# Package 'EDMeasure' 

October 12, 2022
Title Energy-Based Dependence Measures
Version 1.2.0
Date 2018-01-30
Description Implementations of (1) mutual dependence measures and mutual independence tests in Jin, Z., and Matteson, D. S. (2017) [arXiv:1709.02532](arXiv:1709.02532);
(2) independent component analysis methods based on mutual dependence measures in Jin, Z., and Matteson, D. S. (2017) [arXiv:1709.02532](arXiv:1709.02532) and Pfister, N., et al. (2018) [doi:10.1111/rssb.12235](doi:10.1111/rssb.12235);
(3) conditional mean dependence measures and conditional mean independence tests in Shao, X., and Zhang, J. (2014) [doi:10.1080/01621459.2014.887012](doi:10.1080/01621459.2014.887012), Park, T., et al. (2015) [doi:10.1214/15-EJS1047](doi:10.1214/15-EJS1047), and Lee, C. E., and Shao, X. (2017) [doi:10.1080/01621459.2016.1240083](doi:10.1080/01621459.2016.1240083).

Depends R (>= 3.4.0)
Imports energy ( $>=1.7-0$ ), dHSIC ( $>=2.0$ ), rBayesianOptimization ( $>=$ 1.1.0)

Suggests testhat ( $>=2.0 .0$ )
License GPL (>=2)
LazyData true
RoxygenNote 6.0.1
Collate 'EDMeasure-package.R' 'cmdm_functions.R' 'pmdd.R' 'mdd.R' 'cmdm_test.R' 'mdc.R' 'mddm.R' 'mdm.R' 'mdm_ica_functions.R' 'mdm_ica.R' 'mdm_test.R' 'pmdc.R'

NeedsCompilation yes
Author Ze Jin [aut, cre], Shun Yao [aut],
David S. Matteson [aut],
Xiaofeng Shao [aut]
Maintainer Ze Jin [zj58@cornell.edu](mailto:zj58@cornell.edu)
Repository CRAN
Date/Publication 2018-02-25 22:49:47 UTC

## $R$ topics documented:

EDMeasure-package ..... 2
cmdm_test ..... 4
mdc ..... 5
mdd ..... 6
mddm ..... 8
mdm ..... 9
mdm_ica ..... 10
mdm_test ..... 11
pmdc ..... 13
pmdd ..... 14
Index ..... 15
EDMeasure-package Energy-Based Dependence Measures

## Description

EDMeasure: A package for energy-based dependence measures

## Details

The EDMeasure package provides measures of mutual dependence and tests of mutual independence, independent component analysis methods based on mutual dependence measures, and measures of conditional mean dependence and tests of conditional mean independence.
The three main parts are:

- mutual dependence measures via energy statistics
- measuring mutual dependence
- testing mutual independence
- independent component analysis via mutual dependence measures
- applying mutual dependence measures
- initializing local optimization methods
- conditional mean dependence measures via energy statistics
- measuring conditional mean dependence
- testing conditional mean independence


## Mutual Dependence Measures via Energy Statistics

## Measuring mutual dependence

The mutual dependence measures include:

- asymmetric measure $\mathcal{R}_{n}$ based on distance covariance $\mathcal{V}_{n}$
- symmetric measure $\mathcal{S}_{n}$ based on distance covariance $\mathcal{V}_{n}$
- complete measure $\mathcal{Q}_{n}$ based on complete V-statistics
- simplified complete measure $\mathcal{Q}_{n}^{\star}$ based on incomplete V -statistics
- asymmetric measure $\mathcal{J}_{n}$ based on complete measure $\mathcal{Q}_{n}$
- simplified asymmetric measure $\mathcal{J}_{n}^{\star}$ based on simplified complete measure $\mathcal{Q}_{n}^{\star}$
- symmetric measure $\mathcal{I}_{n}$ based on complete measure $\mathcal{Q}_{n}$
- simplified symmetric measure $\mathcal{I}_{n}^{\star}$ based on simplified complete measure $\mathcal{Q}_{n}^{\star}$


## Testing mutual independence

The mutual independence tests based on the mutual dependence measures are implemented as permutation tests.

## Independent Component Analysis via Mutual Dependence Measures

## Applying mutual dependence measures

The mutual dependence measures include:

- distance-based energy statistics
- asymmetric measure $\mathcal{R}_{n}$ based on distance covariance $\mathcal{V}_{n}$
- symmetric measure $\mathcal{S}_{n}$ based on distance covariance $\mathcal{V}_{n}$
- simplified complete measure $\mathcal{Q}_{n}^{\star}$ based on incomplete V-statistics
- kernel-based maximum mean discrepancies
- d-variable Hilbert-Schmidt independence criterion dHSIC $_{n}$ based on Hilbert-Schmidt independence criterion $\mathrm{HSIC}_{n}$


## Initializing local optimization methods

The initialization methods include:

- Latin hypercube sampling
- Bayesian optimization


## Conditional Mean Dependence Measures via Energy Statistics

## Measuring conditional mean dependence

The conditional mean dependence measures include:

- conditional mean dependence of $Y$ given $X$
- martingale difference divergence
- martingale difference correlation
- martingale difference divergence matrix
- conditional mean dependence of $Y$ given $X$ adjusting for the dependence on $Z$
- partial martingale difference divergence
- partial martingale difference correlation


## Testing conditional mean independence

The conditional mean independence tests include:

- conditional mean independence of $Y$ given $X$ conditioning on $Z$
- martingale difference divergence under a linear assumption
- partial martingale difference divergence

The conditional mean independence tests based on the conditional mean dependence measures are implemented as permutation tests.

## Author(s)

Ze Jin [zj58@cornell.edu](mailto:zj58@cornell.edu), Shun Yao [shunyao2@illinois.edu](mailto:shunyao2@illinois.edu), David S. Matteson [matteson@cornell.edu](mailto:matteson@cornell.edu), Xiaofeng Shao [xshao@illinois.edu](mailto:xshao@illinois.edu)

```
cmdm_test Conditional Mean Independence Tests
```


## Description

cmdm_test tests conditional mean independence of $Y$ given $X$ conditioning on $Z$, where each contains one variable (univariate) or more variables (multivariate). All tests are implemented as permutation tests.

## Usage

cmdm_test $(X, Y, Z$, num_perm $=500$, type $=" l i n m d d "$, compute $=" C "$, center = "U")

## Arguments

$x$

Y

Z
num_perm The number of permutation samples drawn to approximate the asymptotic distributions of mutual dependence measures.
type The type of conditional mean dependence measures, including

- linmdd: martingale difference divergence under a linear assumption;
- pmdd: partial martingale difference divergence.
compute The computation method for martingale difference divergence, including
- C: computation implemented in C code;
- R: computation implemented in R code.
center The centering approach for martingale difference divergence, including
- U: U-centering which leads to an unbiased estimator;
- D: double-centering which leads to a biased estimator.
$m d c$


## Value

cmdm_test returns a list including the following components:
stat The value of the conditional mean dependence measure.
dist The p-value of the conditional mean independence test.

## References

Shao, X., and Zhang, J. (2014). Martingale difference correlation and its use in high-dimensional variable screening. Journal of the American Statistical Association, 109(507), 1302-1318. http: //dx.doi.org/10.1080/01621459.2014.887012.

Park, T., Shao, X., and Yao, S. (2015). Partial martingale difference correlation. Electronic Journal of Statistics, 9(1), 1492-1517. http://dx.doi.org/10.1214/15-EJS1047.

## Examples

```
    ## Not run:
    # X, Y, Z are vectors with 10 samples and 1 variable
    X <- rnorm(10)
    Y <- rnorm(10)
    Z <- rnorm(10)
    cmdm_test(X, Y, Z, type = "linmdd")
    # X, Y, Z are 10 x 2 matrices with 10 samples and 2 variables
    X <- matrix(rnorm(10 * 2), 10, 2)
    Y <- matrix(rnorm(10 * 2), 10, 2)
    Z <- matrix(rnorm(10 * 2), 10, 2)
    cmdm_test(X, Y, Z, type = "pmdd")
    ## End(Not run)
```

mdc
Martingale Difference Correlation

## Description

mdc measures conditional mean dependence of $Y$ given $X$, where each contains one variable (univariate) or more variables (multivariate).

## Usage

$\operatorname{mdc}(X, Y$, center $=" U ")$

## Arguments

X

Y A vector, matrix or data frame, where rows represent samples, and columns represent variables.
center The approach for centering, including

- U: U-centering which leads to an unbiased estimator;
- D: double-centering which leads to a biased estimator.


## Value

$m d c$ returns the squared martingale difference correlation of $Y$ given $X$.

## References

Shao, X., and Zhang, J. (2014). Martingale difference correlation and its use in high-dimensional variable screening. Journal of the American Statistical Association, 109(507), 1302-1318. http: //dx.doi.org/10.1080/01621459.2014.887012.
Park, T., Shao, X., and Yao, S. (2015). Partial martingale difference correlation. Electronic Journal of Statistics, 9(1), 1492-1517. http://dx.doi.org/10.1214/15-EJS1047.

## Examples

```
    # X, Y are 10 x 2 matrices with 10 samples and 2 variables
    X <- matrix(rnorm(10 * 2), 10, 2)
    Y <- matrix(rnorm(10 * 2), 10, 2)
    mdc(X, Y, center = "U")
    mdc(X, Y, center = "D")
```

    mdd
        Martingale Difference Divergence
    
## Description

mdd measures conditional mean dependence of $Y$ given $X$, where each contains one variable (univariate) or more variables (multivariate).

## Usage

mdd $(X, Y$, compute $=" C "$, center $=" U ")$

## Arguments

X

Y
compute The method for computation, including

- C: computation implemented in C code;
- R: computation implemented in R code.
center The approach for centering, including
- U: U-centering which leads to an unbiased estimator;
- D: double-centering which leads to a biased estimator.


## Value

mdd returns the squared martingale difference divergence of $Y$ given $X$.

## References

Shao, X., and Zhang, J. (2014). Martingale difference correlation and its use in high-dimensional variable screening. Journal of the American Statistical Association, 109(507), 1302-1318. http: //dx.doi.org/10.1080/01621459.2014.887012.

Park, T., Shao, X., and Yao, S. (2015). Partial martingale difference correlation. Electronic Journal of Statistics, 9(1), 1492-1517. http://dx.doi.org/10.1214/15-EJS1047.

## Examples

```
# X, Y are vectors with 10 samples and 1 variable
X <- rnorm(10)
Y <- rnorm(10)
mdd(X, Y, compute = "C")
mdd(X, Y, compute = "R")
# X, Y are 10 x 2 matrices with 10 samples and 2 variables
X <- matrix(rnorm(10 * 2), 10, 2)
Y <- matrix(rnorm(10 * 2), 10, 2)
mdd(X, Y, center = "U")
mdd(X, Y, center = "D")
```

```
mddm Martingale Difference Divergence Matrix
```


## Description

mddm extends martingale difference divergence from a scalar to a matrix. It encodes the linear combinations of all univariate components in $Y$ that are conditionally mean independent of $X$. Only the double-centering approach is applied.

## Usage

mddm(X, Y, compute = "C")

## Arguments

$X \quad$ A vector, matrix or data frame, where rows represent samples, and columns represent variables.
Y A vector, matrix or data frame, where rows represent samples, and columns represent variables.
compute The method for computation, including

- C: computation implemented in C code;
- R: computation implemented in R code.


## Value

mddm returns the martingale difference divergence matrix of $Y$ given $X$.

## References

Lee, C. E., and Shao, X. (2017). Martingale Difference Divergence Matrix and Its Application to Dimension Reduction for Stationary Multivariate Time Series. Journal of the American Statistical Association, 1-14. http://dx.doi.org/10.1080/01621459.2016.1240083.

## Examples

```
# X, Y are vectors with 10 samples and 1 variable
X <- rnorm(10)
Y <- rnorm(10)
mddm(X, Y, compute = "C")
mddm(X, Y, compute = "R")
# X, Y are 10 x 2 matrices with 10 samples and 2 variables
X <- matrix(rnorm(10 * 2), 10, 2)
Y <- matrix(rnorm(10 * 2), 10, 2)
mddm(X, Y, compute = "C")
mddm(X, Y, compute = "R")
```

mdm
Mutual Dependence Measures

## Description

mdm measures mutual dependence of all components in $X$, where each component contains one variable (univariate) or more variables (multivariate).

## Usage

mdm(X, dim_comp = NULL, dist_comp = FALSE, type = "comp_simp")

## Arguments

$X \quad$ A matrix or data frame, where rows represent samples, and columns represent variables.
dim_comp The numbers of variables contained by all components in $X$. If omitted, each component is assumed to contain exactly one variable.
dist_comp Logical. If TRUE, the distances between all components from all samples in X will be returned.
type The type of mutual dependence measures, including

- asym_dcov: asymmetric measure $\mathcal{R}_{n}$ based on distance covariance $\mathcal{V}_{n}$;
- sym_dcov: symmetric measure $\mathcal{S}_{n}$ based on distance covariance $\mathcal{V}_{n}$;
- comp: complete measure $\mathcal{Q}_{n}$ based on complete V-statistics;
- comp_simp: simplified complete measure $\mathcal{Q}_{n}^{\star}$ based on incomplete V-statistics;
- asym_comp: asymmetric measure $\mathcal{J}_{n}$ based on complete measure $\mathcal{Q}_{n}$;
- asym_comp_simp: simplified asymmetric measure $\mathcal{J}_{n}^{\star}$ based on simplified complete measure $\mathcal{Q}_{n}^{\star}$;
- sym_comp: symmetric measure $\mathcal{I}_{n}$ based on complete measure $\mathcal{Q}_{n}$;
- sym_comp_simp: simplified symmetric measure $\mathcal{I}_{n}^{\star}$ based on simplified complete measure $\mathcal{Q}_{n}^{\star}$.
From experiments, asym_dcov, sym_dcov, comp_simp are recommended.


## Value

mdm returns a list including the following components:
stat The value of the mutual dependence measure.
dist The distances between all components from all samples.

## References

Jin, Z., and Matteson, D. S. (2017). Generalizing Distance Covariance to Measure and Test Multivariate Mutual Dependence. arXiv preprint arXiv:1709.02532. https://arxiv.org/abs/1709. 02532.

## Examples

```
# X is a 10 x 3 matrix with 10 samples and 3 variables
X <- matrix(rnorm(10 * 3), 10, 3)
# assume X = (X1, X2) where X1 is 1-dim, X2 is 2-dim
mdm(X, dim_comp = c(1, 2), type = "asym_dcov")
# assume X = (X1, X2) where X1 is 2-dim, X2 is 1-dim
mdm(X, dim_comp = c(2, 1), type = "sym_dcov")
# assume X = (X1, X2, X3) where X1 is 1-dim, X2 is 1-dim, X3 is 1-dim
mdm(X, dim_comp = c(1, 1, 1), type = "comp_simp")
```

mdm_ica Independent Component Analysis via Mutual Dependence Measures

## Description

mdm_ica performs independent component analysis by minimizing mutual dependence measures of all univariate components in X .

## Usage

mdm_ica(X, num_lhs = NULL, type = "comp", num_bo = NULL, kernel = "exp", algo = "par")

## Arguments

X
type
num_bo
kernel
algo
num_lhs The number of points generated by Latin hypercube sampling. If omitted, an adaptive number is used.
A matrix or data frame, where rows represent samples, and columns represent components.

The type of mutual dependence measures, including

- asym: asymmetric measure $\mathcal{R}_{n}$ based on distance covariance $\mathcal{V}_{n}$;
- sym: symmetric measure $\mathcal{S}_{n}$ based on distance covariance $\mathcal{V}_{n}$;
- comp: simplified complete measure $\mathcal{Q}_{n}^{\star}$ based on incomplete V-statistics;
- dhsic: d-variable Hilbert-Schmidt independence criterion $\mathrm{dHSIC}_{n}$ based on Hilbert-Schmidt independence criterion $\mathrm{HSIC}_{n}$.
The number of points evaluated by Bayesian optimization.
The kernel of the underlying Gaussian process in Bayesian optimization, including
- exp: squared exponential kernel;
- mat: Matern 5/2 kernel.

The algorithm of optimization, including

- def: deflation algorithm, where the components are extracted one at a time;
- par: parallel algorithm, where the components are extracted simultaneously.


## Value

mdm_ica returns a list including the following components:
theta The rotation angles of the estimated unmixing matrix.
W The estimated unmixing matrix.
obj The objective value of the estimated independence components.
S
The estimated independence components.

## References

Jin, Z., and Matteson, D. S. (2017). Generalizing Distance Covariance to Measure and Test Multivariate Mutual Dependence. arXiv preprint arXiv:1709.02532. https://arxiv.org/abs/1709. 02532.

Pfister, N., et al. (2018). Kernel-based tests for joint independence. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 80(1), 5-31. http://dx.doi.org/10.1111/rssb. 12235.

## Examples

```
# X is a 10 x 3 matrix with 10 samples and 3 components
X <- matrix(rnorm(10 * 3), 10, 3)
# deflation algorithm
mdm_ica(X, type = "asym", algo = "def")
# parallel algorithm
mdm_ica(X, type = "asym", algo = "par")
## Not run:
# bayesian optimization with exponential kernel
mdm_ica(X, type = "sym", num_bo = 1, kernel = "exp", algo = "par")
# bayesian optimization with matern kernel
mdm_ica(X, type = "comp", num_bo = 1, kernel = "mat", algo = "par")
## End(Not run)
```

```
mdm_test Mutual Independence Tests
```


## Description

mdm_test tests mutual independence of all components in X, where each component contains one variable (univariate) or more variables (multivariate). All tests are implemented as permutation tests.

## Usage

mdm_test(X, dim_comp = NULL, num_perm = NULL, type = "comp_simp")

## Arguments

X
dim_comp The numbers of variables contained by all components in $X$. If omitted, each component is assumed to contain exactly one variable.
num_perm The number of permutation samples drawn to approximate the asymptotic distributions of mutual dependence measures. If omitted, an adaptive number is used.
type The type of mutual dependence measures, including

- asym_dcov: asymmetric measure $\mathcal{R}_{n}$ based on distance covariance $\mathcal{V}_{n}$;
- sym_dcov: symmetric measure $\mathcal{S}_{n}$ based on distance covariance $\mathcal{V}_{n}$;
- comp: complete measure $\mathcal{Q}_{n}$ based on complete V-statistics;
- comp_simp: simplified complete measure $\mathcal{Q}_{n}^{\star}$ based on incomplete V-statistics;
- asym_comp: asymmetric measure $\mathcal{J}_{n}$ based on complete measure $\mathcal{Q}_{n}$;
- asym_comp_simp: simplified asymmetric measure $\mathcal{J}_{n}^{\star}$ based on simplified complete measure $\mathcal{Q}_{n}^{\star}$;
- sym_comp: symmetric measure $\mathcal{I}_{n}$ based on complete measure $\mathcal{Q}_{n}$;
- sym_comp_simp: simplified symmetric measure $\mathcal{I}_{n}^{\star}$ based on simplified complete measure $\mathcal{Q}_{n}^{\star}$.
From experiments, asym_dcov, sym_dcov, comp_simp are recommended.


## Value

mdm_test returns a list including the following components:
stat $\quad$ The value of the mutual dependence measure.
pval The p-value of the mutual independence test.

## References

Jin, Z., and Matteson, D. S. (2017). Generalizing Distance Covariance to Measure and Test Multivariate Mutual Dependence. arXiv preprint arXiv:1709.02532. https://arxiv.org/abs/1709. 02532.

## Examples

```
## Not run:
# X is a 10 x 3 matrix with 10 samples and 3 variables
X <- matrix(rnorm(10 * 3), 10, 3)
# assume X = (X1, X2) where X1 is 1-dim, X2 is 2-dim
mdm_test(X, dim_comp = c(1, 2), type = "asym_dcov")
# assume X = (X1, X2) where X1 is 2-dim, X2 is 1-dim
mdm_test(X, dim_comp = c(2, 1), type = "sym_dcov")
# assume X = (X1, X2, X3) where X1 is 1-dim, X2 is 1-dim, X3 is 1-dim
```

```
    mdm_test(X, dim_comp = c(1, 1, 1), type = "comp_simp")
    ## End(Not run)
```

    pmdc
    Partial Martingale Difference Correlation
    
## Description

pmdc measures conditional mean dependence of $Y$ given $X$ adjusting for the dependence on $Z$, where each contains one variable (univariate) or more variables (multivariate). Only the U-centering approach is applied.

## Usage

$\operatorname{pmdc}(X, Y, Z)$

## Arguments

$X \quad$ A vector, matrix or data frame, where rows represent samples, and columns represent variables.
Y A vector, matrix or data frame, where rows represent samples, and columns represent variables.

Z
A vector, matrix or data frame, where rows represent samples, and columns represent variables.

## Value

pmdc returns the squared partial martingale difference correlation of $Y$ given $X$ adjusting for the dependence on $Z$.

## References

Park, T., Shao, X., and Yao, S. (2015). Partial martingale difference correlation. Electronic Journal of Statistics, 9(1), 1492-1517. http://dx.doi.org/10.1214/15-EJS1047.

## Examples

```
# X, Y, Z are 10 x 2 matrices with 10 samples and 2 variables
X <- matrix(rnorm(10 * 2), 10, 2)
Y <- matrix(rnorm(10 * 2), 10, 2)
Z <- matrix(rnorm(10 * 2), 10, 2)
pmdc(X, Y, Z)
```


## Description

pmdd measures conditional mean dependence of $Y$ given $X$ adjusting for the dependence on $Z$, where each contains one variable (univariate) or more variables (multivariate). Only the U-centering approach is applied.

## Usage

$\operatorname{pmdd}(X, Y, Z)$

## Arguments

X A vector, matrix or data frame, where rows represent samples, and columns represent variables.
Y A vector, matrix or data frame, where rows represent samples, and columns represent variables.

Z
A vector, matrix or data frame, where rows represent samples, and columns represent variables.

## Value

pmdd returns the squared partial martingale difference divergence of $Y$ given $X$ adjusting for the dependence on $Z$.

## References

Park, T., Shao, X., and Yao, S. (2015). Partial martingale difference correlation. Electronic Journal of Statistics, 9(1), 1492-1517. http://dx.doi.org/10.1214/15-EJS1047.

## Examples

```
# X, Y, Z are vectors with 10 samples and 1 variable
X <- rnorm(10)
Y <- rnorm(10)
Z <- rnorm(10)
pmdd(X, Y, Z)
# X, Y, Z are 10 x 2 matrices with 10 samples and 2 variables
X <- matrix(rnorm(10 * 2), 10, 2)
Y <- matrix(rnorm(10 * 2), 10, 2)
Z <- matrix(rnorm(10 * 2), 10, 2)
pmdd(X, Y, Z)
```


## Index

cmdm_test, 4
EDMeasure (EDMeasure-package), 2
EDMeasure-package, 2
mdc, 5
mdd, 6
mddm, 8
mdm, 9
mdm_ica, 10
mdm_test, 11
pmdc, 13
pmdd, 14

