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Abstract

In this document we give a brief overview of the EMbC R-package with special emphasis on its use
for behavioral annotation of animal’s movement trajectories. For details about the EMbC algorithm
please refer to (Garriga et. al 2016) and for further details about the package please refer to the package
reference manual.

1 The EMbC Algorithm

The Expectation-maximization binary clustering (EMbC) is a general purpose, unsupervised, multi-variate,
clustering algorithm (Garriga et al. 2016), driven by two main motivations: (i) it looks for a good compromise
between statistical soundness and ease and generality of use - by minimizing prior assumptions and favouring
the semantic interpretation of the final clustering- and, (ii) it allows taking into account the uncertainty in
the data. These two features make it specially suitable for the behavioral annotation of animal’s movement
trajectories.

The method is a variant of the well sounded Expectation-Maximization Clustering (EMC) algorithm -
i.e. under the assumption of an underlying Gaussian Mixture Model (GMM) describing the distribution of
the data-set - but constrained to generate a binary partition of the input space. This is achieved by means of
the delimiters, a set of parameters that discretize the input features into high and low values and define the
binary regions of the input space. As a result, each final cluster includes a unique combination of either low
or high values of the input variables. Splitting the input features into low and high values is what favours the
semantic interpretation of the final clustering.

The initial assumptions implemented in the EMbC algorithm aim at minimizing biases and sensitivity to
initial conditions: (i) each data point is assigned a uniform probability of belonging to each cluster, (ii) the
prior mixture distribution is uniform (each cluster starts with the same number of data points), (iii) the
starting partition, (i.e. initial delimiters position), is selected based on a global maximum variance criterion,
thus conveying the minimum information possible.

The number of output clusters is 2
m determined by the number of input features m. This number is only

an upper bound as some of the clusters can vanish along the likelihood optimization process. The EMbC
algorithm is intended to be used with not more than 5 or 6 input features, yielding a maximum of 32 or 64
clusters. This limitation in the number of clusters is consistent with the main motivation of the algorithm of
favouring the semantic interpretation of the results.

The algorithm deals very intuitively with data reliability: the larger the uncertainty associated with a data
point, the smaller the leverage of that data point in the clustering.

With respect to close related methods like EMC and Hidden Markov Models (HMM), the EMbC is specially
useful when: (i) we can expect bi-modality, to some extent, in the conditional distribution of the input
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features or, at least, we can assume that a binary partition of the input space can provide useful information,
and (ii) a first order temporal dependence assumption, a necessary condition in HMM, can not be guaranteed.

2 The EMbC R-package

The EMbC algorithm is of general purpose and can deal with any type of data sets or time series. However,
the EMbC R-package is mainly intended for the behavioral annotation of animals’ movement trajectories
where an easy interpretation of the final clustering and the reliability of the data constitute two key issues,
and the conditions of bi-modality and unfair temporal dependence usually hold. In particular, the temporal
dependence condition is easily violated in animal’s movement trajectories because of the heterogeneity in
empirical time series due to large gaps, or prefixed sampling scheduling.

Input movement trajectories are given either as a data.frame or a Move object from the move R-package.
The package deals also with stacks of trajectories for population level analysis. Segmentation is based on local
estimates of velocity and turning angle, eventually including a solar position covariate as a daytime indicator.

The core clustering method is complemented with a set of functions to easily visualize and analyse the output:

• clustering statistics,
• clustering scatter-plot (2D and 3D),
• temporal labeling profile (ethogram),
• plotting of intermediate variables,
• confusion matrix (numerical validation with respect to an expert’s labeling),
• visual validation versus external information (e.g. environmental data),
• generation of kml or web-map documents for detailed inspection of the output.

Also, some functions are provided to further refine the output, either by pre-processing (smoothing) the input
data or by post-processing (smoothing, relabeling, merging) the output labeling.

The results obtained for different empirical datasets suggest that the EMbC algorithm behaves reasonably
well for a wide range of tracking technologies, species, and ecological contexts (e.g. migration, foraging).

2.1 Working Environment

The EMbC package has dependencies with the following packages:

• methods, formal methods and classes (R Core Team 2015);
• sp, classes and methods for spatial data (Pebesma and Bivand 2005; R. S. Bivand, Pebesma, and

Gomez-Rubio 2013);
• suntools, calculate sun position, sunrise, sunset, solar noon and twilight (R. Bivand and Luque 2023);
• mnormt, the multivariate normal and t distributions (Azzalini and Genz 2015);
• RColorBrewer, ColorBrewer palettes (Neuwirth 2014);

We also suggest the package rgl, 3D visualization device system (OpenGL) (Adler, Murdoch, et al. 2015), to
allow for dynamic 3D scatter-plots in multivariate analyses.

For researchers who are familiar with the MoveBank framework, we include a special link with the package
move, Visualizing and analizing animal track data (Kranstauber and Smolla 2015), to allow users to make
use of Move objects as input trajectories.

2.2 Basic structure

Basically, the package consists of a hierarchy of classes:

• binClst, the main class, representing the binary clustering of a multivariate data set;
• binClstPath, a child class of the former, representing the binary clustering of a trajectory;
• binClstStck, basically a list of binClstPath objects resulting from the global clustering of a stack of

trajectories.
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Instances of these classes are build by means of two main constructors:

• embc(), the main core of the package, implementing the EMbC algorithm itself; this constructor takes
as input a matrix of data-points and returns an object of class binClst with the multivariate binary
clustering of the input data;

• stbc(), a specific constructor for the behavioral annotation of movement trajectories; the input to this
constructor is a trajectory (given either as a data.frame, a Move object or a list of them) and returns
an object of class binClstPath (or any of its child classes) with the bivariate (velocity/turn) clustering
of the trajectory; eventually it can compute a trivariate clustering by including a parameter indicating
a solar covariate (either height or azimuth) to be used as a daytime indicator.

The behavior of the constructors can be modified by means of different parameters (e.g. maximum number of
iterations, information shown at each step, pre-smoothing of the data).

The output objects have several slots containing all information related to the binary clustering (input data,
intermediate computations and output data). All slots are accessible and can be used with any R function
external to the package or even modified. However, we recommend not to manually change the values

in the slots in order to keep the internal consistency.

Let’s load the package;

library(EMbC)

3 Class: binClst

This is the core class that implements the multivariate binary clustering algorithm. The input data-set is
given as a matrix with data points given as rows and input features as columns. No more than 5 (6 at most)
variables should be used in order to get a meaningful set of clusters.

Let’s use the object x2d included in the package. This object contains a set of data points generated from a
bivariate GMM with four components (slot x2d@D), and a labeling indicating which component generated
each data point (slot x2d@L);

par(mgp=c(1.5, 0.4, 0), cex.lab=0.8, cex.axis=0.8)

plot(x2d@D, col=x2d@L, xlab='X1', ylab='X2')
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# x2d@D is a matrix with the input data

# x2d@L is a numeric vector with the reference labeling
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3.1 Binary clustering

We can cluster a general dataset by calling the embc() constructor and passing in the input data, in matrix
form, and storing the result in an output variable (e.g. mybc);

mybc <- embc(x2d@D)

## ... computing starting delimiters

## [1] 0 -0.0000e+00 4 400

## [1] 1 -5.4847e+00 4 303

## [1] 2 -5.3257e+00 4 14

## [1] 3 -5.1640e+00 4 12

## [1] 4 -5.0542e+00 4 10

## [1] 5 -4.9906e+00 4 7

## [1] 6 -4.9597e+00 4 9

## [1] 7 -4.9448e+00 4 5

## [1] 8 -4.9360e+00 4 5

## [1] 9 -4.9308e+00 4 6

## [1] 10 -4.9282e+00 4 3

## [1] 11 -4.9271e+00 4 3

## [1] 12 -4.9265e+00 4 3

## [1] 13 -4.9270e+00 4 2

## [1] 14 -4.9281e+00 4 4

## [1] 15 -4.9282e+00 4 1

## [1] 16 -4.9278e+00 4 4

## [1] 17 -4.9279e+00 4 3

## [1] 18 -4.9274e+00 4 4

## [1] 19 -4.9300e+00 4 6

## [1] 20 -4.9291e+00 4 3

## [1] 21 -4.9292e+00 4 0

## [1] 22 -4.9295e+00 4 0

## [1] 23 -4.9293e+00 4 2

## [1] 24 -4.9291e+00 4 0

## [1] 25 -4.9288e+00 4 2

## [1] 26 -4.9287e+00 4 1

## [1] 27 -4.9293e+00 4 0

## [1] 28 -4.9289e+00 4 2

## [1] 29 -4.9296e+00 4 0

## [1] 30 -4.9296e+00 4 0

## [1] 31 -4.9294e+00 4 0

## [1] 32 -4.9294e+00 4 0

## [1] 33 -4.9294e+00 4 0

## [1] ... Stable clustering

At each iteration, the algorithm shows the iteration number, the current likelihood value, the number of
effective clusters and the number of labels that have changed with respect to the previous iteration.

3.2 Slots

mybc is an instance of class binClst. Any slot of a binClst object is accessible and can be used by (passed to)
any R function. The most basic slots of a binClst object are:

slotNames(mybc)

## [1] "X" "U" "stdv" "m" "k" "n" "R" "P" "W" "A"

## [11] "L" "C"
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• mybc@X, a matrix with the input data points;
• mybc@U, a matrix of the same dimension as the input data matrix, with a reliability value (ranging

from 0 to 1) for each input value, (by default is a matrix of ones);
• mybc@R, a matrix with the values of the delimiters for each binary region;
• mybc@P, a list where each element is a named list with the Gaussian parameters of each output cluster;
• mybc@W, a matrix with the likelihood weights of each data-point with respect to each output cluster;
• mybc@A, a numeric vector with the output labeling of each location, (the number of the cluster with

the highest likelihood weight, coded as 1:LL, 2:LH, 3:HL, and 4:HH).

3.3 Likelihood Plot

The likelihood plot allows a visual assessment of the convergence of the algorithm;

# the lkhp() function allows an offset parameter;

lkhp(mybc) # left panel

lkhp(mybc, 10) # right panel
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The last iterations may show some decrease in likelihood. This is due to a slight discrepancy between binary
and optimal likelihood clusterings that can appear at the last steps of the algorithm, normally involving just
a few data-points at the boundaries of the binary regions (note the low number of data-points changing their
labels beyond iteration number 12 where the likelihood starts decreasing).

3.4 Clustering parameters

The function stts() shows the statistics of the clustering. The columns Xi.mn and Xi.sd show the mean
and standard deviation of the input features. The last two columns show the marginal distribution of the
clustering in absolute (number of data-points) and relative (percentage) values;

stts(mybc)

## X1.mn X1.sd X2.mn X2.sd kn kn(%)

## 1 LL 2.60 1.72 0.94 1.51 69 17.25

## 2 LH 1.78 1.76 6.19 2.30 107 26.75

## 3 HL 8.76 2.37 0.94 1.11 121 30.25

## 4 HH 7.41 1.96 8.02 2.92 103 25.75

The complete set of parameters of the Gaussian mixture is accessible through the slot mybc@P. This slot is
a list of inner named-lists (M for mean and S for the covariance matrix) for each cluster. For instance, the
parameters for cluster 1 (LL) are;

mybc@P[[1]]

5

mailto:mybc@X
mailto:mybc@U
mailto:mybc@R
mailto:mybc@P
mailto:mybc@W
mailto:mybc@A
mailto:mybc@P


## $M

## [1] 2.6000747 0.9403607

##

## $S

## [,1] [,2]

## [1,] 2.963896 1.924727

## [2,] 1.924727 2.265230

The delimiters are accessible through the slot mybc@R where we have the min() and max() values that
delimit each binary region;

mybc@R

## X1.min X2.min X1.max X2.max

## 1.LL -1.994262 -2.162228 4.699946 2.553833

## 2.LH -1.994262 2.553833 4.129379 15.386923

## 3.HL 4.699946 -2.162228 13.762928 3.323976

## 4.HH 4.129379 3.323976 13.762928 15.386923

3.5 Clustering scatter-plot

The function sctr() makes a scatter-plot of the data-points, showing the clusters in different colours, and
depicting the binary delimiters (light grey lines) to show the binary regions;

sctr(mybc)
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The NC in the legend stands for not classified points. Not classified points may appear only when performing
the behavioral annotation of movement trajectories (explained later in this document) and correspond to
outliers due to errors or gaps in the trajectory or, typically, to the last track of the trajectory.

3.6 Clustering validation

In a supervised case, that is in case that an expert’s labeling is available, we can use this labeling to validate
the results of the clustering. The expert labeling must be numerically coded and translated to the range of
the number of clusters, and must be given as a numeric vector with one numeric label for each location.

We can make a visual validation of the clustering versus the expert labeling by means of the sctr() function
passing in the expert labeling vector as a second parameter;

sctr(mybc, x2d@L)
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# the top plot shows the clustering result;

# the bottom plot shows the reference labeling;

We can perform a numeric assessment of the clustering in terms of a confusion matrix by means of the
function cnfm();

cnfm(mybc, x2d@L)

## cls.01 cls.02 cls.03 cls.04 mrg. Prc.

## 1.LL 57 9 2 1 0.17 0.83

## 2.LH 13 86 0 8 0.27 0.80

## 3.HL 18 1 97 5 0.30 0.80

## 4.HH 12 4 1 86 0.26 0.83

## ------ ------ ------ ------ ------ ------

## mrg 0.25 0.25 0.25 0.25 0.82 0.81

## Rcl 0.57 0.86 0.97 0.86 0.81 NaN

## Fms 0.68 0.83 0.88 0.84 NaN 0.81

The confusion matrix shows values of row precision and row F-measure, and values of column recall and
column F-measure. The 3x2 subset of cells at the bottom-right show respectively: the overall accuracy, the
average recall, the average precision, NaN, NaN and the Macro-F-measure.

4 Class: binClstPath

The binClstPath is a binClst subclass intended to automatically perform the bivariate clustering of a movement
trajectory, based on estimated local values of velocity and turn. It can also perform a trivariate clustering by
incorporating a daytime covariate (i.e. solar height or solar azimuth).

The input data-set is a trajectory given as a data.frame with timestamps, longitudes and latitudes in columns
1:3 respectively (column headers are user free). Timestamps must be given as.POSIXct() with the specific
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format “%Y-%m-%d %H:%M:%S”.

As an example, the package includes an object named expth. This is a synthetically generated trajectory
stored as a data.frame;

head(expth)

## dTm lon lat lbl

## 1 2014-11-14 17:05:57 70.25000 -49.26000 1

## 2 2014-11-14 17:07:40 70.24925 -49.25862 1

## 3 2014-11-14 17:21:34 70.22671 -49.25500 1

## 4 2014-11-14 17:36:13 70.21570 -49.25763 1

## 5 2014-11-14 18:44:05 70.12802 -49.26653 3

## 6 2014-11-14 19:02:20 70.01982 -49.25872 3

expth is a synthetically generated trajectory with expert labeling (note the column expth$lbl). Further
columns of data can be included in the input data.frame as long as the first three columns respect the required
format.

Tip: by including an expert labeling with a column labeled lbl all validation functions will

make use of it by default.

4.1 Bivariate velocity-turn clustering

To perform the bivariate velocity/turn clustering of this trajectory we simply call the stbc() constructor
passing in the data.frame with the time/space coordinates of the trajectory and storing the output binClstPath
object in a variable (e.g. mybcp);

mybcp <- stbc(expth, info=-1)

## [1] 0 -0.0000e+00 4 600

## [1] ... Stable clustering

# info=-1 supresses any step wise output information

The output object mybcp is a binClstPath instance with the following slots;

slotNames(mybcp)

## [1] "pth" "spn" "dst" "hdg" "bursted" "tracks"

## [7] "midPoints" "X" "U" "stdv" "m" "k"

## [13] "n" "R" "P" "W" "A" "L"

## [19] "C"

As a child class, a binClstPath object inherits and extends the set of slots of the binClst class. The basic slot
differences with respect to the binClst class are:

• mybcp@pth, a data.frame with three first columns named as dTm, lon, lat plus all additional columns
of data included in the input data.frame;

• mybcp@spn, a numeric vector with the computed time span between locations;
• mybcp@dst, a numeric vector with the estimated distances between locations, computed as loxodromic

lines;
• mybcp@hdg, a numeric vector with local heading directions, given in clockwise radians from North (a

value of 2 π is used to distinguish no movement from movement heading North);
• mybcp@X, is the matrix of input data that in this case is automatically generated with the estimated

local values of velocity and turn;
• mybcp@U, is the matrix of uncertainties that is also automatically generated based on the time-spans

between locations.
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Slots tracks, midpoints and bursted are related to the bursted visualization of the trajectory (covered later in
this document) and should not be manipulated.

4.2 Basic functionality

Because of class inheritance, all functionality described for the binClst class (e.g. likelihood plot, clustering
parameters, scatter-plot, validation) holds for a binClstPath instance.

stts(mybcp)

## X1.mn X1.sd X2.mn X2.sd kn kn(%)

## 1 LL 0.91 0.59 0.57 0.35 95 15.83

## 2 LH 1.07 0.61 2.25 0.56 316 52.67

## 3 HL 7.65 2.61 0.34 0.21 133 22.17

## 4 HH 9.99 2.39 1.93 0.67 55 9.17

sctr(mybcp)
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cnfm(mybcp)

## cls.01 cls.02 cls.03 cls.04 mrg. Prc.

## 1.LL 95 0 0 0 0.16 1

## 2.LH 0 316 0 0 0.53 1

## 3.HL 0 0 133 0 0.22 1

## 4.HH 0 0 0 55 0.09 1

## ------ ------ ------ ------ ------ ------

## mrg 0.16 0.53 0.22 0.09 1 1

## Rcl 1.00 1.00 1.00 1.00 1 NaN

## Fms 1.00 1.00 1.00 1.00 NaN 1

# the expert labeling given in expth$lbl is used by default

Nonetheless, the binClstPath class has some particular functionalities of special interest for the case of
behavioral annotation of movement trajectories. These functionalities are described in the following.

4.2.1 Labeling profile

The function lblp() plots the temporal series of data and the temporal profile of the behavioral labeling;

# lims=c(a, b) limits the plot to a chunk of the trajectory

lblp(mybcp, lims=c(100, 500))
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4.2.2 Fast visualization of the annotated trajectory

The function view() shows the annotated trajectory and a top panel with the temporal sequence of behaviors;

# this function allows a parameter lims=c(a,b) as well

view(mybcp, lims=c(100, 500))
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4.2.3 Detailed inspection of the annotated trajectory

We can generate kml or html documents for a detailed inspection of the output by means of google-earth
or the user’s system browser. The package allows two types of visualization of the annotated trajectory:
a point-wise visualization (functions pkml() or pmap()) or a burst-wise visualization (functions bkml() or
bmap()) (Garriga et al. 2016);
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# point-wise kml doc generation;

# display=TRUE launches google-earth from within R;

pkml(bc, display=TRUE)

By default, the kml or html documents are named with a Sys.time() based name and saved in a folder embcdocs
automatically generated in the user’s home directory. This can be modified by means of the corresponding
parameters.

The burst-wise visualization requires the computation of burst segments and midpoints. This is computed
only the first time that a burst-visualization of a trajectory is requested. In case of long trajectories, this
process can take some time.

4.2.4 Plot intermediate variables

Intermediate data computed by the stbc() constructor and stored in the binClstPath object can be easily
plotted with automatic formatting and labeling of axes;

# plotting time-spans, distances and heading directions;

# this is the default behavior when we just pass the binClstPath instance;

varp(mybcp)
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# plotting input data (estimated local values of velocity and turn);

varp(mybcp@X)
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# plotting certainties associated to each data-point (and input feature)

varp(mybcp@U)
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Indeed, the function varp() is a wrapper for the R plot() function. The purpose of this function is simply to
ease the visualization of intermediate variables by formatting and labeling the axes accordingly to each one.

4.3 Using Move objects from the R-package move

Note: the dependency with respect to the move R-package has been dropped, and the use of

the old binClstMove objects is now deprecated. Nonetheless Move objects can still be passed

directly to the stbc() function.

This is intended for users having trajectories in Movebank (https://www.movebank.org/) and familiarized
with the move R-package. Let’s use the leroy data in the Move R-package.

library(move)

data(leroy)

leroy is a GPS trajectory of an urban Fisher (Martes pennati) with 919 tracks, spanning from 2009-02-11
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12:16:45 to 2009-03-04 09:16:59.998, with a mean time interval between tracks of 32.7 minutes. Move objects
can be passed directly to the stbc() constructor;

# leroy is passed directly to the constructor

leroybc <- stbc(leroy, info=-1)

## [1] 0 -0.0000e+00 4 919

## [1] ... Stable clustering

4.4 Trivariate clustering: including a daytime covariate

Daytime covariates refer to the solar position. This can be given as solar height in degrees above the horizon
(night/day distinction), or by solar azimuth in degrees from north (sunrise/sunset distinction).

Including daytime covariates is the natural way of incorporating time information in the clustering of an
animal’s movement trajectory, with the potential advantage of increasing the maximum number of output
clusters to 2

3
= 8, i.e. the number of movement behaviors that can potentially be distinguish.

A trivariate clustering including a daytime covariate is done by means of the parameter scv with possible
values ‘height’ or ‘azimuth’;

leroybc3 <- stbc(leroy, scv='height', info=-1)

## [1] 0 -0.0000e+00 8 919

## [1] ... Stable clustering

The output of the stbc() constructor is still a binClstPath (the binClstMove object of previous versions is
deprecated). As we included a covariate, leroybc3 corresponds now to a trivariate binary clustering and
therefore its functionality presents some particularities.

Let’s see the statistics of the clustering;

stts(leroybc3)

## X1.mn X1.sd X2.mn X2.sd X3.mn X3.sd kn kn(%)

## 1 LLL -54.05 5.00 0.04 0.10 1.09 0.80 117 12.73

## 2 LLH -51.57 5.44 0.03 0.10 2.89 0.20 85 9.25

## 3 LHL -27.80 18.93 0.56 0.21 0.38 0.27 79 8.60

## 4 LHH -33.94 19.46 0.49 0.17 1.89 0.61 62 6.75

## 5 HLL -0.28 25.43 0.04 0.10 1.26 0.79 281 30.58

## 6 HLH 2.24 23.99 0.03 0.10 2.87 0.19 182 19.80

## 7 HHL 29.03 6.36 0.55 0.22 0.65 0.42 96 10.45

## 8 HHH 32.89 5.00 0.52 0.26 2.53 0.50 16 1.74

Features are ordered as X1:daytime, X2:velocity and X3:turn. Note that highs and lows for daytime (the
solar height in degrees above the horizon) do not necessarily correspond to daytime or night-time clusters
(note the negative mean for X1 in HXX clusters). This is so because almost all of the activity of this animal
happens during the night and it is more likely to discern different behaviors along night-time.

4.5 Trivariate clustering scatter plot

By default, the sctr() function of a trivariate clustering depicts a double scatter-plot corresponding to low
and high values of the covariate respectively. This can be changed by means of the parameter showVars=c().

sctr(leroybc3, showVars=c(1, 2, 3))
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# showVars=c(1,2,3) is the default option and it is only shown for illustrative purposes

# by default the background colour is set to light-grey to enhance visibility

# the "bg"" parameter allows changing this default behavior

If the R-package rgl is installed one can use the function sct3() to get a dynamic 3D (i.e. can be zoomed and
rotated) plot, more useful for a visual understanding of the clusters.

sct3(leroybc3, showClst=c(5, 6, 7, 8))

# with showClst=c() we can restrict the plot to a particular subset of clusters

The sct3() function is defined for and inherited from the binClst class, and therefore intended for a general
multivariate clustering. If the number of input features is greater than 3 and showVars=c() is not specified,
the first three variables are used by default.

4.6 Smoothing

When clustering a time series the EMbC disregards the temporal information. As a result, the output labeling
may reveal small (possibly irrelevant) changes in behavior framed in a broader temporal context (e.g. a
long-term predominant behavioral mode).

The package includes two possibilities to account for the temporal information in the time series and smooth
out the fine grain locality of the output labeling.

The smth() function applies a post-smoothing procedure (Garriga et al. 2016) to the output labeling and
returns a smoothed copy of the input instance;

# dlta is the maximum likelihood difference to accept a relabeling

# dlta=1 (accept all changes) is the default behavior

postbc3 <- smth(leroybc3, dlta=0.9)

Alternatively, a pre-smoothing of the input data is also possible by means of the parameter smth of the stbc()
constructor.

# smth sets the smoothing time window length in hours

prebc3 <- stbc(leroy, smth=1, scv='height', info=-1)
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## [1] 0 -0.0000e+00 8 919

## [1] ... break: optimization cycle

The lblp() function allows comparing two output labelings, adding a bottom line indicating the differences;

lblp(postbc3, smth(prebc3), lims=c(200, 600))

200 300 400 500 600

loc.

LLL
LLH
LHL
LHH
HLL
HLH
HHL
HHH
LLL
LLH
LHL
LHH
HLL
HLH
HHL
HHH

# of note:

# although performing a pre-smoothing, we can still aply a post-smoothing;

# there is no real need to instantiate the smoothed copy of prebc3;

# this is useful for saving memory in case of long trajectories;

4.7 Relabeling

Note that by pre-smoothing the input data, cluster 5 (HLL) has been merged into cluster 6 (HLH) and we get
a final clustering with only 7 different behaviors. When merging occurs, the semantics of the final labeling is
somewhat misleading because the final labeling is only a result of how the algorithm evolved until reaching
the merging point. In any case, the label should be read as HLX, that is, by taking into account that the last
feature (in this case the turn) is meaningless given the values of the rest (i.e turn can be either H or L given
H values of daytime and L values of velocity).

Using the pkml() function we can visualize which locations correspond to cluster HLH;

pkml(smth(prebc3), showClst=6, display=TRUE)

By combining the spatially clustered distribution of locations HLX (Figure 1) with the semantics of the
cluster (high daytime, low velocity), we could tell that these locations are most probably indicating the nests.

Obviously, the package does not deal with labels like HLX. However, one can change labels as desired (even
to manually force the merging of two clusters). In this case, we would probably feel more comfortable by
relabeling the cluster HLH (cluster number 6) as HLL (cluster number 5) to suggest a more clear semantics
of resting behavior;

rlbl(prebc3, 6, 5)

Note that the function rlbl() does not return a relabeled copy of the input instance, instead it relabels the
self instance. Nonetheless, the parameters of the clustering remain unchanged. The relabeling is effective
only for visualization purposes and can be easily reversed by means of the parameter “reset”.
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Figure 1: Fisher (Martes pennati) foraging trajectory. A kml point-wise view of the annotated trajectory
showing only the HLH locations. The blob shows the spatial clustering of these locations most likely indicating
the nest.

4.8 Validation versus external information

The chkp() function is similar to lblp() but plots the labeling profile versus a control variable (e.g. environmental
information). The control variable must be given as a numeric vector that is depicted as coloured background
bars (with specific parameters to control the colouring and legend labels);

chkp(smth(prebc3), lims=c(200, 600))

200 300 400 500 600

loc.

LLL

LLH

LHL

LHH

HLL

HLH

HHL

HHH

daytime nighttime

# the solar height is the control variable used by default;

# note the relabeling we did before;

5 Class: binClstStck

The binClstStck is an extension (not a child class) of the binClstPath class particularly designed to work with
multiple trajectories. This is intended for population level analysis from trajectories of several individuals, or
period level analysis by splitting long trajectories of several years.

To illustrate this let’s figure out two trajectories from our example path, simulating two different individuals;

tmp <- runif(nrow(expth))

# simulated trajectory of individual 1

expth1 <- expth[which(tmp<=0.5), ]
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# simulated trajectory of individual 2

expth2 <- expth[which(tmp>=0.5), ]

To perform the clustering of a stack of trajectories we pass the individual trajectories to the stbc() constructor
as a list (either of data.frame trajectories, Move objects, or a mixture of them);

# we can combine data.fame trajectories and move objects

# only for illustrative purposes !!!

mystck <- stbc(list(expth1, expth2, leroy), info=-1)

## [1] 0 -0.0000e+00 4 1519

## [1] ... Stable clustering

In this case, the stbc() constructor returns an instance of the binClstStck class. In general, all the functionality
described for a binClst class will work for a binClstStck instance;

stts(mystck)

## X1.mn X1.sd X2.mn X2.sd kn kn(%)

## 1 LL 0.32 0.33 0.81 0.78 770 50.69

## 2 LH 0.04 0.10 2.70 0.41 416 27.39

## 3 HL 6.50 3.46 0.41 0.24 162 10.66

## 4 HH 3.28 3.23 2.16 0.66 168 11.06

sctr(mystck)
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The exception is the cnfm() function. This function will work only if expert’s labeling is supplied for all
trajectories in the stack (in our example, leroy does not have expert’s labeling);

cnfm(mystck)

## Error: no reference labels for obj

# this will only work when expert labeling is given for all trajectories in the stack

5.1 binClstStck slots

It is worth noting that a binClstStck instance is not a binary clustering object itself. Instead, it is an object
with two slots:
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slotNames(mystck)

## [1] "bCS" "bC"

• slot mystck@bC is a binClst object with the population level clustering, thus it has no path associated,
and functions like view(), pkml() or bkml() will not work;

class(mystck@bC)

## [1] "binClst"

## attr(,"package")

## [1] "EMbC"

• slot mystck@bCS is a list of binClstPath objects, which are the results of the population level clustering
upon each individual;

class(mystck@bCS)

## [1] "list"

Each element in mystck@bCS is a binClstPath instance corresponding to each individual path given in the
input data list;

lapply(mystck@bCS, class)

## [[1]]

## [1] "binClstPath"

## attr(,"package")

## [1] "EMbC"

##

## [[2]]

## [1] "binClstPath"

## attr(,"package")

## [1] "EMbC"

##

## [[3]]

## [1] "binClstPath"

## attr(,"package")

## [1] "EMbC"

It is important to keep this in mind when applying the above functions to either the population (mystck@bC,
a binClst instance) or the individual (mystck@bCS[[i]], a binClstPath instance) levels.

5.2 Select an individual out of the stack

For ease of use, the function slct() allows selecting an individual’s clustering out of the population level;

bcInd1 <- slct(mystck,1)

As usual, it is not necessary to instantiate each individual;

sctr(slct(mystck, 1)) # left panel

sctr(slct(mystck, 3)) # right panel
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# sctr(slct(mystck,1)) yields the same output as sctr(bcInd1) or sctr(mystck@bCS[[1]]);

5.3 Comparing individual’s behavior with population’s average behavior

We can use all the functionality of a binClstPath object that allows comparisons (e.g. sctr(), lblp(), cnfm())
to make numeric assessments or visualizations of diferences among individuals or among individuals and
population:

• we can compare individuals with their correspondent out of the population clustering;

cnfm(stbc(expth1, info=-1), slct(mystck, 1))

## [1] 0 -0.0000e+00 4 296

## [1] ... Stable clustering

## cls.01 cls.02 cls.03 cls.04 mrg. Prc.

## 1.LL 35 0 7 0 0.14 0.83

## 2.LH 84 16 6 51 0.53 0.10

## 3.HL 0 0 62 6 0.23 0.91

## 4.HH 0 0 0 28 0.09 1.00

## ------ ------ ------ ------ ------ ------

## mrg 0.40 0.05 0.25 0.29 0.48 0.71

## Rcl 0.29 1.00 0.83 0.33 0.61 NaN

## Fms 0.43 0.18 0.87 0.50 NaN 0.50

# stbc(expth1, info=-1) is the individual level clustering corresponding to individual 1;

# slct(mystck, 1) is the population level clustering corresponding to individual 1;

• or we can compare individuals within the population;

lblp(slct(mystck, 1), slct(mystck, 2))
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