
Package ‘EAinference’
October 12, 2022

Type Package

Title Estimator Augmentation and Simulation-Based Inference

Version 0.2.3

Maintainer Seunghyun Min <seunghyun@ucla.edu>

Description Estimator augmentation methods for statistical inference on high-dimensional data,
as described in Zhou, Q. (2014) <arXiv:1401.4425v2>
and Zhou, Q. and Min, S. (2017) <doi:10.1214/17-EJS1309>.
It provides several simulation-based inference methods: (a) Gaussian and
wild multiplier bootstrap for lasso, group lasso, scaled lasso, scaled group
lasso and their de-biased estimators, (b) importance sampler for approximating
p-values in these methods, (c) Markov chain Monte Carlo lasso sampler with
applications in post-selection inference.

License GPL (>= 2)

Encoding UTF-8

LazyData true

Depends R (>= 3.2.3)

Imports stats, graphics, msm, mvtnorm, parallel, limSolve, MASS, hdi,
Rcpp

LinkingTo Rcpp, RcppArmadillo

RoxygenNote 6.0.1

Suggests knitr, rmarkdown, testthat

VignetteBuilder knitr

NeedsCompilation yes

Author Seunghyun Min [aut, cre],
Qing Zhou [aut]

Repository CRAN

Date/Publication 2017-12-02 00:01:31 UTC

1

https://arxiv.org/abs/1401.4425v2
https://doi.org/10.1214/17-EJS1309

2 cv.lasso

R topics documented:
cv.lasso . 2
hdIS . 3
lassoFit . 5
MHLS . 7
PB.CI . 9
PBsampler . 10
plot.MHLS . 12
postInference.MHLS . 13
print.MHLS . 15
summary.MHLS . 16

Index 17

cv.lasso Compute K-fold cross-validated mean squared error for lasso

Description

Computes K-fold cross-validated mean squared error to propose a lambda value for lasso, group
lasso, scaled lasso or scaled group lasso.

Usage

cv.lasso(X, Y, group = 1:ncol(X), weights = rep(1, max(group)), type,
K = 10L, minlbd, maxlbd, num.lbdseq = 100L, parallel = FALSE,
ncores = 2L, plot.it = FALSE, verbose = FALSE)

Arguments

X predictor matrix.

Y response vector.

group p x 1 vector of consecutive integers describing the group structure. The number
of groups should be the same as max(group). Default is group = 1:p , where p
is number of covariates. See examples for a guideline.

weights weight vector with length equal to the number of groups. Default is rep(1,
max(group)).

type type of penalty. Must be specified to be one of the following: "lasso", "grlasso",
"slasso" or "sgrlasso", which correspond to lasso, group lasso, scaled lasso
or scaled group lasso.

K integer. Number of folds

minlbd numeric. Minimum value of the lambda sequence.

maxlbd numeric. Maximum value of the lambda sequence.

num.lbdseq integer. Length of the lambda sequence.

hdIS 3

parallel logical. If parallel = TRUE, uses parallelization. Default is parallel = FALSE.

ncores integer. The number of cores to use for parallelization.

plot.it logical. If true, plots the squared error curve.

verbose logical.

Value

lbd.min a value of lambda which gives a minimum squared error.

lbd.1se a largest lambda within 1 standard error from lbd.min.

lbd.seq lambda sequence.

cv mean squared error at each lambda value.

cvsd the standard deviation of cv.

Examples

set.seed(123)
n <- 30
p <- 50
group <- rep(1:(p/10),each=10)
weights <- rep(1, max(group))
X <- matrix(rnorm(n*p),n)
truebeta <- c(rep(1,5),rep(0,p-5))
Y <- X%*%truebeta + rnorm(n)

To accelerate the computational time, we set K=2 and num.lbdseq=2.
However, in practice, Allowing K=10 and num.lbdseq > 100 is recommended.
cv.lasso(X = X, Y = Y, group = group, weights = weights, K = 2,
type = "grlasso", num.lbdseq = 2, plot.it = FALSE)
cv.lasso(X = X, Y = Y, group = group, weights = weights, K = 2,
type = "sgrlasso", num.lbdseq = 2, plot.it = FALSE)

hdIS Compute importance weights for lasso, group lasso, scaled lasso or
scaled group lasso estimator under high-dimensional setting

Description

hdIS computes importance weights using samples drawn by PBsampler. See the examples below
for details.

Usage

hdIS(PBsample, PETarget, sig2Target, lbdTarget, TsA.method = "default",
log = TRUE, parallel = FALSE, ncores = 2L)

4 hdIS

Arguments

PBsample bootstrap samples of class PB from PBsampler.
PETarget, sig2Target, lbdTarget

parameters of target distribution. (point estimate of beta or E(y), estimated
variance of error and lambda)

TsA.method method to construct T(eta(s),A) matrix. See Zhou and Min(2017) for details.

log logical. If log = TRUE, importance weight is computed in log scale.

parallel logical. If parallel = TRUE, uses parallelization. Default is parallel = FALSE.

ncores integer. The number of cores to use for parallelization.

Details

computes importance weights which is defined as (target density)/(proposal density), when the sam-
ples are drawn from the proposal distribution with the function PBsampler while the parameters of
the target distribution are (PETarget, sig2Target, lbdTarget).
Say that we are interested in computing the expectation of a function of a random variable, h(X).
Let f(x) be the true or target distribution and g(x) be the proposal distribution. We can approx-
imate the expectation, E[h(X)], by a weighted average of samples, x_i, drawn from the proposal
distribution as follows, E[h(X)] = mean(h(x_i) * f(x_i)/h(x_i)).

Value

importance weights of the proposed samples.

References

Zhou, Q. (2014), "Monte Carlo simulation for Lasso-type problems by estimator augmentation,"
Journal of the American Statistical Association, 109, 1495-1516.

Zhou, Q. and Min, S. (2017), "Estimator augmentation with applications in high-dimensional group
inference," Electronic Journal of Statistics, 11(2), 3039-3080.

Examples

set.seed(1234)
n <- 10
p <- 30
Niter <- 10
Group <- rep(1:(p/10), each = 10)
Weights <- rep(1, p/10)
x <- matrix(rnorm(n*p), n)

Target distribution parameter
PETarget <- rep(0, p)
sig2Target <- .5
lbdTarget <- .37

#
Using non-mixture distribution

lassoFit 5

Proposal distribution parameter
PEProp1 <- rep(1, p)
sig2Prop1 <- .5
lbdProp1 <- 1
PB <- PBsampler(X = x, PE_1 = PEProp1, sig2_1 = sig2Prop1,
lbd_1 = lbdProp1, weights = Weights, group = Group, niter = Niter,
type="grlasso", PEtype = "coeff")

hdIS(PB, PETarget = PETarget, sig2Target = sig2Target, lbdTarget = lbdTarget,
log = TRUE)

#
Using mixture distribution

Target distribution parameters (coeff, sig2, lbd) = (rep(0,p), .5, .37)
Proposal distribution parameters
(coeff, sig2, lbd) = (rep(0,p), .5, .37) & (rep(1,p), 1, .5)
#
#
PEProp1 <- rep(0,p); PEProp2 <- rep(1,p)
sig2Prop1 <- .5; sig2Prop2 <- 1
lbdProp1 <- .37; lbdProp2 <- .5

PBMixture <- PBsampler(X = x, PE_1 = PEProp1,
sig2_1 = sig2Prop1, lbd_1 = lbdProp1, PE_2 = PEProp2,
sig2_2 = sig2Prop2, lbd_2 = lbdProp2, weights = Weights, group = Group,
niter = Niter, type = "grlasso", PEtype = "coeff")

hdIS(PBMixture, PETarget = PETarget, sig2Target = sig2Target, lbdTarget = lbdTarget,
log = TRUE)

lassoFit Compute lasso estimator

Description

Computes lasso, group lasso, scaled lasso, or scaled group lasso solution. The outputs are coefficient-
estimate and subgradient. If type = "slasso" or type = "sgrlasso", the output will include esti-
mated standard deviation.

Usage

lassoFit(X, Y, type, lbd, group = 1:ncol(X), weights = rep(1, max(group)),
verbose = FALSE, ...)

Arguments

X predictor matrix.

Y response vector.

6 lassoFit

type type of penalty. Must be specified to be one of the following: "lasso", "grlasso",
"slasso" or "sgrlasso", which correspond to lasso, group lasso, scaled lasso
or scaled group lasso.

lbd penalty term of lasso. By letting this argument be "cv.1se" or "cv.min", users
can have the cross-validated lambda that gives either minimum squared error or
that is within 1 std error bound.

group p x 1 vector of consecutive integers describing the group structure. The number
of groups should be the same as max(group). Default is group = 1:p , where p
is number of covariates.

weights weight vector with length equal to the number of groups. Default is weights =
rep(1, max(group)).

verbose logical. Only available for type = "slasso" or type = "sgrlasso".

... auxiliary arguments for lbd = "cv.min", lbd = "cv.1se". See cv.lasso for
details.

Details

Computes lasso, group lasso, scaled lasso, or scaled group lasso solution. Users can specify the
value of lbd or choose to run cross-validation to get optimal lambda in term of mean squared error.
Coordinate decent algorithm is used to fit scaled lasso and scaled group lasso models.

Value

B0 coefficient estimator.

S0 subgradient.

sigmaHat estimated standard deviation.
lbd, weights, group

same as input arguments.

References

Mitra, R. and Zhang, C. H. (2016), "The benefit of group sparsity in group inference with de-biased
scaled group lasso," Electronic Journal of Statistics, 10, 1829-1873.

Yang, Y. and Zou, H. (2015), “A Fast Unified Algorithm for Computing Group-Lasso Penalized
Learning Problems,” Statistics and Computing, 25(6), 1129-1141.

Examples

set.seed(123)
n <- 50
p <- 10
X <- matrix(rnorm(n*p), n)
Y <- X %*% c(1, 1, rep(0, p-2)) + rnorm(n)
#
lasso
#
lassoFit(X = X, Y = Y, type = "lasso", lbd = .5)

MHLS 7

#
group lasso
#
lassoFit(X = X, Y = Y, type = "grlasso", lbd = .5, weights = rep(1,2),

group = rep(1:2, each=5))
#
scaled lasso
#
lassoFit(X = X, Y = Y, type = "slasso", lbd = .5)
#
scaled group lasso
#
lassoFit(X = X, Y = Y, type = "sgrlasso", lbd = .5, weights = rep(1,2),

group = rep(1:2, each=5))

MHLS Metropolis-Hastings lasso sampler under a fixed active set.

Description

Metropolis-Hastings sampler to simulate from the sampling distribution of lasso given a fixed active
set.

Usage

MHLS(X, PE, sig2, lbd, weights = rep(1, ncol(X)), B0, S0, A = which(B0 !=
0), tau = rep(1, ncol(X)), niter = 2000, burnin = 0, PEtype = "coeff",
updateS.itv = 1, verbose = FALSE, ...)

Arguments

X predictor matrix.

PE, sig2, lbd parameters of target distribution. (point estimate of beta or E(y) depends on
PEtype, variance estimate of error and lambda).

weights weight vector with length p(the number of covariates). Default is weights =
rep(1, p).

B0 numeric vector with length p. Initial value of lasso estimator.

S0 numeric vector with length p. Initial value of subgradients. If not given, this
will be generated in a default way.

A numeric vector. Active coefficient index. Every active coefficient index in B0
must be included. Default is A = which(B0 != 0).

tau numeric vector with length p. Standard deviation of proposal distribution for
each coefficient.

niter integer. The number of iterations. Default is niter = 2000

burnin integer. The length of burin-in periods. Default is burnin = 0

8 MHLS

PEtype Type of PE which is needed to characterize the target distribution. Users can
choose either "coeff" or "mu".

updateS.itv integer. Update subgradients every updateS.itv iterations. Set this value larger
than niter if one wants to skip updating subgradients.

verbose logical. If true, print out the progress step.

... complementary arguments.

• FlipSA : optional parameter. This has to be a subset of active set, A. If the
index is not listed in FlipSA, the sign of coefficients which correspond to
the listed index will remain fixed. The default is FlipSA=A

• SFindex : optional parameter. subgradient index for the free coordinate.
• randomSFindex : logical. If true, resample SFindex every updateSF.itv

iterations.
• updateSF.itv : integer. In every updateSF.itv iterations, randomize
SFindex.

Details

Given appropriate initial value, provides Metropolis-Hastings samples under the fixed active set.
From the initial values, B0 and S0, MHLS draws beta and subgrad samples. In every iteration, given
t-th iteration values, t-th beta and t-th subgrad, a new set of proposed beta and subgradient is
sampled. We either accept the proposed sample and use that as (t+1)-th iteration values or reuse
t-th iteration values.
See Zhou(2014) for more details.

Value

MHLS returns an object of class "MHLS". The functions summary.MHLS and plot.MHLS provide a
brief summary and generate plots.

beta lasso samples.

subgrad subgradient samples.

acceptHistory numbers of acceptance and proposal.
niter, burnin, PE, type

same as function arguments.

References

Zhou, Q. (2014), "Monte Carlo simulation for Lasso-type problems by estimator augmentation,"
Journal of the American Statistical Association, 109, 1495-1516.

Examples

#-------------------------
Low dim
#-------------------------
set.seed(123)
n <- 10
p <- 5

PB.CI 9

X <- matrix(rnorm(n * p), n)
Y <- X %*% rep(1, p) + rnorm(n)
sigma2 <- 1
lbd <- .37
weights <- rep(1, p)
LassoResult <- lassoFit(X = X, Y = Y, lbd = lbd, type = "lasso", weights = weights)
B0 <- LassoResult$B0
S0 <- LassoResult$S0
MHLS(X = X, PE = rep(0, p), sig2 = 1, lbd = 1,

weights = weights, B0 = B0, S0 = S0, niter = 50, burnin = 0,
PEtype = "coeff")

MHLS(X = X, PE = rep(0, n), sig2 = 1, lbd = 1,
weights = weights, B0 = B0, S0 = S0, niter = 50, burnin = 0,
PEtype = "mu")

#-------------------------
High dim
#-------------------------
set.seed(123)
n <- 5
p <- 10
X <- matrix(rnorm(n*p),n)
Y <- X %*% rep(1,p) + rnorm(n)
weights <- rep(1,p)
LassoResult <- lassoFit(X = X,Y = Y,lbd = lbd, type = "lasso", weights = weights)
B0 <- LassoResult$B0
S0 <- LassoResult$S0
MHLS(X = X, PE = rep(0, p), sig2 = 1, lbd = 1,

weights = weights, B0 = B0, S0 = S0, niter = 50, burnin = 0,
PEtype = "coeff")

MHLS(X = X, PE = rep(0, n), sig2 = 1, lbd = 1,
weights = weights, B0 = B0, S0 = S0, niter = 50, burnin = 0,
PEtype = "mu")

PB.CI Provide (1-alpha)% confidence interval of each coefficients

Description

Using samples drawn by PBsampler, computes (1-alpha)% confidence interval of each coefficient.

Usage

PB.CI(object, alpha = 0.05, method = "debias", parallel = FALSE,
ncores = 2L)

Arguments

object bootstrap samples of class PB from PBsampler

alpha significance level.

10 PBsampler

method bias-correction method. Either to be "none" or "debias".

parallel logical. If TRUE, use parallelization. Default is FALSE.

ncores integer. The number of cores to use for parallelization.

Details

If method = "none", PB.CI simply compute the two-sided (1-alpha) quantile of the sampled co-
efficients. If method = "debias", we use debiased estimator to compute confidence interval.

Value

(1-alpha)% confidence interval of each coefficients

References

Zhang, C., Zhang, S. (2014), "Confidence intervals for low dimensional parameters in high dimen-
sional linear models," Journal of the Royal Statistical Society: Series B, 76, 217–242.

Dezeure, R., Buhlmann, P., Meier, L. and Meinshausen, N. (2015), "High-Dimensional Inference:
Confidence Intervals, p-values and R-Software hdi," Statistical Science, 30(4), 533-558

Examples

set.seed(1234)
n <- 40
p <- 50
Niter <- 10
X <- matrix(rnorm(n*p), n)
object <- PBsampler(X = X, PE_1 = c(1,1,rep(0,p-2)), sig2_1 = 1, lbd_1 = .5,
niter = 100, type = "lasso")
parallel <- (.Platform$OS.type != "windows")
PB.CI(object = object, alpha = .05, method = "none")

PBsampler Parametric bootstrap sampler for lasso, group lasso, scaled lasso or
scaled group lasso estimator

Description

Draw gaussian bootstrap or wild multiplier bootstrap samples for lasso, group lasso, scaled lasso
and scaled group lasso estimators along with their subgradients.

Usage

PBsampler(X, PE_1, sig2_1, lbd_1, PE_2, sig2_2, lbd_2, weights = rep(1,
max(group)), group = 1:ncol(X), niter = 2000, type, PEtype = "coeff",
Btype = "gaussian", Y = NULL, parallel = FALSE, ncores = 2L,
verbose = FALSE)

PBsampler 11

Arguments

X predictor matrix.
PE_1, sig2_1, lbd_1

parameters of target distribution. (point estimate of beta or E(y) depends on
PEtype, variance estimate of error and lambda) sig2_1 is only needed when
Btype = "wild".

PE_2, sig2_2, lbd_2

additional parameters of target distribution. This is required only if mixture
distribution is used. sig2_2 is only needed when Btype = "wild".

weights weight vector with length equal to the number of groups. Default is rep(1,
max(group)).

group p x 1 vector of consecutive integers describing the group structure. The number
of groups should be the same as max(group). Default is group = 1:p , where p
is number of covariates. See examples for a guideline.

niter integer. The number of iterations. Default is niter = 2000

type type of penalty. Must be specified to be one of the following: "lasso", "grlasso",
"slasso" or "sgrlasso".

PEtype Type of PE which is needed to characterize the target distribution. Users can
choose either "coeff" or "mu".

Btype Type of bootstrap method. Users can choose either "gaussian" for gaussian
bootstrap or "wild" for wild multiplier bootstrap. Default is "gaussian".

Y response vector. This is only required when Btype = "wild".

parallel logical. If parallel = TRUE, uses parallelization. Default is parallel = FALSE.

ncores integer. The number of cores to use for parallelization.

verbose logical. This works only when parallel = FALSE.

Details

This function provides bootstrap samples for lasso, group lasso, scaled lasso or scaled group lasso
estimator and its subgradient.
The sampling distribution is characterized by (PE, sig2, lbd). If Btype = "gaussian", error_new
is generated from N(0, sig2). If Btype = "wild", we first generate error_new from N(0, 1) and
multiply with the residuals. Then, if PEtype = "coeff", y_new is generated by X * PE + error_new
and if PEtype = "mu", y_new is generated by PE + error_new.
By providing (PE_2, sig2_2, lbd_2), this function simulates from a mixture distribution. With
1/2 probability, samples will be drawn from the distribution with parameters (PE_1, sig2_1, lbd_1)
and with another 1/2 probability, they will be drawn from the distribution with parameters (PE_2,
sig2_2, lbd_2). Four distinct penalties can be used; "lasso" for lasso, "grlasso" for group lasso,
"slasso" for scaled lasso and "sgrlasso" for scaled group lasso. See Zhou(2014) and Zhou and
Min(2017) for details.

Value

beta coefficient estimate.

subgrad subgradient.

12 plot.MHLS

hsigma standard deviation estimator, for type="slasso" or type="sgrlasso" only.
X, PE, sig2, weights, group, type, PEtype, Btype, Y, mixture

model parameters.

References

Zhou, Q. (2014), "Monte Carlo simulation for Lasso-type problems by estimator augmentation,"
Journal of the American Statistical Association, 109, 1495-1516.

Zhou, Q. and Min, S. (2017), "Estimator augmentation with applications in high-dimensional group
inference," Electronic Journal of Statistics, 11(2), 3039-3080.

Examples

set.seed(1234)
n <- 10
p <- 30
Niter <- 10
Group <- rep(1:(p/10), each = 10)
Weights <- rep(1, p/10)
x <- matrix(rnorm(n*p), n)
#
Using non-mixture distribution
#
PBsampler(X = x, PE_1 = rep(0, p), sig2_1 = 1, lbd_1 = .5,
weights = Weights, group = Group, type = "grlasso", niter = Niter, parallel = FALSE)

PBsampler(X = x, PE_1 = rep(0, p), sig2_1 = 1, lbd_1 = .5,
weights = Weights, group = Group, type = "grlasso", niter = Niter, parallel = TRUE)

#
Using mixture distribution
#
PBsampler(X = x, PE_1 = rep(0, p), sig2_1 = 1, lbd_1 = .5,
PE_2 = rep(1, p), sig2_2 = 2, lbd_2 = .3, weights = Weights,
group = Group, type = "grlasso", niter = Niter, parallel = TRUE)

plot.MHLS Plot Metropolis-Hastings sampler outputs

Description

Provides six plots for each covariate index; histogram, path plot and acf plot for beta and for its
subgradient.

Usage

S3 method for class 'MHLS'
plot(x, index = 1:ncol(x$beta), skipS = FALSE, ...)

postInference.MHLS 13

Arguments

x an object of class "MHLS", which is an output of MHLS.

index an index of covariates to plot.

skipS logical. If skipS = TRUE, plots beta only.

... additional arguments passed to or from other methods.

Details

plot.MHLS provides summary plots of beta and subgradient. The first column provides histogram
of beta and subgradient, while the second and the third columns provide path and acf plots, respec-
tively. If skipS = TRUE, this function provides summary plots for beta only.

Examples

#' set.seed(123)
n <- 10
p <- 5
X <- matrix(rnorm(n * p), n)
Y <- X %*% rep(1, p) + rnorm(n)
sigma2 <- 1
lbd <- .37
weights <- rep(1, p)
LassoResult <- lassoFit(X = X, Y = Y, lbd = lbd, type="lasso", weights = weights)
B0 <- LassoResult$B0
S0 <- LassoResult$S0
plot(MHLS(X = X, PE = rep(0, p), sig2 = 1, lbd = 1, group = 1:p,

weights = weights, B0 = B0, S0 = S0, niter = 50, burnin = 0,
type = "coeff"))

postInference.MHLS Post-inference with lasso estimator

Description

Provides confidence intervals for the set of active coefficients of lasso using Metropolis-Hastings
sampler.

Usage

postInference.MHLS(X, Y, lbd, weights = rep(1, ncol(X)), tau = rep(1,
ncol(X)), sig2.hat, alpha = 0.05, nChain = 10, method,
niterPerChain = 500, parallel = FALSE, ncores = 2L,
returnSamples = FALSE, ...)

14 postInference.MHLS

Arguments

X predictor matrix.

Y response vector.

lbd penalty term of lasso. By letting this argument be "cv.1se" or "cv.min", users
can have the cross-validated lambda that gives either minimum squared error or
that is within 1 std error bound.

weights weight vector with length equal to the number of coefficients. Default is rep(1,
ncol(X)).

tau numeric vector. Standard deviation of proposal distribution for each beta. Adjust
the value to get relevant level of acceptance rate. Default is rep(1, ncol(X)).

sig2.hat variance of error term.

alpha confidence level for confidence interval.

nChain the number of chains. For each chain, different plug-in beta will be generated
from its confidence region.

method Type of robust method. Users can choose either "coeff" or "mu".

niterPerChain the number of iterations per chain.

parallel logical. If parallel = TRUE, uses parallelization. Default is parallel = FALSE.

ncores integer. The number of cores to use for parallelization.

returnSamples logical. If returnSamples = TRUE, print Metropolis-Hastings samples.

... auxiliary MHLS arguments.

Details

This function provides post-selection inference for the active coefficients selected by lasso. Uses
Metropolis-Hastings sampler with multiple chains to draw from the distribution under a fixed active
set and generates (1-alpha) confidence interval for each active coefficients. Set returnSamples =
TRUE to check the Metropolis-Hastings samples. Check the acceptance rate and adjust tau accord-
ingly. We recommend to set nChain >= 10 and niterPerChain >= 500.

Value

MHsamples a list of class MHLS.
confidenceInterval

(1-alpha) confidence interval for each active coefficient.

Examples

set.seed(123)
n <- 6
p <- 10
X <- matrix(rnorm(n*p),n)
Y <- X %*% rep(1,p) + rnorm(n)
sig2 <- 1
lbd <- .37
weights <- rep(1,p)

print.MHLS 15

parallel <- (.Platform$OS.type != "windows")
postInference.MHLS(X = X, Y = Y, lbd = lbd, sig2.hat = 1, alpha = .05,
nChain = 3, niterPerChain = 20, method = "coeff", parallel = parallel)
postInference.MHLS(X = X, Y = Y, lbd = lbd, sig2.hat = 1, alpha = .05,
nChain = 3, niterPerChain = 20, method = "coeff", parallel = parallel, returnSamples = TRUE)
postInference.MHLS(X = X, Y = Y, lbd = lbd, sig2.hat = 1, alpha = .05,
nChain = 3, niterPerChain = 20, method = "mu", parallel = parallel)
postInference.MHLS(X = X, Y = Y, lbd = lbd, sig2.hat = 1, alpha = .05,
nChain = 3, niterPerChain = 20, method = "mu", parallel = parallel, returnSamples = TRUE)

print.MHLS Print Metropolis-Hastings sampler outputs

Description

Print a brief summary of the MH sampler outputs.

Usage

S3 method for class 'MHLS'
print(x, ...)

Arguments

x an object of class "MHLS", which is a result of MHLS.

... additional print arguments.

Details

print.MHLS prints out last 10 iterations and a brief summary of the simulation; number of iterations,
number of burn-in periods, PE, PEtype and acceptance rate.

Value

Above results are silently returned.

Examples

set.seed(123)
n <- 10
p <- 5
X <- matrix(rnorm(n * p), n)
Y <- X %*% rep(1, p) + rnorm(n)
sigma2 <- 1
lbd <- .37
weights <- rep(1, p)
LassoResult <- lassoFit(X = X, Y = Y, lbd = lbd, type="lasso", weights = weights)
B0 <- LassoResult$B0
S0 <- LassoResult$S0

16 summary.MHLS

Result <- MHLS(X = X, PE = rep(0, p), sig2 = sigma2, lbd = lbd, group = 1:p,
weights = weights, B0 = B0, S0 = S0, niter = 50, burnin = 0,
type = "coeff")

print(Result)

summary.MHLS Summarizing Metropolis-Hastings sampler outputs

Description

Summary method for class "MHLS".

Usage

S3 method for class 'MHLS'
summary(object, ...)

Arguments

object an object of class "MHLS", which is a result of MHLS.

... additional arguments affecting the summary produced.

Details

This function provides a summary of each sampled beta and subgradient.

Value

mean, median, standard deviation, 2.5% quantile and 97.5% quantile for each beta and its subgra-
dient.

Examples

#' set.seed(123)
n <- 10
p <- 5
X <- matrix(rnorm(n * p), n)
Y <- X %*% rep(1, p) + rnorm(n)
sigma2 <- 1
lbd <- .37
weights <- rep(1, p)
LassoResult <- lassoFit(X = X, Y = Y, lbd = lbd, type = "lasso", weights = weights)
B0 <- LassoResult$B0
S0 <- LassoResult$S0
summary(MHLS(X = X, PE = rep(0, p), sig2 = sigma2, lbd = lbd,

weights = weights, B0 = B0, S0 = S0, niter = 50, burnin = 0,
type = "coeff"))

Index

cv.lasso, 2, 6

hdIS, 3

lassoFit, 5

MHLS, 7, 8, 13–16

PB.CI, 9, 10
PBsampler, 3, 4, 9, 10
plot.MHLS, 8, 12, 13
postInference.MHLS, 13
print.MHLS, 15, 15

summary.MHLS, 8, 16

17

	cv.lasso
	hdIS
	lassoFit
	MHLS
	PB.CI
	PBsampler
	plot.MHLS
	postInference.MHLS
	print.MHLS
	summary.MHLS
	Index

