 1.2: Panel for algorthmic search of cross-over designs.

In �gure 1.2 the preliminary graphical interface for the search algorithm is shown with the following options:

� The covariance pattern can be "Independence", "Autoregressive Error" or "Autoregressive Error".

Except for "Independence" a covariance pattern coe�cient ρ has to be speci�ed.

� Specify the exact number of sequences. (The number of treatments and periods is already speci�ed in

the top panel of the GUI.)

� Optionally specify the exact number of treatment assignments. The GUI default is to let the algo-

rithm �gure out good/optimal assignments. But depending on further information (information from

theoretical results or treatments more important than the others2, etc.) the number of treatment

assignments can be speci�ed.

� You can specify that the design should be constructed in a way that in each sequence/period a treatment

occur as evenly as possible. This restriction will normally decrease the e�ciency of the algorithm.

� The GUI default is an all-pair comparison of all treatments with equal weights. Change the contrast

weights accordingly if you are interested in other contrasts or di�erent weights.

� Pressing the "Compute Design" button will start the search algorithm described in section 3. After a

few seconds the result will be shown in the previous empty text area on the right.

2Di�erent weights of treatment importance should be speci�ed as weighted contrasts. See item contrasts.
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Chapter 2

Models

The package and GUI support the following eight models.

2.1 Standard additive model

Yijk = µ+ πj + τd[i,j] + λd[i,j−1] + sik + eijk

with1

µ intercept,

πj period e�ect for period j,

τd[i,j] direct treatment e�ect for treatment d[i, j] in period j of sequence i,

λd[i,j−1] �rst-order carry-over e�ect (0 for j − 1=0),

sik kth subject e�ect on sequence i,

eijk random error with zero mean and variance σ2.

which we can write as

E(Y ) = µ+X
(
τ
λ

)
+ Z

(
π
s

)
with X and Z called the treatment and block design matrices, respectively.

We call H a link matrix if X = XrH were Xr is the design matrix for the row-column design. The rows of

the link matrix specify all possible parameter combinations. Therefore H has as many columns as there are

parameters and in the row-column-setting i parameter j is included hij times.

# Design:

design <- rbind(c(3,2,1),

c(2,1,3),

c(1,2,3),

c(3,2,1))

design

## [,1] [,2] [,3]

## [1,] 3 2 1

## [2,] 2 1 3

## [3,] 1 2 3

## [4,] 3 2 1

1cf. Jones and Kenward [2003], page 8
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v <- 3 # number of treatments

# Link matrix:

H <- Crossover:::linkMatrix(model="Standard additive model", v)

H

## [,1] [,2] [,3] [,4] [,5] [,6]

## [1,] 1 0 0 0 0 0

## [2,] 0 1 0 0 0 0

## [3,] 0 0 1 0 0 0

## [4,] 1 0 0 1 0 0

## [5,] 0 1 0 1 0 0

## [6,] 0 0 1 1 0 0

## [7,] 1 0 0 0 1 0

## [8,] 0 1 0 0 1 0

## [9,] 0 0 1 0 1 0

## [10,] 1 0 0 0 0 1

## [11,] 0 1 0 0 0 1

## [12,] 0 0 1 0 0 1

# Row-Column-Design: (cf. John et al. 2004, Table II and page 2649f.)

rcDesign <- Crossover:::rcd(design, v=v, model=1)

rcDesign

## [,1] [,2] [,3]

## [1,] 3 2 1

## [2,] 11 7 6

## [3,] 7 5 12

## [4,] 6 8 10

# Design Matrix of Row-Column Design:

Xr <- Crossover:::rcdMatrix(rcDesign, v, model=1)

Xr

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

## [1,] 0 0 1 0 0 0 0 0 0 0 0 0

## [2,] 0 1 0 0 0 0 0 0 0 0 0 0

## [3,] 1 0 0 0 0 0 0 0 0 0 0 0

## [4,] 0 0 0 0 0 0 0 0 0 0 1 0

## [5,] 0 0 0 0 0 0 1 0 0 0 0 0

## [6,] 0 0 0 0 0 1 0 0 0 0 0 0

## [7,] 0 0 0 0 0 0 1 0 0 0 0 0

## [8,] 0 0 0 0 1 0 0 0 0 0 0 0

## [9,] 0 0 0 0 0 0 0 0 0 0 0 1

## [10,] 0 0 0 0 0 1 0 0 0 0 0 0

## [11,] 0 0 0 0 0 0 0 1 0 0 0 0

## [12,] 0 0 0 0 0 0 0 0 0 1 0 0

# Design Matrix of Cross-Over Design:

X <- Xr %*% H

X

## [,1] [,2] [,3] [,4] [,5] [,6]

## [1,] 0 0 1 0 0 0

## [2,] 0 1 0 0 0 0

## [3,] 1 0 0 0 0 0

## [4,] 0 1 0 0 0 1

## [5,] 1 0 0 0 1 0

## [6,] 0 0 1 1 0 0

## [7,] 1 0 0 0 1 0

## [8,] 0 1 0 1 0 0

## [9,] 0 0 1 0 0 1

## [10,] 0 0 1 1 0 0

## [11,] 0 1 0 0 1 0

## [12,] 1 0 0 0 0 1
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2.2 Full set of interactions

This model has further interaction parameters γij and a design matrix X with 2 ∗ v + v2 columns:

E(Y ) = µ+X
( τ

λ
γ

)
+ Z

(
π
s

)
H <- Crossover:::linkMatrix(model="Full set of interactions", v)

H

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]

## [1,] 1 0 0 0 0 0 0 0 0 0 0 0 0

## [2,] 0 1 0 0 0 0 0 0 0 0 0 0 0

## [3,] 0 0 1 0 0 0 0 0 0 0 0 0 0

## [4,] 1 0 0 1 0 0 1 0 0 0 0 0 0

## [5,] 0 1 0 1 0 0 0 0 0 1 0 0 0

## [6,] 0 0 1 1 0 0 0 0 0 0 0 0 1

## [7,] 1 0 0 0 1 0 0 1 0 0 0 0 0

## [8,] 0 1 0 0 1 0 0 0 0 0 1 0 0

## [9,] 0 0 1 0 1 0 0 0 0 0 0 0 0

## [10,] 1 0 0 0 0 1 0 0 1 0 0 0 0

## [11,] 0 1 0 0 0 1 0 0 0 0 0 1 0

## [12,] 0 0 1 0 0 1 0 0 0 0 0 0 0

## [,14] [,15]

## [1,] 0 0

## [2,] 0 0

## [3,] 0 0

## [4,] 0 0

## [5,] 0 0

## [6,] 0 0

## [7,] 0 0

## [8,] 0 0

## [9,] 1 0

## [10,] 0 0

## [11,] 0 0

## [12,] 0 1

# Design Matrix of Cross-Over Design:

X <- Xr %*% H

X

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]

## [1,] 0 0 1 0 0 0 0 0 0 0 0 0 0

## [2,] 0 1 0 0 0 0 0 0 0 0 0 0 0

## [3,] 1 0 0 0 0 0 0 0 0 0 0 0 0

## [4,] 0 1 0 0 0 1 0 0 0 0 0 1 0

## [5,] 1 0 0 0 1 0 0 1 0 0 0 0 0

## [6,] 0 0 1 1 0 0 0 0 0 0 0 0 1

## [7,] 1 0 0 0 1 0 0 1 0 0 0 0 0

## [8,] 0 1 0 1 0 0 0 0 0 1 0 0 0

## [9,] 0 0 1 0 0 1 0 0 0 0 0 0 0

## [10,] 0 0 1 1 0 0 0 0 0 0 0 0 1

## [11,] 0 1 0 0 1 0 0 0 0 0 1 0 0

## [12,] 1 0 0 0 0 1 0 0 1 0 0 0 0

## [,14] [,15]

## [1,] 0 0

## [2,] 0 0

## [3,] 0 0

## [4,] 0 0

## [5,] 0 0

## [6,] 0 0

## [7,] 0 0

## [8,] 0 0

## [9,] 0 1

## [10,] 0 0

## [11,] 0 0

## [12,] 0 0
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2.3 Self-adjacency model

In the self-adjacency model λi is replaced by φi in case of carry-over into itself. The case φ = 0 represents

the no carry-over into self model.

E(Y ) = µ+X
( τ
λ
φ

)
+ Z

(
π
s

)
H <- Crossover:::linkMatrix(model="Self-adjacency model", v)

H

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

## [1,] 1 0 0 0 0 0 0 0 0

## [2,] 0 1 0 0 0 0 0 0 0

## [3,] 0 0 1 0 0 0 0 0 0

## [4,] 1 0 0 0 0 0 1 0 0

## [5,] 0 1 0 1 0 0 0 0 0

## [6,] 0 0 1 1 0 0 0 0 0

## [7,] 1 0 0 0 1 0 0 0 0

## [8,] 0 1 0 0 0 0 0 1 0

## [9,] 0 0 1 0 1 0 0 0 0

## [10,] 1 0 0 0 0 1 0 0 0

## [11,] 0 1 0 0 0 1 0 0 0

## [12,] 0 0 1 0 0 0 0 0 1

# Design Matrix of Cross-Over Design:

X <- Xr %*% H

X

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

## [1,] 0 0 1 0 0 0 0 0 0

## [2,] 0 1 0 0 0 0 0 0 0

## [3,] 1 0 0 0 0 0 0 0 0

## [4,] 0 1 0 0 0 1 0 0 0

## [5,] 1 0 0 0 1 0 0 0 0

## [6,] 0 0 1 1 0 0 0 0 0

## [7,] 1 0 0 0 1 0 0 0 0

## [8,] 0 1 0 1 0 0 0 0 0

## [9,] 0 0 1 0 0 0 0 0 1

## [10,] 0 0 1 1 0 0 0 0 0

## [11,] 0 1 0 0 0 0 0 1 0

## [12,] 1 0 0 0 0 1 0 0 0

2.4 Placebo model

In the placebo model there are no carry-over e�ects for the placebo treatment(s).

E(Y ) = µ+X
(
τ
λ

)
+ Z

(
π
s

)
# Link matrix:

H <- Crossover:::linkMatrix(model="Placebo model", v, placebos=1)

H

## [,1] [,2] [,3] [,4] [,5] [,6]

## [1,] 1 0 0 0 0 0

## [2,] 0 1 0 0 0 0

## [3,] 0 0 1 0 0 0

## [4,] 1 0 0 0 0 0

## [5,] 0 1 0 0 0 0

## [6,] 0 0 1 0 0 0

## [7,] 1 0 0 0 1 0

## [8,] 0 1 0 0 1 0
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## [9,] 0 0 1 0 1 0

## [10,] 1 0 0 0 0 1

## [11,] 0 1 0 0 0 1

## [12,] 0 0 1 0 0 1

# Design Matrix of Cross-Over Design:

X <- Xr %*% H

X

## [,1] [,2] [,3] [,4] [,5] [,6]

## [1,] 0 0 1 0 0 0

## [2,] 0 1 0 0 0 0

## [3,] 1 0 0 0 0 0

## [4,] 0 1 0 0 0 1

## [5,] 1 0 0 0 1 0

## [6,] 0 0 1 0 0 0

## [7,] 1 0 0 0 1 0

## [8,] 0 1 0 0 0 0

## [9,] 0 0 1 0 0 1

## [10,] 0 0 1 0 0 0

## [11,] 0 1 0 0 1 0

## [12,] 1 0 0 0 0 1

2.5 No carry-over into self model

This model di�ers from the standard additive model in the assumption that in the no carry-over into self

model no carry-over e�ect occurs if current and previous treatment are the same.

E(Y ) = µ+X
(
τ
λ

)
+ Z

(
π
s

)
H <- Crossover:::linkMatrix(model="No carry-over into self model", v)

H

## [,1] [,2] [,3] [,4] [,5] [,6]

## [1,] 1 0 0 0 0 0

## [2,] 0 1 0 0 0 0

## [3,] 0 0 1 0 0 0

## [4,] 1 0 0 0 0 0

## [5,] 0 1 0 1 0 0

## [6,] 0 0 1 1 0 0

## [7,] 1 0 0 0 1 0

## [8,] 0 1 0 0 0 0

## [9,] 0 0 1 0 1 0

## [10,] 1 0 0 0 0 1

## [11,] 0 1 0 0 0 1

## [12,] 0 0 1 0 0 0

# Design Matrix of Cross-Over Design:

X <- Xr %*% H

X

## [,1] [,2] [,3] [,4] [,5] [,6]

## [1,] 0 0 1 0 0 0

## [2,] 0 1 0 0 0 0

## [3,] 1 0 0 0 0 0

## [4,] 0 1 0 0 0 1

## [5,] 1 0 0 0 1 0

## [6,] 0 0 1 1 0 0

## [7,] 1 0 0 0 1 0

## [8,] 0 1 0 1 0 0

## [9,] 0 0 1 0 0 0

## [10,] 0 0 1 1 0 0

## [11,] 0 1 0 0 0 0

## [12,] 1 0 0 0 0 1
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2.6 Treatment decay model

In contrast to the no carry-over into self model in the treatment decay model we assume there are only

(negative) carry-over e�ects if the current and previous treatment are the same.

E(Y ) = µ+X
(
τ
λ

)
+ Z

(
π
s

)
H <- Crossover:::linkMatrix(model="Treatment decay model", v)

H

## [,1] [,2] [,3] [,4] [,5] [,6]

## [1,] 1 0 0 0 0 0

## [2,] 0 1 0 0 0 0

## [3,] 0 0 1 0 0 0

## [4,] 1 0 0 -1 0 0

## [5,] 0 1 0 0 0 0

## [6,] 0 0 1 0 0 0

## [7,] 1 0 0 0 0 0

## [8,] 0 1 0 0 -1 0

## [9,] 0 0 1 0 0 0

## [10,] 1 0 0 0 0 0

## [11,] 0 1 0 0 0 0

## [12,] 0 0 1 0 0 -1

# Design Matrix of Cross-Over Design:

X <- Xr %*% H

X

## [,1] [,2] [,3] [,4] [,5] [,6]

## [1,] 0 0 1 0 0 0

## [2,] 0 1 0 0 0 0

## [3,] 1 0 0 0 0 0

## [4,] 0 1 0 0 0 0

## [5,] 1 0 0 0 0 0

## [6,] 0 0 1 0 0 0

## [7,] 1 0 0 0 0 0

## [8,] 0 1 0 0 0 0

## [9,] 0 0 1 0 0 -1

## [10,] 0 0 1 0 0 0

## [11,] 0 1 0 0 -1 0

## [12,] 1 0 0 0 0 0

2.7 Proportionality model

For the proportionality model we have no separate carry-over e�ects, but assume for period i > 1 an additive

proportion p of the e�ect τd(i−1,j) from the previous treatment d(i − 1, j). This model is non-linear in p,

therefore we assume p is known.

E(Y ) = µ+Xpτ + Z
(
π
s

)
H <- Crossover:::linkMatrix(model="Proportionality model", v)

H

## [,1] [,2] [,3]

## [1,] 1.0 0.0 0.0

## [2,] 0.0 1.0 0.0

## [3,] 0.0 0.0 1.0

## [4,] 1.5 0.0 0.0

## [5,] 0.5 1.0 0.0

## [6,] 0.5 0.0 1.0
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## [7,] 1.0 0.5 0.0

## [8,] 0.0 1.5 0.0

## [9,] 0.0 0.5 1.0

## [10,] 1.0 0.0 0.5

## [11,] 0.0 1.0 0.5

## [12,] 0.0 0.0 1.5

# Design Matrix of Cross-Over Design:

X <- Xr %*% H

X

## [,1] [,2] [,3]

## [1,] 0.0 0.0 1.0

## [2,] 0.0 1.0 0.0

## [3,] 1.0 0.0 0.0

## [4,] 0.0 1.0 0.5

## [5,] 1.0 0.5 0.0

## [6,] 0.5 0.0 1.0

## [7,] 1.0 0.5 0.0

## [8,] 0.5 1.0 0.0

## [9,] 0.0 0.0 1.5

## [10,] 0.5 0.0 1.0

## [11,] 0.0 1.5 0.0

## [12,] 1.0 0.0 0.5

2.8 Second-order carry-over e�ects

In the model with second-order carry-over e�ects we do have another vector λ2 of carry-over e�ects:

E(Y ) = µ+X
( τ

λ1

λ2

)
+ Z

(
π
s

)
Therefore the link matrix has 3 ∗ v columns.

# Link matrix:

H <- Crossover:::linkMatrix(model="Second-order carry-over effects", v)

H

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

## [1,] 1 0 0 0 0 0 0 0 0

## [2,] 0 1 0 0 0 0 0 0 0

## [3,] 0 0 1 0 0 0 0 0 0

## [4,] 1 0 0 1 0 0 0 0 0

## [5,] 0 1 0 1 0 0 0 0 0

## [6,] 0 0 1 1 0 0 0 0 0

## [7,] 1 0 0 0 1 0 0 0 0

## [8,] 0 1 0 0 1 0 0 0 0

## [9,] 0 0 1 0 1 0 0 0 0

## [10,] 1 0 0 0 0 1 0 0 0

## [11,] 0 1 0 0 0 1 0 0 0

## [12,] 0 0 1 0 0 1 0 0 0

## [13,] 1 0 0 1 0 0 1 0 0

## [14,] 0 1 0 1 0 0 1 0 0

## [15,] 0 0 1 1 0 0 1 0 0

## [16,] 1 0 0 0 1 0 1 0 0

## [17,] 0 1 0 0 1 0 1 0 0

## [18,] 0 0 1 0 1 0 1 0 0

## [19,] 1 0 0 0 0 1 1 0 0

## [20,] 0 1 0 0 0 1 1 0 0

## [21,] 0 0 1 0 0 1 1 0 0

## [22,] 1 0 0 1 0 0 0 1 0

## [23,] 0 1 0 1 0 0 0 1 0

## [24,] 0 0 1 1 0 0 0 1 0

## [25,] 1 0 0 0 1 0 0 1 0

## [26,] 0 1 0 0 1 0 0 1 0
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## [27,] 0 0 1 0 1 0 0 1 0

## [28,] 1 0 0 0 0 1 0 1 0

## [29,] 0 1 0 0 0 1 0 1 0

## [30,] 0 0 1 0 0 1 0 1 0

## [31,] 1 0 0 1 0 0 0 0 1

## [32,] 0 1 0 1 0 0 0 0 1

## [33,] 0 0 1 1 0 0 0 0 1

## [34,] 1 0 0 0 1 0 0 0 1

## [35,] 0 1 0 0 1 0 0 0 1

## [36,] 0 0 1 0 1 0 0 0 1

## [37,] 1 0 0 0 0 1 0 0 1

## [38,] 0 1 0 0 0 1 0 0 1

## [39,] 0 0 1 0 0 1 0 0 1

# Row-Column-Design: (cf. John et al. 2004, Table II and page 2649f.)

rcDesign <- Crossover:::rcd(design, v=v, model=8)

rcDesign

## [,1] [,2] [,3]

## [1,] 3 2 1

## [2,] 11 7 6

## [3,] 34 23 21

## [4,] 24 17 37

# Design Matrix of Row-Column Design:

Xr <- Crossover:::rcdMatrix(rcDesign, v, model=8)

Xr

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]

## [1,] 0 0 1 0 0 0 0 0 0 0 0 0 0

## [2,] 0 1 0 0 0 0 0 0 0 0 0 0 0

## [3,] 1 0 0 0 0 0 0 0 0 0 0 0 0

## [4,] 0 0 0 0 0 0 0 0 0 0 1 0 0

## [5,] 0 0 0 0 0 0 1 0 0 0 0 0 0

## [6,] 0 0 0 0 0 1 0 0 0 0 0 0 0

## [7,] 0 0 0 0 0 0 0 0 0 0 0 0 0

## [8,] 0 0 0 0 0 0 0 0 0 0 0 0 0

## [9,] 0 0 0 0 0 0 0 0 0 0 0 0 0

## [10,] 0 0 0 0 0 0 0 0 0 0 0 0 0

## [11,] 0 0 0 0 0 0 0 0 0 0 0 0 0

## [12,] 0 0 0 0 0 0 0 0 0 0 0 0 0

## [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]

## [1,] 0 0 0 0 0 0 0 0 0 0 0 0

## [2,] 0 0 0 0 0 0 0 0 0 0 0 0

## [3,] 0 0 0 0 0 0 0 0 0 0 0 0

## [4,] 0 0 0 0 0 0 0 0 0 0 0 0

## [5,] 0 0 0 0 0 0 0 0 0 0 0 0

## [6,] 0 0 0 0 0 0 0 0 0 0 0 0

## [7,] 0 0 0 0 0 0 0 0 0 0 0 0

## [8,] 0 0 0 0 0 0 0 0 0 1 0 0

## [9,] 0 0 0 0 0 0 0 1 0 0 0 0

## [10,] 0 0 0 0 0 0 0 0 0 0 1 0

## [11,] 0 0 0 1 0 0 0 0 0 0 0 0

## [12,] 0 0 0 0 0 0 0 0 0 0 0 0

## [,26] [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37]

## [1,] 0 0 0 0 0 0 0 0 0 0 0 0

## [2,] 0 0 0 0 0 0 0 0 0 0 0 0

## [3,] 0 0 0 0 0 0 0 0 0 0 0 0

## [4,] 0 0 0 0 0 0 0 0 0 0 0 0

## [5,] 0 0 0 0 0 0 0 0 0 0 0 0

## [6,] 0 0 0 0 0 0 0 0 0 0 0 0

## [7,] 0 0 0 0 0 0 0 0 1 0 0 0

## [8,] 0 0 0 0 0 0 0 0 0 0 0 0

## [9,] 0 0 0 0 0 0 0 0 0 0 0 0

## [10,] 0 0 0 0 0 0 0 0 0 0 0 0

## [11,] 0 0 0 0 0 0 0 0 0 0 0 0

## [12,] 0 0 0 0 0 0 0 0 0 0 0 1

## [,38] [,39]

## [1,] 0 0

## [2,] 0 0
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## [3,] 0 0

## [4,] 0 0

## [5,] 0 0

## [6,] 0 0

## [7,] 0 0

## [8,] 0 0

## [9,] 0 0

## [10,] 0 0

## [11,] 0 0

## [12,] 0 0

# Design Matrix of Cross-Over Design:

X <- Xr %*% H

X

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

## [1,] 0 0 1 0 0 0 0 0 0

## [2,] 0 1 0 0 0 0 0 0 0

## [3,] 1 0 0 0 0 0 0 0 0

## [4,] 0 1 0 0 0 1 0 0 0

## [5,] 1 0 0 0 1 0 0 0 0

## [6,] 0 0 1 1 0 0 0 0 0

## [7,] 1 0 0 0 1 0 0 0 1

## [8,] 0 1 0 1 0 0 0 1 0

## [9,] 0 0 1 0 0 1 1 0 0

## [10,] 0 0 1 1 0 0 0 1 0

## [11,] 0 1 0 0 1 0 1 0 0

## [12,] 1 0 0 0 0 1 0 0 1
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Chapter 3

Search strategy

Monte-Carlo search for �rst candidates, followed by parallel hill climbing search, extended by long jumps.

In the following graphic we see 100.000 design evaluations (that take less than 7 seconds on my computer),

consisting out of 20 hill climbing search runs from 20 di�erent designs as starting point which were selected

by a Monte-Carlo search. We can see that 10 out of the 20 search runs were not able to achieve the e�cieny

the other 10 achieved. We can see, that there were most likely at least four local maxima the hill climbing

search found and got stuck:

set.seed(42)

x <- searchCrossOverDesign(s=9, p=5, v=4, model=4)

plot(x)
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plot(x, type=2)
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De�nition 3.0.1 (E�ciency). If the di�erence of two treatments, replicated r1 and r2 times, is estimated

in an ideal design with residual variance σ2, the variance of the estimated di�erence yA − yB is

VI =

(
1

r1
+

1

r2

)
σ2.

In a cross-over design the variance of a parameter estimates for A and B are given by the corresponding

elements σ2xA and σ2xB of

σ2(XTX)−1

with X the crossover design matrix. The variance of the di�erence is σ2(xA + xB − 2 ∗ xAB) where xAB is

the element of XTX specifying the covariance of the two treatment parameter estimates. The e�ciency is

E :=
VI

VC
=

r1 + r2
r1r2(xA + xB − 2 ∗ xAB)

∈ [0, 1].

If we have a model with n parameters and a contrast matrix C ∈ Rn×n, the sum of the variances of the
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linear combinations given by C is

trace(CHTArHCT ).

Example for two treatments

We compare our results with results from the algorithm of John et al. [2004] that are presented in [Jones

and Kenward, 2003, table 4.35-4.38, p. 202�] for s=6 sequences, p=4 periods and v=2 treatments under the

constraint that each treatment should occur 12 times.

The following shows all designs that were found. For some models the algorithm always returned only one

design, but for some 2 or even 3 equally good designs were found.

Here are all the designs as found by the above code. Actually there are only 11 di�erent designs, since the

following designs were already found for other models: 7, 8, 9, 12, 13.

Design 1 :

1 1 1 2 2 2

1 2 2 1 1 2

2 2 2 1 1 1

2 1 1 2 2 1

Design 2 :

1 1 1 2 2 2

1 1 2 1 2 2

2 2 2 1 1 1

2 2 1 2 1 1

Design 3 :

1 1 1 2 2 2

1 1 2 1 2 2

2 2 1 2 1 1

2 2 2 1 1 1

Design 4 :

1 1 1 2 2 2

2 2 2 1 1 1

1 1 2 1 2 2

1 2 1 2 1 2

Design 5 :

1 1 1 2 2 2

1 2 2 1 1 2

2 1 2 1 2 1

1 2 1 2 1 2

Design 6 :

1 1 1 2 2 2

1 1 1 2 2 2

2 2 2 1 1 1

2 2 2 1 1 1

Design 7 :

1 1 1 2 2 2

1 1 2 1 2 2

2 2 2 1 1 1

2 2 1 2 1 1

Design 8 :

1 1 1 2 2 2

1 2 2 1 1 2

2 2 2 1 1 1

2 1 1 2 2 1

Design 9 :

1 1 1 2 2 2

1 1 2 1 2 2

2 2 1 2 1 1

2 2 2 1 1 1

Design 10 :

1 1 1 2 2 2

1 1 2 1 2 2

2 2 2 1 1 1

2 2 2 1 1 1

Design 11 :

1 1 1 2 2 2

2 2 2 1 1 1

1 1 1 2 2 2

2 2 2 1 1 1

Design 12 :

1 1 1 2 2 2

2 2 2 1 1 1

1 1 2 1 2 2

1 2 1 2 1 2

Design 13 :

1 1 1 2 2 2

1 2 2 1 1 2

2 1 2 1 2 1

1 2 1 2 1 2

Design 14 :

1 1 1 2 2 2

1 2 2 1 1 2

2 1 2 1 2 1

2 2 2 1 1 1

Design 15 :

1 1 1 2 2 2

2 2 2 1 1 1

1 1 1 2 2 2

1 2 2 1 1 2

Design 16 :

1 1 1 2 2 2

1 2 2 1 1 2

2 1 1 2 2 1

1 2 2 1 1 2
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Design Additive Self-adjacency Proportional Placebo No into self Decay Interaction 2nd-order carry-over

1 0.042 0.231 0.038 0.042 0.074 0.067 0.231 0.111

2 0.042 0.231 0.033 0.042 0.067 0.074 0.231 0.168

3 0.042 0.236 0.038 0.042 0.082 0.062 0.236 0.050

4 0.068 0.223 0.066 0.068 0.134 0.053 0.223 0.090

5 0.068 0.223 0.066 0.068 0.134 0.053 0.223 0.088

6 0.046 0.250 0.029 0.046 0.062 0.083 0.250 Not estimable

7 0.042 0.231 0.033 0.042 0.067 0.074 0.231 0.168

8 0.042 0.231 0.038 0.042 0.074 0.067 0.231 0.111

9 0.042 0.236 0.038 0.042 0.082 0.062 0.236 0.050

10 0.049 0.262 0.032 0.049 0.061 0.083 0.262 0.074

11 0.229 0.229 0.099 0.229 0.229 0.042 0.229 0.250

12 0.068 0.223 0.066 0.068 0.134 0.053 0.223 0.090

13 0.068 0.223 0.066 0.068 0.134 0.053 0.223 0.088

14 0.047 0.250 0.043 0.047 0.080 0.063 0.250 0.047

15 0.120 0.234 0.090 0.120 0.203 0.047 0.234 0.173

16 0.120 0.234 0.090 0.120 0.203 0.047 0.234 0.135

Note that for the full interaction model and the self-adjacency model we get the same results, because they

are essentially the same models with

λSA
1 = λFI

1 + γFI
12 ,

λSA
2 = λFI

2 + γFI
21 ,

φSA
1 = λFI

1 + γFI
11 , and

φSA
2 = λFI

2 + γFI
22 .

For the treatment decay model the algorithm provided us with a design where the treatment decay e�ect

never occurs. Let's give a little bit of weight to this treatment decay e�ect:

As we can see we �nd the design from the book, when we give weights 100:1 for treatment / carry-over

e�ects in the treatment decay model. (As seen in the �rst result section a zero weight for the carry-over

e�ects results in a model with alternating treatments, so that there never occurs a treatment decay e�ect.)

Summary

3.1 Random Subject E�ects Model

See Jones and Kenward [2003], 5.3, page 213�. The model stays the same

Yijk = µ+ πj + τd[i,j] + λd[i,j−1] + sik + eijk,

but we also assume that the subject e�ects follow a normal distribution: sik ∼ N (0, σ2
s).

In matrix notation we have

Y = Xβ + Zγ + ε

with X and Z the �xed and random e�ects design matrices1, ε ∼ N (0,Σ) and γ ∼ N (0, D). Then2

Var(Y ) = ZDZT +Σ.

For known V := Var(Y ) = ZDZT +Σ the MLE and BLUE is given by

β̂ = (XtV −1X)−1XtV −1Y.

1Note that X and Z are di�erent from the ...
2See for example [Lee et al., 2006, chapter 5].
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Appendix A

Appendix

The appendices are all work in progress.

A.1 Appendix - Variance Balance / Partial Balance

De�nition A.1.1 (Variance Balance). A design is variance balanced if Var[τ̂i − τ̂j ] is constant for all pairs

of the n treatment e�ects τi, τj , 1 ≤ i, j ≤ n, i ̸= j.

De�nition A.1.2 (Partially balanced incomplete block design with two associate classes). A partially

balanced incomplete block design with two associate classes (or short PBIBD(2)) is a design that ful�ls the

following (see Clatworthy et al. [1973]):

� There are b blocks of k units each.

� There are v treatments and v > k, so that not all treatments can occur in a block. Each treatment

occurs once in each block and is assigned r times.

� Let X be the set of treatments. Then there is a partition of X × X into three relations, with one

relation the identity and the other two relations R1 and R2 ful�lling the following properties:

� A treatment y is called an ith associates, i ∈ {1, 2}, if and only if (x, y) ∈ Ri. Each treatment x

has ni ith associates.

� For all i, j, k ∈ {1, 2} there is a constant numbers pijk, so that for all (x, y) ∈ Ri the number of

treatments z with (x, z) ∈ Rj and (z, y) ∈ Rk is pijk.

� The association scheme is commutative, i.e. pijk = pikj .

� There are two numbers λ1, λ2 so that (x, y) ∈ Ri, i ∈ {1, 2}, implies that treatment x and y occur

together in exactly λi blocks.

A.2 Appendix - Matrix Algebra / Linear Models

A.2.1 Generalized inverse

De�nition A.2.1 (Moore-Penrose pseudoinverse). For A ∈ Rm×n a matrix A+ is called Moore-Penrose

pseudoinverse i�

1. AA+A = A,
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2. A+AA+ = A+,

3. (AA+)T = AA+ and

4. (A+A)T = A+A.

The Moore-Penrose pseudoinverse exists for every real matrix and is unique.

Theorem A.2.2 (Block matrix pseudoinverse). For a block matrix

X := [A B ]

we have

(XTX)+ =
([

AT

BT

]
[A B ]

)+

=
([

ATA ATB
BTA BTB

])+

=
[

(ATP⊥
B A)+ −(ATP⊥

B A)+ATB(BTB)+

−(BTP⊥
A B)+BTA(ATA)+ (BTP⊥

A B)+

]
with the orthogonal projection matrices P⊥

B = I −B(BTB)+BT , P⊥
A = I −A(ATA)+AT .

For a proof see for example http: // en. wikipedia. org/ wiki/ Block_ matrix_ pseudoinverse .

Theorem A.2.3. Let Ax = b a linear equation system in n variables and A+ the Moore-Penrose pseudoin-

verse of A. Solutions exist if and only if AA+b = b and are given in this case by

{A+b+ (I −A+A)y | y ∈ Rn}.

Proof. If AA+b = b we have for every A+b+ (I −A+A)y with y ∈ Rn:

A(A+b+ (I −A+A)y) = b+Ay −AA+Ay = b+Ay −Ay = b

...

Theorem A.2.4. Let y = Xβ + ε be a linear model with ε ∼ N (0, σ2I). Then tTβ is estimable i�

tT (XTX)+XTX = tT .

A.2.2 Fisher information

For a linear regression model with design matrix X and variance σ2 the information matrix is given by

1

σ2
XTX.

A.2.3 Linear Mixed Models

In the linear mixed model the response Y is given by

Y = Xβ + Zγ + ε

with X and Z the �xed and random e�ects design matrices, ε ∼ N (0,Σ) and γ ∼ N (0, D). Then1

Var(Y ) = ZDZT +Σ.

For known V := Var(Y ) = ZDZT +Σ the MLE and BLUE is given by

β̂ = (XtV −1X)−1XtV −1Y.
1See for example [Lee et al., 2006, chapter 5].
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A.3 Appendix - Internals

A.3.1 Naming conventions

Most functions exist as R and C/C++ variant, with the following naming conventions:

We have functions in R and on the C/C++ level with the same name (in our folowing example rcd) that

should be used in R and C/C++ respectively. The R function rcd calls the C function rcd2R which handles

the conversion from and to the R structures the SEXP are pointing to. Apart from that we often provide

an R function with a su�x _R, i.e. in our example rcd_R, which is a pure R function and reimplements the

same functionality for testing purposes.

SEXP createRCDesign2R (SEXP designS , SEXP vS , SEXP modelS ) { . . . }

arma : : mat createRCDesign (arma : : mat des ign , int v , int model ) { . . . }

createRCDesign <= function (X, v , model) {

return ( . Call ( "createRCDesign2R" , X, v , model , PACKAGE = "Crossover " ) )

}

createRCDesign_R<= function (X, v , model) {

# Same f u n c t i o n a l i t y wr i t t en in R

}

A variable v means always the original number of treatments. A variable vv stands for the maximum number

of di�erent settings2, either v + v2 or for the second-order carry-over e�ects v + v2 + v3.

2For the no carry-over into self or placebo model there are actually less settings.
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Table of Symbols

Sets

R set of real numbers

N0 set of natural numbers (including 0)

Pot(X) power set of set X, i.e. the set of all subsets of X

Variables

v number of treatments

p number of periods

s number of sequences

µ intercept

πj period e�ect for period j

τd[i,j] direct treatment e�ect for treatment d[i, j] in period j of sequence i

λd[i,j−1] �rst-order carry-over e�ect (0 for j − 1=0)

sik kth subject e�ect on sequence i

eijk random error with zero mean and variance σ2

Functions

X′ transpose of matrix X

X+ Moore-Penrose pseudoinverse of X

⟨·, ·⟩ standard direct product ⟨x, y⟩ =
∑n

j=1 xj · yj for x, y ∈ Rn

idX identity on X, i.e. idX : X → X, x 7→ x

Other Symbols

N (µ, σ2) Normal distribution with mean µ and variance σ2.

N (µ,Σ) Multivariate normal distribution with mean µ and covariance matrix Σ.
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