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Chapter 1

Using simlexis

1.1 Introduction

This vignette explains the machinery behind simulation of life histories through multistate
models implemented in simLexis. In simLexis transition rates are allowed to depend on
multiple time scales, including timescales defined as time since entry to a particular state
(duration). This therefore also covers the case where time at entry into a state is an
explanatory variable for the rates, since time at entry is merely time minus duration. Thus,
the set-up here goes beyond Markov- and semi-Markov-models, and brings simulation based
estimation of state-occupancy probabilities into the realm of realistic multistate models.

The basic idea is to simulate a new Lexis object [3, 1] as defined in the Epi package for
R, based on 1) a multistate model defined by its states and the transition rates between
them and 2) an initial population of individuals.

Thus the output will be a Lexis object describing the transitions of a predefined set of
persons through a multistate model. Therefore, if persons are defined to be identical at
start, then calculation of the probability of being in a particular state at a given time boils
down to a simple enumeration of the fraction of the persons in the particular state at the
given time. Bar of course the (binomial) simulation error, but this can be brought down by
simulation a sufficiently large number of persons.

An observed Lexis object with follow-up of persons through a number of states will
normally be the basis for estimation of transition rates between states, and thus will
contain all information about covariates determining the occurrence rates, in particular the
timescales [2|. Hence, the natural input to simulation from an estimated multistate model
will typically be an object of the same structure as the originally observed. Since
transitions and times are what is simulated, any values of lex.Xst and lex.dur in the
input object will of course be ignored.

This first chapter of this vignette shows by an example how to use the function
simLexis and display the results. The second chapter discusses in more detail how the
simulation machinery is implemented and is not needed for the practical use of simLexis.

1.2 simLexis in practice

This section is largely a commented walk-trough of the example from the help-page of
simLexis, with a larger number of simulated persons in order to minimize the pure
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simulation variation.

When we want to simulate transition times through a multistate model where transition
rates may depend on time since entry to the current or a previous state, it is essential that
we have a machinery to keep track of the transition time on all time scales, as well as a
mechanism that can initiate a new time scale to 0 when a transition occurs to a state
where we shall use time since entry as determinant of exit rates from that state. This is
provided by simLexis.

1.2.1 Input for the simulation

Input for simulation of a single trajectory through a multistate model requires a
representation of the current status of a person; the starting conditions. The object that
we supply to the simulation function must contain information about all covariates and all
timescales upon which transitions depend, and in particular which one(s) of the timescales
that are defined as time since entry into a particular state. Hence, starting conditions
should be represented as a Lexis object (where lex.dur and lex.Xst are ignored, since
there is no follow-up yet), where the time scale information is in the attributes
time.scales and time.since respectively.

Note that time.scales attribute is a vector of names of variables in the Lexis object,
so all of these variables should be present even if they are not used in the models for the
transitions, and they should be set to 0; if they are not in the initial dataset, simLexis will
crash, if they are NA, the simLexis will produce an object with 0 rows.

Thus there are two main arguments to a function to simulate from a multistate model:

1. A Lexis object representing the initial states and covariates of the population to be
simulated. This has to have the same structure as the original Lexis object
representing the multistate model from which transition rates in the model were
estimated. As noted above, the values for lex.Xst and lex.dur are not required
(since these are the quantities that will be simulated).

2. A transition object, representing the transition intensities between states, which
should be a list of lists of intensity representations. As an intensity representation we
mean a function that for a given Lexis object can be used to produce estimates of
the transition intensities at a set of supplied time points.

The names of the elements of the transition object (which are lists) will be names of
the transient states, that is the states from which a transition can occur. The names
of the elements of each of these lists are the names of states to which transitions can
occur (which may be either transient or absorbing states).

Hence, if the transition object is called Tr then TR$A$B (or Tr[["A"]11 [["B"]]) will
represent the transition intensity from state A to the state B.

The entries in the transition object can be either glm objects (either with poisson or
poisreg family), representing Poisson models for the transitions, coxph objects
representing an intensity model along one time scale, or simply a function that takes
a Lexis object as input and returns an estimated intensity for each row.

In addition to these two input items, there will be a couple of tuning parameters.
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The output of the function will simply be a Lexis object with simulated transitions
between states. This will be the basis for deriving sensible statistics from the Lexis object
— see next section.

1.3 Setting up a Lexis object

As an example we will use the DMlate dataset from the Epi package; it is a dataset
simulated to resemble a random sample of 10,000 patients from the Danish National
Diabetes Register.

We start by loading the Epi package:

> options( width=90 )

> library( Epi )

> print( sessionInfo(), 1=F )

R version 4.3.0 (2023-04-21)

Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Debian GNU/Linux 12 (bookworm)

Matrix products: default
BLAS:  /home/Hornik/tmp/R-r/1lib/libRblas.so
LAPACK: /usr/1ib/x86_64-1linux-gnu/lapack/liblapack.s0.3.11.0

attached base packages:
[1] stats graphics grDevices utils datasets methods  base

other attached packages:
[1] survival_3.5-5 tidyr_1.3.0 dplyr_1.1.2 Epi_2.47.1

loaded via a namespace (and not attached):

[1] etm_1.1.1 vetrs_0.6.2 nlme_3.1-162 cli_3.6.1

[5] rlang 1.1.0 purrr_1.0.1 cmprsk_2.2-11 generics_0.1.3
[9] data.table_1.14.8 zoo_1.8-12 glue_1.6.2 plyr_1.8.8

[13] fansi_1.0.4 grid_4.3.0 tibble_3.2.1 MASS_7.3-58.4
[17] numDeriv_2016.8-1.1 lifecycle_1.0.3 compiler_4.3.0 Rcpp_1.0.10
[21] pkgconfig 2.0.3 mgcv_1.8-42 lattice_0.21-8 R6_2.5.1

[25] tidyselect_1.2.0 utf8_1.2.3 pillar_1.9.0 parallel_4.3.0
[29] splines_4.3.0 magrittr_2.0.3 Matrix_1.5-4 withr_2.5.0

[33] tools_4.3.0

First we load the diabetes data and set up a simple illness-death model:

> data(DMlate)

> dml <- Lexis( entry = list(Per=dodm, Age=dodm-dobth, DMdur=0 ),

+ exit list (Per=dox),

+ exit.status = factor(!is.na(dodth),labels=c("DM", "Dead")),
+ data = DMlate )

NOTE: entry.status has been set to "DM" for all.

NOTE: Dropping 4 rows with duration of follow up < tol

This is just data for a simple survival model with states DM and Dead. Now we cut the
follow-up at insulin start, which for the majority of patients (T2D) is a clinical indicator of
deterioration of disease regulation. We therefore also introduce a new timescale, and split
the non-precursor states, so that we can address the question of ever having been on
insulin:
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Multistate models with multiple timescales

> dmi <- cutLexis( dml, cut = dml$doins,

+ pre = HDMH,

+ new.state = "Ins",

+ new.scale = "t.Ins",

+ split.states = TRUE )

> summary( dmi, timeScales=T )

Transitions:

To

From DM Ins Dead Dead(Ins) Records:
DM 6157 1694 2048 0 9899
Ins 0 1340 0 451 1791
Sum 6157 3034 2048 451 11690

Timescales:
Per Age DMdur t.Ins
nn nn nn n Ins n

Events: Risk time: Persons:
3742 45885.49 9899
451 8387.77 1791
4193 54273.27 9996

Note that we show the time scales in the Lexis object, and that it is indicated that the
time scale t.Ins is defined as time since entry into stat state Ins.

We can show how many person-years we have and show the number of transitions and
transition rates (per 1000), using the boxes.Lexis function to display the states and the

number of transitions between them:

> boxes( dmi, boxpos = list(x=c(20,20,80,80),

+ y=c(80,20,80,20)),
+ scale.R = 1000, show.BE = TRUE )
2,048
DM '
45,8855  |—(246)p 0 Deazd ons
9,899 6,157 '
1,694
(36.9)
I!S 451
8.387.8 (53.82. 0Dead(l 2;)1
97 1,340

Figure 1.1: Data overview for the dmi dataset. Numbers in the boxes are person-years and
the number of persons who begin, resp. end their follow-up in each state, and numbers on the
arrows are no. of transitions and rates (transition intensities) per 1000 PY../sinLexis-boxes
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1.4 Analysis of rates

In the Lexis object (which is just a data frame) each person is represented by one record
for each transient state occupied, thus in this case either 1 or 2 records; those who have a
recorded time both without and with insulin have two records.

In order to be able to fit Poisson models with occurrence rates varying by the different
time-scales, we split the follow-up in 3-month intervals for modeling:

> Si <- splitLexis( dmi, seq(0,20,1/4), "DMdur" )
> summary( Si )

Transitions:
To
From DM Ins Dead Dead(Ins) Records: Events: Risk time: Persons:
DM 184986 1694 2048 0 188728 3742 45885.49 9899
Ins 0 34707 0 451 35158 451 8387.77 1791
Sum 184986 36401 2048 451 223886 4193 54273.27 9996
> print( subset( Si, lex.id==97 )[,1:10], digits=6 )
lex.id Per Age DMdur t.Ins lex.dur lex.Cst  lex.Xst sex dobth
97 1997.55 58.93 0.00 NA 0.25 DM DM F 1938.62
97 1997.80 59.18 0.25 NA 0.25 DM DM F 1938.62
97 1998.05 59.43 0.50 NA 0.25 DM DM F 1938.62
97 1998.30 59.68 0.75 NA 0.25 DM DM F 1938.62
97 1998.55 59.93 1.00 NA 0.25 DM DM F 1938.62
97 1998.80 60.18 1.25 NA 0.25 DM DM F 1938.62
97 1999.05 60.43 1.50 NA 0.25 DM DM F 1938.62
97 1999.30 60.68 1.75 NA 0.25 DM DM F 1938.62
97 1999.55 60.93 2.00 NA 0.18 DM Ins F 1938.62
97 1999.72 61.11 2.18 0.00 0.07 Ins Ins F 1938.62
97 1999.80 61.18 2.25 0.07 0.25 Ins Ins F 1938.62
97 2000.05 61.43 2.50 0.32 0.25 Ins Ins F 1938.62
97 2000.30 61.68 2.75 0.57 0.25 Ins Ins F 1938.62
97 2000.55 61.93 3.00 0.82 0.01 Ins Dead(Ins) F 1938.62

Note that when we split the follow-up, each person’s follow up now consists of many
records, each with the current values of the timescales at the start of the interval
represented by the record. In the modeling we shall assume that the rates are constant
within each 6-month interval, but the size of these rates we model as smooth functions of
the time scales (that is the values at the beginning of each interval).

The approach often used in epidemiology where one parameter is attached to each
interval of time (or age) is not feasible when more than one time scale is used, because
intervals are not classified the same way on all timescales.

We shall use natural splines (restricted cubic splines) for the analysis of rates, and hence
we must allocate knots for the splines. This is done for each of the time-scales, and
separately for the transition out of states DM and Ins. For age, we place the knots so that
the number of events is the same between each pair of knots, but only half of this beyond
each of the boundary knots, whereas for the timescales DMdur and tIns where we have
observation from a well-defined 0, we put knots at 0 and place the remaining knots so that
the number of events is the same between each pair of knots as well as outside the
boundary knots.
> nk <- 5

> (ai.kn <- with( subset(Si,lex.Xst=="Ins" & lex.Cst!=lex.Xst ),
+ quantile( Age+lex.dur , probs=(1:nk-0.5)/nk ) ) )
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10% 30% 50% 70% 90%
23.23751 48.82218 58.63244 67.79028 78.88542

> ( ad.kn <- with( subset(Si,lex.Xst=="Dead"),
+ quantile( Age+lex.dur , probs=(1:nk-0.5)/nk ) ) )

10% 30% 50% 70% 90%
61.91951 72.52731 78.43121 83.32348 90.15195

> ( di.kn <- with( subset(Si,lex.Xst=="Ins" & lex.Cst!=lex.Xst ),

+ c(0,quantile( DMdur+lex.dur, probs=(1:(nk-1))/nk ) )) )
20% 40% 607% 80%

0.00000000 0.06570842 0.45448323 3.28761123 6.63764545

> ( dd.kn <- with( subset(Si,lex.Xst=="Dead"),

+ c(0,quantile( DMdur+lex.dur, probs=(1:(nk-1))/nk ) )) )
20% 40% 607% 80%

0.0000000 0.7687885 2.1327858 4.0465435 6.5232033

> ( ti.kn <- with( subset(Si,lex.Xst=="Dead(Ins)"),

+ c(0,quantile( t.Ins+lex.dur, probs=(1:(nk-1))/nk ) )) )

20% 40% 60% 80%
0.0000000 0.3093771 1.1307324 2.5489391 4.9117043

Note that when we tease out the event records for transition to transient states (in this
case Ins, that is lex.Xst=="Ins"), we should add lex.Cst!=1lex.Xst, to include only
transition records and avoiding including records of sojourn time in the transient state.

We then fit Poisson models to transition rates, using the wrapper Ns from the Epi
package to simplify the specification of the rates:

> library( splines )

> DM.Ins <- glm( (lex.Xst=="Ins") ~ Ns( Age , knots=ai.kn ) +
+ Ns( DMdur, knots=di.kn ) +
+ I(Per-2000) + sex,

+ family=poisson, offset=log(lex.dur),

+ data = subset(Si,lex.Cst=="DM") )

> ci.exp( DM.Ins )

exp(Est.) 2.5% 97.5%
(Intercept) 1.37516629 1.21414923 1.55753699
Ns(Age, knots = ai.kn)1 0.23411761 0.19185266 0.28569349
Ns(Age, knots = ai.kn)2 0.23166177 0.19576557 0.27414000
Ns(Age, knots = ai.kn)3 0.02835009 0.02284379 0.03518363
Ns(Age, knots = ai.kn)4  0.38067392 0.32945713 0.43985278
Ns(DMdur, knots = di.kn)1 0.04462626 0.03373451 0.05903459
Ns(DMdur, knots = di.kn)2 0.22388988 0.19028663 0.26342723
Ns(DMdur, knots = di.kn)3 0.03379141 0.02574708 0.04434907
Ns(DMdur, knots = di.kn)4 0.47100646 0.40783317 0.54396529
I(Per - 2000) 0.97381513 0.96082049 0.98698552
sexF 0.73757407 0.66886782 0.81333785

> class( DM.Ins )
[1] “glm“ ||lmu

We can also fit this model with a slightly simpler syntax using the glm.Lexis function:

> DM.Ins <- glm.Lexis( Si, from "DM", to = "Ins",

+ formula = ~ Ns( Age , knots=ai.kn ) +
+ Ns( DMdur, knots=di.kn ) +
+ I(Per-2000) + sex )
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stats::glm Poisson analysis of Lexis object Si with log link:
Rates for the transition:
DM->Ins

> ci.exp( DM.Ins )

exp(Est.) 2.5% 97.5%
(Intercept) 1.37516630 1.21415038 1.55753552
Ns(Age, knots = ai.kn)1 0.23411761 0.19185214 0.28569426
Ns(Age, knots = ai.kn)2 0.23166177 0.19576473 0.27414118
Ns(Age, knots = ai.kn)3 0.02835009 0.02284374 0.03518371
Ns(Age, knots = ai.kn)4 0.38067392 0.32945601 0.43985427
Ns(DMdur, knots = di.kn)1 0.04462625 0.03373347 0.05903639
Ns(DMdur, knots = di.kn)2 0.22388988 0.19028599 0.26342813
Ns(DMdur, knots = di.kn)3 0.03379141 0.02574705 0.04434912
Ns(DMdur, knots = di.kn)4 0.47100646 0.40783201 0.54396683
I(Per - 2000) 0.97381513 0.96082027 0.98698574
sexF 0.73757407 0.66886641 0.81333956
> class( DM.Ins )
[1] “glm.lex“ ||g1m|| nlmu

So we have a slightly simpler syntax, and we get an informative message of which
transition(s) we are modeling. However we do not have update method for these objects.

> DM.Dead <- glm.Lexis( Si, from "DM", to = "Dead",

+ formula = ~ Ns( Age , knots=ad.kn ) +
+ Ns( DMdur, knots=dd.kn ) +
+ I(Per-2000) + sex )

stats::glm Poisson analysis of Lexis object Si with log link:
Rates for the transition:

DM->Dead

> Ins.Dead <- glm.Lexis( Si, from = "Ins",

+ formula = ~ Ns( Age , knots=ad.kn ) +
+ Ns( DMdur, knots=dd.kn ) +
+ Ns( t.Ins, knots=ti.kn ) +
+ I(Per-2000) + sex )

stats::glm Poisson analysis of Lexis object Si with log link:
Rates for the transition:
Ins->Dead(Ins)

Note the similarity of the code used to fit the three models, is is mainly redefining the
response variable (to state) and the subset of the data used (from state). Also note that
the last model need no specification of to, the default is to model all transitions from the
from state, and his case there is only one.

1.5 The mortality rates

This section discusses in some detail how to extract ad display the mortality rates from the
models fitted. But it is not necessary for understanding how to use simLexis in practice.
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1.5.1 Proportionality of mortality rates

Note that we have fitted separate models for the three transitions, there is no assumption
of proportionality between the mortality rates from DM and Ins.

However, there is nothing that prevents us from testing this assumption; we can just fit a
model for the mortality rates in the entire data frame Si, and compare the deviance from
this with the sum of the deviances from the separate models using the glm.Lexis function:

> All.Dead <- glm.Lexis( Si, to = c("Dead(Ins)","Dead"),

+ formula = ~ Ns( Age , knots=ad.kn ) +
+ Ns( DMdur, knots=dd.kn ) +
+ lex.Cst +

+ I(Per-2000) + sex )

stats::glm Poisson analysis of Lexis object Si with log link:
Rates for transitions:

Ins->Dead(Ins)

DM->Dead

> round( ci.exp( All.Dead ), 3 )
exp(Est.) 2.5% 97.5}

(Intercept) 0.057 0.049 0.065
Ns(Age, knots = ad.kn)1 4.101 3.462 4.858
Ns(Age, knots = ad.kn)?2 4.661 4.064 5.346
Ns(Age, knots = ad.kn)3 15.434 13.548 17.583
Ns(Age, knots = ad.kn)4 7.509 6.695 8.421
Ns (DMdur, knots = dd.kn)1 0.466 0.384 0.565
Ns(DMdur, knots = dd.kn)2 0.642 0.563 0.731
Ns(DMdur, knots = dd.kn)3 0.229 0.165 0.318
Ns (DMdur, knots = dd.kn)4 0.796 0.713 0.888
lex.CstIns 2.168 1.947 2.415
I(Per - 2000) 0.965 0.954 0.977
sexF 0.665 0.614 0.721

Incidentally we could have dispensed with the to= argument too, because the default is to
take to to be all absorbing states in the model.

From the parameter values we would in a simple setting just claim that start of
insulin-treatment was associated with a slightly more than doubling of mortality.

The model All.dead assumes that the age- and DM-duration effects on mortality in the
DM and Ins states are the same, and moreover that there is no effect of insulin duration,
but merely a mortality that is larger by a multiplicative constant not depending on insulin
duration. The model DM.Dead has 8 parameters to describe the dependency on age and
DM duration, the model Ins.Dead has 12 for the same plus the insulin duration (a natural
spline with k& knots gives k — 1 parameters, and we chose k = 5 above).

We can compare the fit of the simple proportional hazards model with the fit of the
separate models for the two mortality rates, by adding up the deviances and d.f. from
these:

> what <- c("null.deviance",'"df.null", "deviance", "df.residual")
> ( rD <- unlist( DM.Dead[what] ) )

null.deviance df .null deviance df .residual
22535.77 188727.00 20412.81 188717.00

> ( rI <- unlist( Ins.Dead[what] ) )
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null.deviance df .null deviance df .residual
4867 .127 35157.000 4211.735 35143.000

> ( rA <- unlist( All.Dead[what] ) )

null.deviance df .null deviance df .residual
27415.21 223885.00 24705.70 223874.00

> round( c¢( dd <- rA-(rI+rD), "pVal"=1-pchisq(dd[3],dd[4]+1) ), 3 )

null.deviance df .null deviance  df.residual pVal.deviance
12.314 1.000 81.154 14.000 0.000

Thus we see there is a substantial non-proportionality of mortality rates from the two
states; but a test provides no clue whatsoever to the particular shape of the
non-proportionality.

To this end, we shall explore the predicted mortalities under the two models
quantitatively in more detail. Note that the reason that there is a difference in the null
deviances (and a difference of 1 in the null d.f.) is that the null deviance of A11.Dead refer
to a model with a single intercept, that is a model with constant and identical mortality
rates from the states DM and Ins, whereas the null models for DM.Dead and Ins.Dead have
constant but different mortality rates from the states DM and Ins. This is however
irrelevant for the comparison of the residual deviances.

1.5.2 How the mortality rates look

If we want to see how the mortality rates are modelled in DM.Dead and Ins.Dead in
relation to A11.Dead, we make a prediction of rates for say men diagnosed in different ages
and going on insulin at different times after this. So we consider men diagnosed in ages 40,
50, 60 and 70, and who either never enter insulin treatment or do it 0, 2 or 5 years after
diagnosis of DM.

To this end we create a prediction data frame where we have observation times from
diagnosis and 12 years on (longer would not make sense as this is the extent of the data).

But we start by setting up an array to hold the predicted mortality rates, classified by
diabetes duration, age at diabetes onset, time of insulin onset, and of course type of model.
What we want to do is to plot the age-specific mortality rates for persons not on insulin,
and for persons starting insulin at different times after DM. The mortality curves start at
the age where the person gets diabetes and continues 12 years; for persons on insulin they

start at the age when they initiate insulin.
> pr.rates <- NArray( list( DMdur = seq(0,12,0.1),
+ DMage = 4:7%10,
+ r.Ins = c¢(NA,0,2,5),
+ model = c("DM/Ins","A11"),
+ what = c("rate","lo","hi") ) )
> str( pr.rates )
logi [1:121, 1:4, 1:4, 1:2, 1:3] NA NA NA NA NA NA ...
- attr(*, "dimnames")=List of 5
..$ DMdur: chr [1:121] "O"™ "O.1" "0.2" "0.3" ...
..$ DMage: chr [1:4] "40" "50" "60" "70"
..$ r.Ins: chr [1:4] NA "Q" m"2" ng"
..$ model: chr [1:2] "DM/Imns" "A11l"
..$ what : chr [1:3] "rate" "lo" "hi"
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For convenience the Epi package contains a function that computes predicted (log-)rates
with c.i. — it is merely a wrapper for predict.glm.

So we set up the prediction data frame and modify it in loops over ages at onset and
insulin onset in order to collect the predicted rates in different scenarios:
> nd <- data.frame( DMdur = as.numeric( dimnames(pr.rates)[[1]] ),
+ lex.Cst = factor( 1, levels=1:4,

+ labels=levels(Si$lex.Cst) ),
+ sex = factor( 1, levels=1:2, labels=c("M","F")) )

Note that we did not insert lex.dur as covariate in the prediction frame. This would be
required if we used the poisson family with the glm, but the wrapper glm.Lexis uses the
poisreg family, so lex.dur is ignored and predictions always comes in the (inverse) units
of lex.dur. So we get rates per 1 person-year in the predictions.

> for( ia in dimnames(pr.rates)[[2]] )

+ {

+ dnew <- transform( nd, Age = as.numeric(ia)+DMdur,

+ Per = 1998+DMdur )

+ pr.rates[,ia,1,"DM/Ins",] <- ci.pred( DM.Dead, newdata = dnew )

+ pr.rates[,ia,1,"A11" ,] <- ci.pred( All.Dead, newdata = dnew )

+ for( ii in dimnames(pr.rates) [[3]][-1] )

+ {

+ dnew = transform( dnew, lex.Cst = factor( 2, levels=1:4,

+ labels=levels(Si$lex.Cst) ),
+ t.Ins = ifelse( (DMdur-as.numeric(ii)) >= 0,
+ DMdur-as.numeric(ii), NA ) )
+ pr.rates[,ia, ii ,"DM/Ins",] <- ci.pred( Ins.Dead, newdata = dnew )

+ pr.rates[,ia, ii ,"A11" ,] <- ci.pred( All.Dead, newdata = dnew )

+ }

+ }

So for each age at DM onset we make a plot of the mortality as function of current age
both for those with no insulin treatment and those that start insulin treatment 0, 2 and 5
years after diabetes diagnosis, thus 4 curves (with c.i.). These curves are replicated with a
different color for the simplified model.

> par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, las=1 )

> plot( NA, xlim=c(40,82), ylim=c(5,300), bty="n",

+ log="y", xlab="Age", ylab="Mortality rate per 1000 PY" )

> abline( v=seq(40,80,5), h=outer(1:9,10°(0:2),"*"), col=gray(0.8) )

> for( aa in 4:7*10 ) for( ii in 1:4 )

+ matshade( aatas.numeric(dimnames (pr.rates)[[1]]),

+ cbind( pr.rates[,paste(aa),ii,"DM/Ins",],

+ pr.rates[,paste(aa),ii,"A11" ,] )*1000,

+ type="1", 1ty=1, lwd=2,

+ col=c("red","limegreen") )

From figure 1.2 we see that there is a substantial insulin-duration effect which is not
accommodated by the simple model with only one time-dependent variable to describe the
insulin effect. Note that the simple model (green curves) for those on insulin does not
depend in insulin duration, and hence the mortality curves for those on insulin are just
parallel to the mortality curves for those not on insulin, regardless of diabetes duration (or
age) at the time of insulin initiation. This is the proportional hazards assumption. Thus
the effect of insulin initiation is under-estimated for short duration of insulin and
over-estimated for long duration of insulin.
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Figure 1.2: Estimated mortality rates for male diabetes patients with no insulin (lower sets
of curves) and insulin (upper curves), with DM onset in age 40, 50, 60 and 70. The red
curves are from the models with separate age effects for persons with and without insulin,
and a separate effect of insulin duration. The green curves are from the model with common
age-effects and only a time-dependent effect of insulin, assuming no effect of insulin duration
(the classical time-dependent variable approach). Hence the upper green curve is common
for any time of insulin inception. ./simLexis-mort-int

This is the major discrepancy between the two models, and illustrates the importance of
being able to accommodate different time scales, but there is also a declining overall insulin
effect by age which is not accommodated by the proportional hazards approach.

Finally, this plot illustrates an important feature in reporting models with multiple
timescales; all timescales must be represented in the predicted rates, only reporting the
effect of one timescale, conditional on a fixed value of other timescales is misleading since
all timescales by definition advance at the same pace. For example, the age-effect for a
fixed value of insulin duration really is a misnomer since it does not correspond to any real
person’s follow-up, but to the mortality of persons in different ages but with the same
duration of insulin use.

1.6 Input to the simLexis function

We want to estimate the cumulative probability of being in each of the 4 states, so that we
can assess the fraction of diabetes pateints that go on insulin
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In order to simulate from the multistate model with the estimated transition rates, and
get the follow-up of a hypothetical cohort, we must supply both the transition rates and the
structure of the model as well as the initial cohort status to simLexis.

1.6.1 The transition object

We first put the models into an object representing the transitions; note this is a list of
lists, the latter having glm objects as elements:

> Tr <- 1list( "DM" = list( "Ins" = DM. Ins,
+ "Dead" = DM.Dead ),
+ "Ins" = 1list( "Dead(Ins)" = Ins.Dead ) )

Now we have the description of the rates and of the structure of the model. The Tr object
defines the states and models for all transitions between them; the object Tr$A$B is the
model for the transition intensity from state A to state B.

1.6.2 The initial cohort

We now define an initial Lexis object of persons with all relevant covariates defined. Note
that we use NULL as row indicator in the Lexis object we used for modeling; this conserves
the time.scale and time.since attributes which are needed for the simulation:

> str( ini <- Si[NULL,1:9] )

Classes ‘Lexis’ and 'data.frame': 0 obs. of 9 variables:
$ lex.id : int

$ Per : num

$ Age : num

$ DMdur : num

$ t.Ins : num

$ lex.dur: num

$ lex.Cst: Factor w/ 4 levels "DM","Ins","Dead",..:

$ lex.Xst: Factor w/ 4 levels "DM","Ins","Dead",..:

$ sex : Factor w/ 2 levels "M","F":

- attr(*, "time.scales")= chr [1:4] "Per" "Age" "DMdur" "t.Ins"
- attr(x, "time.since")= chr [1:4] "" "w wn uIpg"

attr(*, "breaks")=List of 4

..$ Per : NULL

..$ Age : NULL

..$ DMdur: num [1:81] 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 ...
..$ t.Ins: NULL

We now have an empty Lexis object with attributes reflecting the timescales in the
multistate model we want to simulate from. But we must enter some data to represent the
initial state of the persons whose follow-up we want to simulate through the model; so fill
in data for one man and one woman:

ini[1:2,"lex.id"] <- 1:2
ini[1:2,"lex.Cst"] <- "DM"
ini[1:2,"Per"] <- 1995
ini[1:2,"Age"] <- 60
ini[1:2,"DMdur"] <- 5

ini [l :2, "sex"] <_ C(IIMII, IIFII)
ini

vV VVVYVVYV
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lex.id Per Age DMdur t.Ins lex.dur lex.Cst lex.Xst sex
1 1995 60 5 NA NA DM <NA> M
2 1995 60 5 NA NA DM <NA> F

So the persons starts in age 60 in 1995 with 5 years of diabetes duration. Note that the
t.Ins is NA, because this is a timescale that first comes alive if a transtion to Ins is
simulated.

1.7 Simulation of the follow-up

Now we simulate life-courses of a 1000 of each of these persons using the estimated model.
The t.range argument gives the times range where the integrated intensities (cumulative
rates) are evaluated and where linear interpolation is used when simulating transition
times. Note that this must be given in the same units as lex.dur in the Lexis object used
for fitting the models for the transitions. It is not a parameter that can be easily
determined from the TR object, hence it must be supplied by the user.

> set.seed( 52381764 )
> Nsim <- 5000
> system.time( simlL <- simLexis( Tr,

+ ini,
+ t.range = 12,
+ N = Nsim ) )

user system elapsed
15.060 0.520 15.581

The result is a Lexis object — a data frame representing the simulated follow-up of 10000
persons (5000 identical men and 5000 identical women) according to the rates we estimated
from the original dataset.

> summary( simL, by="sex" )

$M
Transitions:
To
From DM 1Ins Dead Dead(Ins) Records: Events: Risk time: Persons:
DM 1438 2048 1514 0 5000 3562 36620.95 5000
Ins 0 1363 0 685 2048 685 10935.47 2048
Sum 1438 3411 1514 685 7048 4247 47556.41 5000
$F
Transitions:
To
From DM 1Ins Dead Dead(Ins) Records: Events: Risk time: Persons:
DM 2186 1689 1125 0 5000 2814 42181.63 5000
Ins 0 1321 0 368 1689 368 9535.20 1689

Sum 2186 3010 1125 368 6689 3182 51716.83 5000
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1.7.1 Using other models for simulation
Proportional hazards Poisson model

We fitted a proportional mortality model A11.Dead (which fitted worse than the other
two), this is a model for both the transition from DM to Death and from Ins to Dead(Ins),
assuming that they are proportional. But it can easily be used in the simulation set-up,
because the state is embedded in the model via the term lex.Cst, which is updated during
the simulation.

Simulation using this instead just requires that we supply a different transition object:

Tr.p <- list( "DM" = list( "Ins" = DM.Ins,
"Dead" = All.Dead ),
"Ins" = list( "Dead(Ins)" = All.Dead ) )

>
+
+
> system.time( simP <- simLexis( Tr.p,
+ ini,
+ t.range = 12,
; N = Nsim ) )
user system elapsed
15.343 0.492 15.836

> summary( simP, by="sex" )

$M
Transitions:
To
From DM Ins Dead Dead(Ins) Records: Events: Risk time: Persons:
DM 1633 1984 1383 0 5000 3367 37674.18 5000
Ins 0 1135 0 849 1984 849 9807 .38 1984
Sum 1633 3119 1383 849 6984 4216 47481.56 5000
$F
Transitions:
To
From DM Ins Dead Dead(Ins) Records: Events: Risk time: Persons:
DM 2285 1695 1020 0 5000 2715 42892.52 5000
Ins 0 1191 0 504 1695 504 8833.70 1695
Sum 2285 2886 1020 504 6695 3219 51726.21 5000

Proportional hazards Cox model

A third possibility would be to replace the two-time scale proportional mortality model by
a one-time-scale Cox-model, using diabetes duration as time scale, and age at diagnosis of
DM as (fixed) covariate:

> library( survival )
> Cox.Dead <- coxph( Surv( DMdur, DMdur+lex.dur,

+ lex.Xst JinJ, c("Dead(Ins)", "Dead")) ~
+ Ns( Age-DMdur, knots=ad.kn ) +

+ I(lex.Cst=="Ins") +

+ I(Per-2000) + sex,

+ data = Si )

> round( ci.exp( Cox.Dead ), 3 )
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Ns(Age - DMdur, knots = ad.kn)1
Ns(Age - DMdur, knots = ad.kn)2
Ns(Age - DMdur, knots = ad.kn)3
Ns(Age - DMdur, knots = ad.kn)4

I(lex.Cst == "Ins")TRUE
I(Per - 2000)
sexF

Note that in order for this model to be usable for simulation, it is necessary that we use

exp(Est.)
4.172
4.502
16.077
7.479
2.170
0.965
0.

667

2.5%
.535
.824
.087
.501
.948
.954
.616

QOO Www

97.5%
4.923
5.301
18.348
8.605
2.418
0.977
0.723

the components of the Lexis object to specify the survival. Each record in the data frame
Si represents follow up from DMdur to DMdur+lex.dur, so the model is a Cox model with

diabetes duration as underlying timescale and age at diagnosis, Age-DMdur, as covariate.
Also note that we used I(lex.Cst=="Ins") instead of just lex.Cst, because coxph

assigns design matrix columns to all levels of lex.Cst, also those not present in data,

which would give NAs among the parameter estimates and NAs as mortality outcomes.

We see that the effect of insulin and the other covariates are pretty much the same as in
the two-time-scale model. We can simulate from this model too; there is no restrictions on
what type of model can be used for different transitions

> Tr.c <- list( "DM" = list( "Ins"

+ lIDead n

+ "Ins" = list( "Dead(Ins)"

> system.time( simC <- simLexis( Tr.c,

+ ini,

+ t.range = 12,
+

user system elapsed
15.856  0.352 16.209

> summary( simC, by="sex" )

$M

Transitions:
To
From DM Ins Dead Dead(Ins)
DM 1714 2039 1247 0
Ins 0 1348 0 691
Sum 1714 3387 1247 691
$F
Transitions:
To
From DM Ins Dead Dead(Ins)
DM 2332 1702 966 0
Ins 0 1313 0 389
Sum 2332 3015 966 389

Tr$DM$Ins,
Cox.Dead ),

Cox.De

N = Nsim ) )

Records:
5000
2039
7039

Records:
5000
1702
6702

Events:

3286
691
3977

Events:

2668
389
3057

ad ) )

Risk time:
37280.04
9990.38
47270.42

Risk time:
42168.20
9083.14
51251.34

1.8 Reporting the simulation results

Persons:
5000
2039
5000

Persons:
5000
1702
5000

We can now tabulate the number of persons in each state at a predefined set of times on a

given time scale. Note that in order for this to be sensible, the from argument would

normally be equal to the starting time for the simulated individuals.
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> system. time(

+ nSt <- nState( subset (simL,sex=="M"),

+ at=seq(0,11,0.2), from=1995, time.scale="Per" ) )
user system elapsed
0.549 0.000 0.549

> nSt[1:10,]

State
when DM Ins Dead Dead(Ins)
1995 5000 0 0

0
1995.2 4932 38 29 1
1995.4 4843 93 62 2
1995.6 4773 137 87 3
1995.8 4702 179 116 3
1996 4621 226 148 5
1996.2 4547 269 179 5
1996.4 4469 309 212 10
1996.6 4407 342 237 14
1996.8 4322 386 275 17

We see that as time goes by, the 5000 men slowly move away from the starting state (DM).

Based on this table (nSt is a table) we can now compute the fractions in each state, or,
rather more relevant, the cumulative fraction across the states in some specified order, so
that a plot of the stacked probabilities can be made, using either the default rather colorful
layout, or a more minimalist version (both in figure 1.3):

> pM <- pState( nSt, perm=c(1,2,4,3) )

> head( pM )
State

when DM Ins Dead(Ins) Dead

1995 1.0000 1.0000 1.0000 1

1995.2 0.9864 0.9940 0.9942 1

1995.4 0.9686 0.9872 0.9876 1

1995.6 0.9546 0.9820 0.9826 1

1995.8 0.9404 0.9762 0.9768 1

1996  0.9242 0.9694 0.9704 1
> par( mfrow=c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> plot( pM )
> plot( pM, border="black", col="transparent", lwd=3 )
> text( rep(as.numeric(rownames (pM) [nrow(pM)-1]),ncol(pM)),
+ pM[nrow(pM),]-diff (c(0,pM[nrow(pM),]1))/5,
+ colnames( pM ), adj=1 )
> box( col="white", 1lwd=3 )
> box ()

A more useful set-up of the graph would include a more through annotation and sensible
choice of colors, as seen in figure 1.4:

clr <- c("limegreen","orange")

# expand with a lighter version of the two chosen colors

clx <- c¢( clr, rgb( t( col2rgb( clr[2:1] )*2 + rep(255,3) ) / 3, max=255 ) )

par( mfrow=c(1,2), las=1, mar=c(3,3,4,2), mgp=c(3,1,0)/1.6 )

# Men

plot( pM, col=clx, xlab="Date of FU" )

lines( as.numeric (rownames(pM)), pM[,2], lwd=3 )

mtext( "60 year old male, diagnosed 1990, aged 55", side=3, line=2.5, adj=0, col=gray(0.6)

vV VVVVVVYV
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Figure 1.3: Default layout of the plot.pState graph (left), and a version with the state
probabilities as lines and annotation of states. ./simLexis-pstate0

mtext ( "Survival curve", side=3, line=1.5, adj=0 )
mtext( "DM, no insulin DM, Insulin", side=3, 1line=0.5, adj=0, col=clr[2] )
mtext( "DM, no insulin", side=3, line=0.5, adj=0, col=clr[1] )
axis( side=4 )
axis( side=4, at=1:19/20, labels=FALSE )
axis( side=4, at=1:99/100, labels=FALSE, tcl=-0.3 )
# Women
pF <- pState( nState( subset(simL,sex=="F"),

at=seq(0,11,0.2),

from=1995,

time.scale="Per" ),

perm=c(1,2,4,3) )

plot( pF, col=clx, xlab="Date of FU" )
lines( as.numeric (rownames (pF)), pF[,2], 1lwd=3 )
mtext( "60 year old female, diagnosed 1990, aged 55", side=3, line=2.5, adj=0, col=gray(0.
mtext ( "Survival curve", side=3, line=1.5, adj=0 )
mtext( "DM, no insulin DM, Insulin", side=3, line=0.5, adj=0, col=clr[2] )
mtext( "DM, no insulin", side=3, line=0.5, adj=0, col=clr[1] )
axis( side=4 )
axis( side=4, at=1:19/20, labels=FALSE )
axis( side=4, at=1:99/100, labels=FALSE, tcl=-0.3 )

VVVVVVVVYVY ++++VVYVYVYVYVYVYV

If we instead wanted to show the results on the age-scale, we would use age as timescale
when constructing the probabilities; otherwise the code is pretty much the same as before
(Figure 1.5):
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60 year old male, diagnosed 1990, aged 55 60 year old female, diagnosed 1990, aged 55
Survival curve Survival curve
DM, no insulin DM, Insulin DM, no insulin DM, Insulin
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Figure 1.4: plot.pState graphs where persons ever on insulin are given in orange and
persons never on insulin in green, and the overall survival (dead over the line) as a black
line. ./simLexis-pstatex

par( mfrow=c(1,2), las=1, mar=c(3,3,4,2), mgp=c(3,1,0)/1.6 )
# Men
pM <- pState( nState( subset (simL,sex=="M"),

at=seq(0,11,0.2),

from=60,

time.scale="Age" ),

perm=c(1,2,4,3) )

plot( pM, col=clx, xlab="Age" )
lines( as.numeric(rownames(pM)), pM[,2], 1wd=3 )
mtext( "60 year old male, diagnosed 1990, aged 55", side=3, line=2.5, adj=0, col=gray(0.6)
mtext ( "Survival curve", side=3, line=1.5, adj=0 )
mtext( "DM, no insulin DM, Insulin", side=3, line=0.5, adj=0, col=clr[2] )
mtext( "DM, no insulin", side=3, line=0.5, adj=0, col=clr[1] )
axis( side=4 )
axis( side=4, at=1:19/20, labels=FALSE )
axis( side=4, at=1:19/20, labels=FALSE, tcl=-0.4 )
axis( side=4, at=1:99/100, labels=FALSE, tcl=-0.3 )
# Women
pF <- pState( nState( subset (simL,sex=="F"),

at=seq(0,11,0.2),

from=60,

time.scale="Age" ),

perm=c(1,2,4,3) )

plot( pF, col=clx, xlab="Age" )
lines( as.numeric (rownames (pF)), pF[,2], 1lwd=3 )

VV++++VVVVVVVVVVVYV +++ +V VYV
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> mtext( "60 year old female, diagnosed 1990, aged 55", side=3, line=2.5, adj=0, col=gray(0.
> mtext( "Survival curve", side=3, line=1.5, adj=0 )

> mtext( "DM, no insulin DM, Insulin", side=3, line=0.5, adj=0, col=clr[2] )

> mtext( "DM, no insulin", side=3, line=0.5, adj=0, col=clr[1] )

> axis( side=4 )

> axis( side=4, at=1:9/10, labels=FALSE )

> axis( side=4, at=1:19/20, labels=FALSE, tcl=-0.4 )

> axis( side=4, at=1:99/100, labels=FALSE, tcl=-0.3 )

Note the several statements with axis(side=4, .. .; they are necessary to get the fine

tick-marks in the right hand side of the plots that you will need in order to read off the
probabilities at 2006 (or 71 years).

60 year old male, diagnosed 1990, aged 55 60 year old female, diagnosed 1990, aged 55
Survival curve Survival curve
DM, no insulin DM, Insulin DM, no insulin DM, Insulin

1.0

0.8

0.6

Probability
Probability

0.4

0.2

0.0
60 62 64 66 68 70 60 62 64 66 68 70
Age Age

Figure 1.5: plot.pState graphs where persons ever on insulin are given in orange and
persons never on insulin in green, and the overall survival (dead over the line) as a black
line. ./simLexis-pstatey

1.8.1 Comparing predictions from different models

We have actually fitted different models for the transitions, and we have simulated Lexis
objects from all three approaches, so we can plot these predictions on top of each other:

> PrM <- pState( nState( subset (simP, sex=="M"),
at=seq(0,11,0.2),
from=60,
time.scale="Age" ),

perm=c(1,2,4,3) )

+ + + +
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PrF <- pState( nState( subset(simP,sex=="F"),
at=seq(0,11,0.2),
from=60,
time.scale="Age" ),
perm=c(1,2,4,3) )
CoxM <- pState( nState( subset (simC,sex=="M"),
at=seq(0,11,0.2),
from=60,
time.scale="Age" ),
perm=c(1,2,4,3) )
CoxF <- pState( nState( subset(simC,sex=="F"),
at=seq(0,11,0.2),
from=60,
time.scale="Age" ),
perm=c(1,2,4,3) )
par( mfrow=c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
plot(  pM, border="black", col="transparent", 1wd=3 )
lines( PrM, border="blue" , col="transparent", lwd=3 )
lines( CoxM, border="red" , col="transparent", lwd=3 )
text( 60.5, 0.05, "M" )
box( 1lwd=5, col="white" ) ; box( lwd=2, col="black" )
plot(  pF, border="black", col="transparent", lwd=3 )
lines( PrF, border="blue" , col="transparent", 1lwd=3 )
lines( CoxF, border="red" , col="transparent", lwd=3 )
text( 60.5, 0.05, "F" )
box( lwd=5, col="white" ) ; box( lwd=2, col="black" )

VVVVVVVVVVYV++++YV+H+++YV+++ +V

From figure 1.6 it is clear that the two proportional hazards models (blue and red
curves) produce pretty much the same estimates of the state occupancy probabilities over
time, but also that they relative to the model with separately estimated transition
intensities overestimates the probability of being alive without insulin and underestimates
the probabilities of being dead without insulin. However both the overall survival, and the
fraction of persons on insulin are quite well in agreement with the more elaborate model.
Thus the proportional hazards models overestimate the relative mortality of the insulin
treated diabetes patients relative to the non-insulin treated.

Interestingly, we also see a bump in the estimated probabilities from the Cox-model
based model, but this is entirely an artifact that comes from the estimation method for the
baseline hazard of the Cox-model that lets the (cumulative) hazard have large jumps at
event times where the risk set is small. So also here it shows up that an assumption of
continuous underlying hazards leads to more credible estimates.
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Figure 1.6: Comparison of the simulated state occupancy probabilities using separate Poisson
models for the mortality rates with and without insulin (black) and using proportional hazards
Poisson models (blue) and Coz-models with diabetes duration as timescale and age at diabetes
diagnosis as covariate (red). ./simLexis-comp-0



Chapter 2

Simulation of transitions in multistate
models

2.1 Theory

Suppose that the rate functions for the transitions out of the current state to, say, 3
different states are A\;, Ay and A3, and the corresponding cumulative rates are Ay, Ay and
A3, and we want to simulate an exit time and an exit state (that is either 1, 2 or 3). This
can be done in two slightly different ways:

1. First time, then state:

(a) Compute the survival function, S(t) = exp(—A1(t) — Ax(t) — As(t))

(b) Simulate a random U(0,1) variate, u, say.

(¢) The simulated exit time is then the solution ¢, to the equation
S(tu)=u & >;Ai(t.) = —log(u).

(d) A simulated transition at t, is then found by simulating a random draw from
the multinomial distribution with probabilities p; = Ai(t.)/ >_; Aj(tu)-

2. Separate cumulative incidences:

(a) Simulate 3 independent U(0,1) random variates u, uy and us.
(b) Solve the equations A;(t;) = —log(u;),7 = 1,2,3 and get (¢1,ts,t3).
(c) The simulated survival time is then min(¢1, ts, t3), and the simulated transition is

to the state corresponding to this, that is k € {1, 2,3}, where t;, = min(¢y, t2, t3)

The intuitive argument is that with three possible transition there are 3 independent
processes running, but only the first transition is observed. The latter approach is used in

the implementation in simLexis.
The formal argument for the equality of the two approaches goes as follows:

1. Equality of the transition times:

22
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(a) In the first approach we simulate from a distribution with cumulative rate
A1(t) + As(t) + As(t), hence from a distribution with survival function:

S(t) = exp(—(A1(t) + Aa(t) 4+ As(t)))
= exp(—Ai(t)) X exp(—Aa(t)) x exp(—As(t))

(b) In the second approach we choose the smallest of three independent survival
times, with survival functions exp(—A;),7 = 1,2, 3. Now, the survival function
for the minimum of three independent survival times is:

Spmin(t) = P{min(ty, ts,t3) > t}
= P{t; >t} x P{ty >t} x P{t3 >t}
= exp(—A1(t)) X exp(—Ax(t)) x exp(—As(t))
which is the same survival function as derived above.
2. Type of transition:

(a) In the first instance the probability of a transition to state ¢, conditional on the
transition time being ¢, is as known from standard probability theory:
Ai(t)/ (Aa(t) + Ao (t) + As(t)).

(b) In the second approach we choose the transition corresponding to the the
smallest of the transition times. So when we condition on the event that a
transition takes place at time ¢, we have to show that the conditional probability
that the smallest of the three simulated transition times was actually the th, is
as above.

But conditional on survival till ¢, the probabilities that events of type 1, 2,3
takes place in the interval (¢, 4 dt) are \;(¢) d¢, Ao(t) dt and A (t) d¢,
respectively (assuming that the probability of more than one event in the
interval of length dt is 0). Hence the conditional probabilities given a transition
time in (t,t + dt) is:

Ai(t) de (1)
A(t)dt + Xa(B) dt + As(t) dt Ai(£) + Aa(t) + As(t)

— exactly as above.
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