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Abstract

Dynamic Time Warping (DTW) is a popular distance measure for time series analysis
and has been applied in many research domains. This paper proposes the R package In-

cDTW for the incremental calculation of DTW, and based on this principle IncDTW also
helps to classify or cluster time series, or perform subsequence matching and k-Nearest
Neighbor search. DTW can measure dissimilarity between two temporal sequences which
may vary in speed, with a major downside of high computational costs. Especially for an-
alyzing live data streams, subsequence matching or calculating pairwise distance matrices,
runtime intensive computations are unfavorable or can even make the analysis intractable.
IncDTW tackles this problem by the following contributions: (1) Vector-based implemen-
tation of the DTW algorithm to reduce the space complexity from a quadratic to a linear
level in number of observations, (2) incremental calculation of DTW for updating interim
results to reduce the runtime complexity (3) parallelization and (4) transferring the most
intensive computations to C++. We discuss the fundamental functionalities of IncDTW

and apply the package to classify multivariate live stream accelerometer time series for
activity recognition. Finally, runtime experiments with various R and Python packages
for various data analysis tasks emphasize the broad applicability of IncDTW.

Keywords: dynamic time warping, time series, k-NN, subsequence matching, distance mea-
sure, clustering, classification.

1. Introduction

Time series are sets of observations that follow a consecutive temporal relation. Many time se-
ries data analysis tasks such as clustering, classification, outlier detection or pattern matching
require the definition of a distance measure. Many distance measures such as the Euclidean
distance are rather ill-suited whenever two time series are shifted in time, locally recorded
with different sampling rates, warped, or have different lengths. Dynamic Time Warping
(DTW) was originally proposed by Sakoe and Chiba (1978), and has since been the distance
measure of choice in many works for time series analysis (Berndt and Clifford 1994; Keogh
2002; Ding, Trajcevski, Scheuermann, Wang, and Keogh 2008; Kwankhoom and Muneesawang
2017; Oregi, Pérez, Del Ser, and Lozano 2017; Giorgino et al. 2009). DTW is capable of deal-
ing with deformed time series by identifying the best alignment of two time series in a dynamic
way.

The major downside of DTW are its expensive computational costs, which are particularly
unfavorable for online algorithms processing continuous data streams, where time series anal-
ysis must be faster than the elapsed time between consecutive observations. One solution
to reduce complexity for online processing is to incrementally calculate DTW by recycling
interim results of previous calculations for every new observation. Without any loss of accu-
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racy, such an incremental processing allows reducing computation time complexity towards
linear level in number of observations. Section 2.1 and 3.2 give a detailed discussion about
the runtime and space complexity of the DTW algorithm.

The groundwork for the incremental calculation of DTW was done by Rabiner, Rosenberg,
and Levinson (1978), who proposed adjustments to the DTW algorithm - open alignments.
Since then the principle of the incremental DTW computation has been applied in multiple
works, as e.g.: Dixon (2005) applied it for an online algorithm to track musical performances,
Mori, Uchida, Kurazume, Taniguchi, Hasegawa, and Sakoe (2006) for an algorithm to early
recognize gestures, Tormene, Giorgino, Quaglini, and Stefanelli (2008) to analyze multivariate
sensor readings to support neurological patients with real-time information while undergoing
motor rehabilitation, Kwankhoom and Muneesawang (2017) for online algorithms which re-
identify movement trajectories of persons captured with a 3D depth sensing camera, where
time series matching is updated as soon as new video frames are recorded, and Oregi et al.
(2017) for proposing the Online-DTW (ODTW) algorithm.

Apart from stream processing, computation time is also key whenever relatively short query
patterns must be detected in longer time series, which usually requires a large number of
comparisons between many segments of the longer time series and the query pattern. For
example, the Caterpillar algorithm presented by Leodolter, Brändle, and Plant (2018) scans
long time series to detect patterns which are possibly warped or of different lengths than a
query pattern, based on a combination of incremental DTW calculation and the Minimum
Description Length. The incremental calculation of DTW enables the Caterpillar algorithm to
search the space of possible fits in reasonable time and yields better results than comparable
time series pattern recognition techniques. This paper presents the incremental update of the
DTW distance and the R package IncDTW, the functions of which can serve as components
for pattern recognition algorithms.

Dynamic Time Warping has already been applied in many research domains and also pub-
lished in different software packages and programming languages. Table 1 gives an overview
of R packages for DTW computation available at the Comprehensive R Archive Network
(CRAN) at https://CRAN.R-project.org/, and Python packages available at the Python
Package Index at https://pypi.org/. The package dtw (Giorgino et al. 2009) offers func-
tions for DTW calculation with different step patterns (see (2) and (3)), warping path restric-
tions and plotting functions, also for a profound visual analysis of warping alignments of two
time series. dtwclust (Sarda-Espinosa 2018) puts emphasis on clustering time series based
on DTW distances. The functions for DTW calculations are wrappers for those of the dtw

package. The package dtwSat (Maus, Câmara, Appel, and Pebesma 2019) provides with the
Time-Weighted Dynamic Time Warping a distance method customized to analyzing satellite
image time series. ucrsuite (Boersch-Supan 2016) is the R version of UCR Suite (Rakthan-
manon, Campana, Mueen, Batista, Westover, Zhu, Zakaria, and Keogh 2012) which is a
Nearest Neighbor search algorithm accelerated by lower bounding and pruning methods. It
detects the closest fit to a query time series in either one long time series or many of the same
length. To the best of our knowledge ucrsuite is – besides IncDTW – the only R package with
a vector-based implementation of the DTW algorithm, thus avoiding memory allocation of
matrices. However, the package does neither support multivariate time series nor full align-
ments for time series of different lengths (i.e., from begin to end for both time series). The
package parallelDist (Eckert 2017) is the parallel implementation of the function dist() –
of the package stats (R Core Team 2018) – by incorporating RcppParallel (Allaire, Francois,

https://CRAN.R-project.org/
https://pypi.org/
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Ushey, Vandenbrouck, Geelnard, and Intel 2018) to speed up computations. Apart from R

packages for DTW computation, in the following we discuss Python software, since, similar
to R, Python is probably one of the most taught and applied programming languages for time
series analysis, and data mining tasks as clustering, classification and pattern recognition
applied on time series data. The dtw package (Rouanet 2014) is one of the highest forked and
starred packages for DTW computation on the Python Package Index1. To compute the DTW
distance for multivariate time series the package cydtw (Tavenard 2017) offers a solution, and
the main computation part of the algorithm is implemented in C via Cython (Behnel, Brad-
shaw, Citro, Dalcin, Seljebotn, and Smith 2011). The package dtaidistance (Meert 2017)
offers a more comprehensive set of functions and also a vector based implementation in C via
Cython, but does not support multivariate time series. Next to the R packages, Table 1 also
lists the Python packages and Section 4.5 details a runtime experiment which compares the
Python packages with IncDTW.

The main topics discussed in this paper are:

• the principle of the incremental DTW calculation ready to use in R functions,

• vector-based implementation of the DTW algorithm – also for multivariate time series
– to decrease the computation time,

• the demonstration of applying IncDTW for an online time series classification task,

• runDTW: a runtime efficient algorithm to detect the non-overlapping k-NN within a
long time series, i.e., the k disjoint subsequences with minimum DTW distance to a
query pattern

• support for R users to build their own algorithms based on incremental and recycling
principles of the DTW calculation for typical pattern recognition problems for time
series data

• and runtime experiments with other R and Python packages.

This paper is organized as follows: Section 2 gives an introduction to DTW in general and
explains the incremental calculation. Section 3 describes the R package IncDTW, discusses
the vector-based functions, how to apply the incremental calculation, and the algorithm
runDTW for k-NN search. Section 4 shows the application of IncDTW for typical time series
data mining tasks and demonstrates how to write customized algorithms. Section 5 concludes
this paper and gives an outlook of future developments.

2. Dynamic Time Warping

In the following we recapitulate the classic Dynamic Time Warping algorithm from Sakoe
and Chiba (1978) which calculates the distance measure between a query time series q and
a candidate time series c, and their alignment – the so-called warping path – providing
information which observations of q are best matched to the respective observations of c.

The distance measure DTW is defined as the minimal cumulative costs of the shortest non-
linear alignment of two time series q and c. This alignment has the following properties:

1Python Package Index https://pypi.org/

https://pypi.org/


4 Theory and Applications for the R Package IncDTW

Package First incre- vector- diff. multi- k-NN
Description/ Focusname & release mental based lengths variate

Repo.

IncDTW

CRAN
2017 Yes Yes Yes Yes Yes incremental and fast

vector-based DTW
calculations, described
in this paper.

dtw

CRAN
2007 No No Yes Yes No Highly functional im-

plementation of DTW
(Giorgino et al. 2009)

dtwclust

CRAN
2015 No No Yes Yes No time series clustering

with DTW (Sarda-
Espinosa 2018)

dtwSat

CRAN
2015 No No Yes Yes No Time-Weighted DTW

for satellite images,
(Maus et al. 2019)

rucrdtw

CRAN
2016 No Yes No No No 1NN-search via DTW

(Boersch-Supan 2016)
parallelDist

CRAN
2017 No No Yes Yes No Parallel distance cal-

culation, (Eckert 2017)
dtw

Pypi
2014 No No Yes Yes No (Rouanet 2014),

highly forked and
starred

dtaidistance

Pypi
2017 No Yes Yes No No (Meert 2017), func-

tional and fast
cydtw

Pypi
2017 No No Yes Yes No (Tavenard 2017), sim-

ple and fast

Table 1: Overview of various R packages with different emphasis on calculating and applying
the DTW distance.

1. Boundary conditions: The first element of q is aligned to the first element of c, and the
last element of q is aligned to the last element of c. Relaxing these conditions allows
to find an open alignment, i.e., a partial alignment of two time series with lowest DTW
distance (normalized for the lengths). Appendix A discusses open alignments (open-
end, open-begin and open increment) in more detail, and we apply open alignments in
Sec. 4 to accelerate pattern recognition algorithms for searching patterns of different
lengths.

2. Monotonicity: Consecutive elements of q and c must not be aligned out of time order.
The DTW algorithm also returns vectors of indices of q and c defining the ordering
of the best aligned observations. These vectors must be monotonically increasing, such
that ik ≤ ik+1, where 1 ≤ ik ≤ n = |q|, and ik defines which elements of q are aligned
to c at the k-th point of time. The same applies to the indices jk ≤ jk+1 defining which
elements of c are aligned to q at the k-th point of time.

3. Non-linear alignment: In contrast to the Euclidean distance, one observation of q can
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be aligned to more than one observation of c, and vice versa. Hence it is possible that
ik = ik+1 or jk = jk+1.

4. Restrictions: Global or local warping path restrictions can be applied to reduce the
space of possible alignments. The most known is the Sakoe Chiba warping window
(Sakoe and Chiba 1978), where the time difference of two aligned observations must not
exceed the window size parameter, ω: |ik − jk| ≤ ω ∀k.

5. Local distance measure: The distance of two (possibly multivariate) observations of the
time series q and c can be defined by any distance metric. The standard metrics are
the 1-norm and 2-norm. The package vignette of IncDTW elaborates how to customize
the local distance functions.

6. Step Pattern: The step pattern defines how the local distances are accumulated to
calculate the global cost matrix and the walking path. The two popular step patterns
(2) and (3) are implemented in IncDTW. Sakoe and Chiba (1978), Lawrence and Biing-
Hwang (2008) or Giorgino et al. (2009) give a more detailed discussion on step patterns.

It is worth noting that the DTW distance measure is not a metric, since it does not fulfill
the triangle inequality. Consequently, lower bounding with the help of the reverse triangle
inequality is not possible, which is a method applied for fast nearest neighbor search Wang
(2011).

For the two time series q of length n and c of length m we define C ∈ R
n×m as the local cost

matrix, where

Ci,j
..= d(qi, cj), (1)

with d(., .) as a local distance function for univariate or multivariate time series as described
above. The global cost matrix G ∈ R

n×m is determined in an iterative fashion, where each
element depends on its predecessors. The step pattern defines these dependencies by weighting
and selecting the predecessors. Giorgino et al. (2009) and Lawrence and Biing-Hwang (2008)
present a more detailed discussion on step patterns, here we concentrate on two of the most
popular and start with the naive step pattern that regards the direct neighboring elements in
G equally weighted:

Gi,j =















∑

k≤i Ck,1 j = 1
∑

l≤j C1,l i = 1

Ci,j + min(Gi−1,j , Gi,j−1, Gi−1,j−1) i, j > 1.

(2)

The step pattern described by algorithm (2) – "symmetric1" – was not part of the original
work about DTW of Sakoe and Chiba (1978) since it does not admit a normalization factor.
Nevertheless, it has been applied in several works (Fu 2011; Berndt and Clifford 1994; Sakurai,
Faloutsos, and Yamamuro 2007; Keogh 2002; Rath and Manmatha 2003; Keogh and Pazzani
2000; Rakthanmanon et al. 2012) about time series clustering, classification, indexing and
pattern mining, and so gained popularity, possibly due to its simplicity to understand and
implement.
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Another typical step pattern, that is also the default step pattern in the R package dtw, is
called ’symmetric2’. Here the diagonal step is weighted with a weight of 2:

Gi,j =















∑

k≤i Ck,1 j = 1
∑

l≤j C1,l i = 1

min(Ci,j + Gi−1,j , Ci,j + Gi,j−1, 2 ·Ci,j + Gi−1,j−1) i, j > 1.

(3)

The step pattern (3) is also discussed as special case of the general formulation in Sakoe and
Chiba (1978). The direction matrix D ∈ N

n×m gives information about the alignment of
the two time series and is calculated simultaneously with the calculation of G. The following
equation defines D for the step pattern of (2):

Di,j =















1 if Gi,j = Ci,j + Gi−1,j−1

2 if Gi,j = Ci,j + Gi,j−1

3 if Gi,j = Ci,j + Gi−1,j .

(4)

The DTW distance measure is stored in the last column of the last row of G, Gnm, and
indicates the cheapest cumulative costs to align q and c. The warping path vector w is
an excerpt of the direction matrix D and achieved by backtracking D. Starting at the last
row and last column of D, backtracking (Algorithm 1) checks the cheapest next step (1 is
diagonal, 2 is horizontal, 3 is vertical) and stores this integer in a vector. The backtracking
algorithm also returns the vectors ii and jj, the vectors of indices of q and c for the best
alignment in the respective order.

Algorithm 1 Backtracking the direction matrix D delivers the warping path w

1: procedure Backtracking(D)
2: i ← n ⊲ n = length of the time series q

3: j ← m ⊲ m = length of the time series c

4: w, ii, jj← empty vectors
5: repeat

6: step ← D(i, j);
7: if step == 1 then

8: i ← i - 1
9: j ← j - 1

10: else if step == 2 then

11: j ← j - 1
12: else

13: i ← i - 1
14: end if

15: ii ← append(i, ii)
16: jj ← append(j, jj)
17: w← append(step, w)
18: until i < 0 | j < 0 return w, ii and jj

19: end procedure

2.1. Incremental calculation
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Calculating the DTW distance measure is computationally expensive, especially for long time
series without a warping window, due to the quadratic runtime complexity O(n ·m), where
n and m are the lengths of the time series q and c, respectively. If the DTW distance is
calculated with a Sakoe Chiba warping window of size ω, where |m − n| ≤ ω ≤ max(m, n),
the runtime complexity reduces to O(ω · min(m, n)). Consequently, if ω increases and ap-
proaches its maximum value, then the runtime complexity approximates the quadratic level,
and conversely if ω decreases, then it approximates a linear level. The space complexity is
discussed in Sec. 3.2.

To update an alignment of two time series after recording new observations, it is possible
to reuse interim results instead of calculating DTW from scratch. So, if a time series c is
observed for i = 1 . . . m, calculating the DTW distance measure to q of length n has a runtime
complexity 2 of O(n·m). As soon as new observations of c are recorded for i = m+1 . . . m+k,
calculating the DTW distance measure from scratch has a runtime complexity of O(n·(m+k)).
Contrary the incremental approach is based on storing the necessary components of the results
of the initial DTW computation after observing cfor i = 1 . . . m, and recycling these interim
results when new observations are recorded. This way the incremental update of the DTW
distance at time i = m + k has a runtime complexity of O(n · k). The examples in Sec. 3.3
and the experiment in Sec. 4.2 demonstrate this principle in more detail.

The input to incrementally calculate DTW of q[1 : n] and c[1 : m + k] is the output of the
former calculation DTW(q[1 : n], c[1 : m]). This output is composed of three matrices: the
global cost matrix G0, the local cost matrix C0 and the direction matrix D0. Additional
required input is the time series of new observations of c. To calculate the global cost matrix
G1 of DTW(q[1 : n], c[1 : m+k]), we append new costs and direction entries to the previously
calculated matrices and proceed analogously to (2):

1. First we build the local cost Matrix C1:

C1
ij

..=

{

C0ij i ≤ m

dist(qi, cj) m < i ≤ m + k.
(5)

2. Next the global cost matrix is appended to the former results and new entries are defined
analogously to (2):

G1
ij

..=















G0ij i ≤ m
∑

k≤i Ck,1 j = 1

Ci,j + min(Gi−1,j , Gi,j−1, Gi−1,j−1) else

(6)

3. The direction matrix D1 is calculated simultaneously to G1.

4. Finally, the warping path needs to be calculated completely new from scratch, since in
general it can not be excluded that new observations may open up completely different
options to warp the two time series.

2For simplicity we reduce the following runtime complexity discussion for the general case of DTW calcula-
tion without a warping window. The derivation for DTW calculation with a warping window follows analogous
arguments.
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Equation 6 is the incremental version of (2). For (3) the definition of the new entries of G is
analogous, as for any other step pattern presented in Sakoe and Chiba (1978).

In fact, not the complete G0 is required to update the DTW distance for new observations.
Section 3.2 and 3.3 discuss an incremental implementation that only requires the very last
column (and row) of G0.

The following two applications benefit from the the principle of incremental DTW calculation:

• Live streaming data: For live systems computation time is key. idtw() (and idtw2vec())
facilitates a fast update of time series distance measures when new observations arise.
This can be of interest for any system analyzing live data streams.

• Scanning a longer time series: To detect a match of a query pattern within a longer
time series is a common problem in time series data mining. Yeh, Zhu, Ulanova, Be-
gum, Ding, Dau, Silva, Mueen, and Keogh (2016) use the Euclidean distance to detect
query matches. Leodolter et al. (2018); Rakthanmanon et al. (2012); Sakurai et al.
(2007) use DTW for the same problem to make use of the advantages of DTW over
the Euclidean distance. Since DTW can measure similarities of time series of different
lengths, it is capable to detect matches of a query pattern of varying lengths. However
computing and comparing all combinations of alignments to find the best would be com-
putationally expensive or even intractable. The incremental algorithm can reduce the
computational effort. Section 4.2 and 4.4 demonstrate this by applying IncDTW::idtw()

(and IncDTW::idtw2vec()) scanning a longer time series with an incremental growing
scanning window.

2.2. The plane of possible fits

A well known pattern recognition problem is to detect a query pattern q in a longer time
series c. Fu (2011) give an overview about publications dealing with this research question,
also called subsequence matching (or the familiar problem: pattern discovery). A subsequence
of a time series c are all observations between a start index a and end index b, c[a, b], where
1 ≤ a ≤ b ≤ |c|. Next we give an overview of different forms of subsequence matching before
(7) to (12) formalize these problems, and finally Sec. 3 introduces the functions of IncDTW

to solve these problems.

• 1-SS: finding the one subsequence in a long time series c that has minimum distance to
a query time series q and the same length as q. This problem is similar to the 1-NN
search. Equation 7 formalizes this problem.

• δ-SS: as 1-SS, but find all subsequences with a distance smaller than a threshold δ,
similar to k-NN search. See (8) and (9).

• 1-SSvl: as 1-SS, but with varying length. So the index b is free, and not restricted by
b = a + |q| − 1 = a + n− 1, as 1-SS and δ-SS require. See (10).

• δ-SSvl: as δ-SS, but with varying lengths of all k fits. See (11) and (12).
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We formalize the problem 1-SS as finding the start index a∗ such that

a∗ = argmin
a

d(q, c[a : b])

s. t.

1 ≤ a ≤ m− n + 1

b = a + n− 1,

(7)

where d(., .) is the distance function, m = |c| and n = |q|. The end index b∗ is defined by
b∗ = a∗ + n − 1. We call such a couple of indices (a, b) a fit of q in c. Figure 1a illustrates
that possible fits can only be located on the red line which fulfills b = a + n − 1. A similar
problem is δ-SS, that is to find the set I of indices such that:

I = {(ai, bi)| d(q, c[ai : bi]) ≤ δ ∧ 1 ≤ ai ≤ m− n + 1 ∧ bi = ai + n− 1}. (8)

Adding the condition bi < ai+1 in the following formulation prevents detected fits to overlap:

I = {(ai, bi)| d(q, c[ai : bi]) ≤ δ ∧ 1 ≤ ai ≤ m− n + 1 ∧ bi = ai + n− 1 ∧ bi < ai+1}. (9)

For dealing with 1-SSvl we are looking for fits of q in c that are possibly of different lengths
than q, and so need to relax the condition b = a + n− 1. This is only possible if the applied
distance function is capable of comparing time series of different lengths, as DTW is. The
general formalization:

(a∗, b∗) = argmin
a,b

d(q, c[a : b])

s. t.

1 ≤ a ≤ b ≤ m.

(10)

Figure 1b shows the red area of possible fits. Since the start index a needs to be smaller or
equal than the end index b, no valid index combinations can be found in the shaded area
below the line with slope = 1, starting at the lowest possible start index, 1.

δ-SSvl describes the problem of finding multiple fits of varying lengths. The following set I
defines the target set of indices:

I = {(ai, bi)| d(q, c[ai : bi]) ≤ δ ∧ 1 ≤ ai ≤ bi ≤ m}. (11)

Again the following additional restrictions prevent detected fits to overlap (visualized by the
dashed rectangles in Fig. 1d):

I = {(ai, bi)| d(q, c[ai : bi]) ≤ δ ∧ 1 ≤ ai ≤ bi ≤ m ∧ bi < ai+1}. (12)

Typical approaches dealing with the problems (see (7) to (9)) scan c via a sliding window
(overlapping or non-overlapping: Keogh and Lin (2005) elaborate why analyzing or clustering
of overlapping subsequences of time series can cause misleading results), calculate a distance
measure for each point of time a ∈ {1, ..., m− n + 1} between q and the respective segment
of c[a : (a + n − 1)] with the same length as q, and finally decide which index – or set of
indices– is best. Rakthanmanon et al. (2012) present UCR-Suite to attack the problem (7)
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|c|

|c|
a

b

1

Y

|q|

(a) Detected fit Y on the red
line of all possible (a, b) com-
binations where b − a = |q|.

|c|

|c|
a

b

1

Y

(b) Combinations in the
red triangle fulfill a ≤ b.
Arrows indicate in- and
decremental (partial)
DTW calculation.

|c|

|c|
a

b

1

Y

X

(c) Increment b to navi-
gate from Y to a better fit
X.

|c|

|c|
a

b

1

(d) Detecting multiple
fits conditioning on non-
overlapping with other
fits.

Figure 1: Plane of possible fits: A detected fit is represented in the plane of possible index
combinations as couple of initial and final index of a fit, (a, b). The lowest possible initial
index is 1 and the maximum final index is the length of c, |c|. Since a ≤ b needs to hold,
there are no possible combinations (a, b) in the lower triangle.

with the three distance measures: Euclidean Distance, Dynamic Time Warping and Uniform
Scaling. UCR-Suite applying the former two distance measures is limited in detecting fits of
the same length as the query pattern, located on the red line of Fig. 1a, such as the point Y .
Uniform scaling is a distance measure which – depending on a scaling parameter – stretches
and compresses a query pattern uniformly and calculates the Euclidean distance for each of
the stretched and compressed queries to the subsequences of equal lengths of the longer time
series. So UCR Suite with Uniform Scaling is capable of detecting fits in the red area of
Fig. 1b. The main difference to DTW-based approaches is that DTW can compensate time
warps locally as well as globally, while uniform scaling is designed to detect similar patterns
that are of different speed for the complete length of the query pattern, and not locally.

In contrast, the Caterpillar Leodolter et al. (2018) algorithm can search the entire red area
in Fig. 1b for index combinations, compare (10). The Caterpillar algorithm extends and
contracts the scanning window at the end (index b) or at the start (index a), while fixing the
other, and calculates the DTW distance. This way the Caterpillar algorithm applies DTW
as distance measure d(., .) and deals with the more general problem described in (12) to
detect time warped fits of possibly different lengths of the query pattern. These movements
of extending and contracting one end while fixing the opposite end resemble the movements
of a crawling caterpillar, and are implemented via incremental and decremental calculations
of DTW.

Any heuristic attempting to solve one of the problems (10) to (12) could start with a possible
index combination Y in Fig. 1b. A possible improvement (reduction of the DTW distance
DTW(q, c[a : b])) can be achieved via incremental calculations, visualized by the arrows
in Fig. 1b. The vertical arrows adjust the end index b while fixing the start index a. The
horizontal arrows adjust the start index a while fixing the end index b. Say the red point X
in Fig. 1c describes the best fit of q and c[aX : bX ]. X could be detected by starting from Y
and increasing b while fixing a.

In this paper we address the problems 1-SS and δ-SS – see (7) to (9) – by proposing the
algorithm runDTW (see Sec. 3.4 to 3.5) and the R function rundtw(), that extends the idea
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of UCR Suite applying DTW to a k-NN search and also supports multivariate time series. In
addition, for the problems 1-SSvl and δ-SSvl – see (10) to (12) – the class planedtw initialized
by initialize_plane() and the methods for this class (increment(), decrement() and
reverse(), see Sec. 3.3, 4.3 and 4.4) help to navigate in the plane of possible fits – similar to
the Caterpillar algorithm – to evaluate possible index combinations at low calculation costs,
instead of recalculating each combination from scratch.

3. The R package IncDTW

This section describes the functions of the R package IncDTW and how to apply them to
calculate the DTW distance: (1) Matrix-based, (2) vector-based, (3) from scratch or incre-
mentally, (4) the rundtw algorithm, and (5) how to apply rundtw for kNN search.

All results presented in this paper are achieved with version 1.1.2 of IncDTW. The compu-
tationally expensive parts of IncDTW are outsourced to C++ via the packages Rcpp (Ed-
delbuettel and François 2011) and RcppArmadill (Eddelbuettel and Sanderson 2014), and
parallelized via the packages parallel (R Core Team 2018) and RcppParallel (Allaire et al.
2018).

3.1. Matrix-based implementation

The classical DTW implementation relies on the local cost matrix C, the direction matrix D

and the global cost matrix G (see Section 2). C can be stored as matrix or calculated entry-
wise when G is calculated. Returning the matrices G and D facilitates a detailed analysis
of the alignment of two time series. Plotting Fig. 3 for visual analysis is possible due to the
information provided by the warping path, which in turn is an excerpt of the direction matrix
D and is achieved by backtracking. The entry Cij is the distance between qi and cj and can
be described by any distance metric for univariate or multivariate time series dependent on
the dimension of q and c. In case of multivariate time series, they need to have the same
dimension, but still can vary in number of observations. In the univariate case the 1-norm is
equivalent to the 2-norm, which is the absolute value of the difference |qi − cj |.

The basic DTW algorithm for computing the global cost matrix G, according to (2), steps
through the local cost matrix C. The following parameters characterize in detail how the
algorithm defines G and finds the warping path:

• dist_method: The local distances are stored in C, where Cij = dist_method(qi, cj). So
the parameter dist_method defines how the local distance of observations are measured.
For O-dimensional time series the distances ’norm1’, ’norm2’ and ’norm2_square’ are
defined as:

||qi, cj ||1 ..=
O

∑

o=1

|qio − cjo|

||qi, cj ||2 ..=

√

√

√

√

O
∑

o=1

(qio − cjo)2

||qi, cj ||
2
2

..=
O

∑

o=1

(qio − cjo)2.

(13)
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Apart from these three predefined local distance functions IncDTW also allows to define
customized local distance functions.

• ws: The space of all possible alignments of two time series can be constrained by warping
windows. As Sec. 2 mentions, the most popular constraint is the Sakoe-Chiba window
Sakoe and Chiba (1978), which adjusts the DTW algorithm by setting Gij = ∞ if
|i− j| > ws. So ws defines the window size of allowed warping paths. If we set ws = 0
then only the diagonal of G is used for aligning q and c, which is identical to the
Euclidean distance. In this case the time series must have the same length. If the
lengths of the time series differ more than ws, then obviously no valid alignment can be
found.

• step_pattern: The step pattern defines how the DTW algorithm finds the cheapest
path through the local cost matrix. In (2) the most basic and broadly applied step
pattern "symmetric1" is used, where the direct neighbors are considered and all are
weighted equally. In (3) the step pattern "symmetric2" is uses a weight of 2 for the
diagonal step and 1 for the vertical and horizontal to compensate the favor of diagonal
steps. The current version of IncDTW concentrates on these two patterns and we
consider other step patterns for future developments. A more detailed discussion of
step patterns gives Giorgino et al. (2009).

The following commands install and load the package IncDTW:

R> install.packages("IncDTW")

R> library("IncDTW")

First we define the help function rw() (which we also use in the next sections) to simulate a
Gaussian random walk. Then a basic calculation of the DTW distance is done as follows:

R> rw <- function(n) cumsum(rnorm(n))

R> Q <- rw(100)

R> C <- rw(80)

R> result <- dtw(Q, C, ws = 30, step_pattern = "symmetric2")

R> result$distance

[1] 197.1266

3.2. Vector-based implementation

The matrix-based implementation is necessary for a detailed analysis of the alignment of two
time series since it allows to calculate and return the warping path. Tasks such as nearest
neighbor search, or the calculation of a matrix of pairwise distances to cluster or classify a
database of time series require many DTW computations, and so the computation time of
DTW is a major bottleneck.

The vector-based implementation offers a solution which is faster than the matrix based
implementation, since memory allocation for matrices is not required. The space complexity
for the matrix-based implementation is O(m · n) for calculating the local and global cost
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Figure 2: Iteratively overwriting vectors makes it obsolete to allocate matrices for DTW
distance calculation.

matrix, and the direction matrix. The vector-based computation principle is the same as for
the matrix-based method, but instead of allocating matrices only two vectors are needed, and
so the space complexity is reduced to O(n). To obtain the DTW distance between the time
series q and c the calculation of the j-th column of the global cost matrix G.,j solely depends
on the values of the previous column G.,j−1 and the respective distances of the time series c

and the j-th entry of q. Since there is no dependence on the column G.,j−2, the algorithm
overwrites G.,j−2 with the newly calculated vector G.,j . Figure 2 demonstrates this principle
with a simple example, and the following lines of code perform the DTW calculation for the
same time series first via matrix based implementation (dtw) and second via vector based
implementation (dtw2vec). The global cost matrix G is also printed to compare it to the
vectors illustrated in Fig. 2.

R> Q <- c(3,4,5,6)

R> C <- c(1,3,3,5,6)

R> result <- IncDTW::dtw(Q,C)

R> result$gcm

[,1] [,2] [,3] [,4] [,5]

[1,] 2 2 2 4 7

[2,] 5 3 3 4 6

[3,] 9 5 5 3 4

[4,] 14 8 8 4 3

R> dtw2vec(Q,C)$distance

[1] 3

In the first iteration step in Fig. 2 the initial two vectors a and b are defined according to the
DTW step pattern and are identical to the first two columns of G. In the second iteration
the pointers p1 and p2 switch the address, so that the new entries of G.,3 overwrite a (where
p2 points to) and b (where p1 points to) stores the entries of G.,2 of the previous iteration.
Finally after four iterations the DTW distance measure (red encircled) is given in the last
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Algorithm 2 Vector based implementation of DTW without allocating any matrices

1: procedure Vector Based DTW(q∈ R
n×O, c∈ R

m×O)
2: p1 ← cumsum(dist(q1, c)) ⊲ initial column of G, G.,1

3: for j in 2:m do

4: p2[1] ← dist(q1, cj) + p1[1]
5: for i in 2:n do

6: p2[i] ← step
(

dist(qi, cj), min(p2[i− 1], p1[i], p1[i− 1])
)

7: end for

8: ptmp ← p1
9: p1 ← p2

10: p2 ← ptmp
11: end for

12: return p1[n]
13: end procedure

row of the last vector, which is identical to the fifth column of G. Algorithm 2 formalizes this
principle for the general case.

Even though the information about the warping alignment is lost by applying the vector-
based method, the warping path still can be constrained by the parameter ws, defining the
Sakoe Chiba warping window size. To continue with the same time series we constrain the
warping path to allow a maximum deviation of the time index of q and c of 1, so |i− j| ≤ 1.
Since the warping path needs to adapt slightly the calculated distance changes from 3 to 4.

R> IncDTW::dtw2vec(Q, C, ws = 1)$distance

[1] 4

"Early abandoning" is a pruning method to break calculations if the cheapest possible align-
ment of two time series hits an upper bound (set by the user). This method helps to lower
the calculation runtime when comparing many time series. If the DTW algorithm hits this
threshold the for-loop breaks and returns NaN . We continue the example and set the thresh-
old to 2. Since no value in the fourth column of the global cost matrix is smaller or equal to
2, so Gi,4 > 2 ∀i, the calculation stops here and NaN is returned.

R> IncDTW::dtw2vec(Q, C, threshold = 2)$distance

[1] NaN

3.3. IncDTW for incremental DTW calculations

For the incremental calculation of DTW we can choose between (1) the matrix based imple-
mentation to get more information about the alignment of the two time series and to facilitate
analyses of the warping paths and (2) the vector based implementation for a faster distance
calculation. For the latter the initial column in Alg.2 is defined as the last column of the
former calculated global cost matrix, the last pointer vector respectively. That is, instead of
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passing matrices as input to the incremental DTW function, only the last column vector of G

is passed for the vector based implementation. Further the class planedtw and its methods
deal as convenient wrapper functions around the vetor based implementation. For a better
understanding the following examples first walk through the more basic matrix based and
vector based incremental update, and finally present the incremental update by hand of the
planedtw class.

We demonstrate the principle of incrementally updating the DTW global distance matrix and
the distance measure by hand of the following example. We define the time series q and c,
and calculate the initial alignment with dtw().

R> Q <- c(1:3, 4:1, 2:4)

R> C_initial <- c(1:3, 4, 4, 3:1) + 2

R> align_initial <- IncDTW::dtw(Q = Q, C = C_initial, return_wp = TRUE,

+ return_QC = TRUE, step_pattern = "symmetric1")

Figure 3a shows the time series and the aligned observations connected with dashed lines, and
Fig. 3b contains the same information but focuses on the warping path (the main plot). One
can see that the last observation of c is matched to the final six observations of q. We plotted
the results with plot(align_initial, type = "warp") and type = "QC" respectively.

With new observations of c we can easily update the global cost matrix and the warping path
by applying idtw() and compare the initial and updated versions of G.

R> C_newObs <- Q[8:10] + 2

R> C_update <- c(C_initial, C_newObs)

R> align_inc <- IncDTW::idtw(Q = Q, C = C_initial, newObs = C_newObs,

+ gcm = align_initial$gcm, dm = align_initial$dm, return_wp = TRUE,

+ return_QC = TRUE, step_pattern = "symmetric1")

R> identical(align_inc$gcm[, 1:8], align_initial$gcm)

[1] TRUE

As expected the first eight columns of the updated G and the initial G are identical. Figure 3c
and 3d show the updated alignment and warping path. Finally, we compare the DTW distance
of the updated calculation with the one from scratch (again using the basic function dtw())
and see that they are equal:

R> align_scr <- IncDTW::dtw(Q = Q, C = C_update, return_wp = TRUE,

+ return_QC = TRUE, step_pattern = "symmetric1")

R> align_scr$distance - align_inc$distance

[1] 0

We continue with the former example and perform the incremental calculation with the
vector based implementation with idtw2vec(). This function distinguishes between an initial
calculation and the incremental by checking whether results of previous calculations are passed
or not, particularly the argument gcm_lc.
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(a) Initial time series (b) Initial warping path

(c) Updated time series (d) Updated warping path

Figure 3: Initially c and q are aligned. The warping path has 4 vertical steps before the
update of c. The alignment is updated with an update of c.

R> alignV_init <- IncDTW::idtw2vec(Q = Q, newObs = C_initial, gcm_lc = NULL)

R> alignV_inc <- IncDTW::idtw2vec(Q = Q, newObs = C_newObs,

+ gcm_lc = alignV_init$gcm_lc_new)

Finally we compare the DTW distances of the incremental calculation (idtw2vec()) with the
one from scratch (dtw2vec()) and their matrix based counterparts. As expected they are
identical:

R> C_update <- c(C_initial, C_newObs)

R> alignV_scr <- IncDTW::dtw2vec(Q = Q, C = C_update)

R> c(align_scr$distance, align_inc$distance,

+ alignV_scr$distance, alignV_inc$distance)

[1] 16 16 16 16

Section 4.5 gives runtime comparisons for these update functions.

New observations for both time series

With the knowledge of the basics and main modules for incremental calculation of DTW,
idtw() and idtw2vec(), we apply the functions initialize_plane() and increment()
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which are convenient wrappers around idtw2vec(). The former function performs the initial
calculation of idtw2vec() and returns an object of class planedtw, whereas the latter func-
tion applies the incremental calculation of idtw2vec(). Section 4.3 and 4.4 discuss further
methods for the S3 class planedtw that support the navigation in the plane of possible fits,
which means to adjust incrementally the partial alignment of two time series.

If new observations for both time series are available, the update of the DTW calculation
works in a consecutive fashion, similar to the case where only one time series is updated. The
initial step is to apply initialize_plane() on the initial observations of c and q. Next we
update the calculations for the first time series with increment():

R> x <- initialize_plane(Q = Q, C = C_initial)

R> print(x)

control:

dist_method step_pattern nQ nC ws reverse

norm1 symmetric2 10 8 NULL FALSE

DTW distance:

14

Normalized DTW distance:

0.7777778

R> x <- increment(x, newObs = C_newObs)

Figure 4a visualizes relevant sections of the updated global cost matrix G. For a new obser-
vation of c the new area of G is colored red and the required column for the update in blue.
Next we update G for the new observations of q. Again the red and blue rows in Fig. 4b indi-
cate the updated and required areas. So we switch places of q and c as input for idtw2vec()

and proceed analogously. Also we need to switch the last column with the last row of the
global cost matrix. Figure 4c illustrates that switching c and q and the gcm_lr with gcm_lc

is the same as transposing G. We could either switch the positions of these elements by hand
and apply idtw2vec() directly, or apply the more convenient function increment() and set
direction = "Q" to tell the function in which direction to update the last row and column
of the global cost matrix:

R> Q_newObs <- rw(10)

R> x <- increment(x, newObs = Q_newObs, direction = "Q")

Finally we compare the results with the results from scratch and see that the calculated
distance measures are equal:

R> x$distance - dtw2vec(c(Q, Q_newObs), c(C_initial, C_newObs))$distance

[1] 0
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Figure 4: Incremental update of G for new observations of c and q. The updated areas of
G are coloured in red and the areas storing the required input for the vector based update
calculation are coloured blue.

3.4. runDTW: Detect multiple fits of the same length

δ-SS and the Equation 8 and 9 describe the set of subsequences of a long time series c that
are closer than a threshold δ to a query pattern q. This is a similar problem definition to the
well known k-NN search, where the set of subsequences to be found are the k-nearest to the
query time series. We propose the algorithm runDTW – also presented at (Leodolter, Plant,
and Brändle 2019) – solving both problems δ-SS and the k-NN search by sliding a window
along c and calculating the DTW distances to detect recurring patterns similar to q. In the
following we first discuss the algorithm runDTW to detect all fits beyond a threshold δ and
subsequently elaborate how to adjust the algorithm slightly to detect the k nearest neighbors.
To reduce computation time, the algorithm

• incrementally updates the local cost matrix C,

• applies lower bounding methods to skip unnecessary DTW calculations,

• applies the vector-based implementation of the DTW algorithm,

• early abandons the DTW computation, and

• incrementally updates the scaling (z-scaling or min-max scaling3) of the sliding window.

The algorithm runDTW was inspired by the work of Sakurai et al. (2007) and Rakthanmanon
et al. (2012). However, neither supports a k-NN search, further the former does not consider
scaling and the latter is for univariate time series only and especially designed for finding the
nearest neighbor (7) which is similar but different to (9). The function rundtw() of IncDTW

is the implementation of the algorithm runDTW.

As Mueen and Keogh (2016) point out, local scaling is important in many applications and
enables the algorithm to detect similar patterns in the presence of steady global trends.
Equation 14 gives the standard formula for the min-max scaling to scale the subsequence

3In literature this is also called normalization. Here we use the term ’scaling’ to distinguish it clearly from
normalizing the DTW distance for the length of the time series.
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{cj}j=i,...i+n−1 of a time series c, where cmax
i and cmin

i are the maximum and minimum of
this subsequence. Algorithm 3 elaborates the running incremental min-max-scaling.

yj
..=

cmax
i − cj

cmax
i − cmin

i

∀j = i, ...i + n− 1. (14)

Algorithm 3 Incremental update of the scaling of the sliding window of c

1: procedure incscale(c, i, u, cmin
i , cmax

i )
2: Status ← 1
3: if cu < cmin

i then ⊲ typically the upper index u is equal i + n− 1
4: cmin

i ← cu

5: Status ← 0
6: end if

7: if cu > cmax
i then

8: cmax
i ← cu

9: Status ← 0
10: end if

11: if ci = cmax
i | ci = cmin

i then ⊲ ci drops out of the window
12: cmax

i ← max(ci+1, ... cu)
13: cmin

i ← min(ci+1, ... cu)
14: Status ← 0
15: end if

16: if Status = 1 then

17: scale(cu) ⊲ see (14)
18: else

19: scale(ci+1, ... ck) ⊲ see (14)
20: end if

21: end procedure

The running scaling checks if the new element in the sliding window is smaller or bigger than
the current minimum or maximum, or the element that drops out of the window is equal to
one of them. If one of these conditions are true, then the new minimum and maximum need
to be defined and the whole subsequence needs to be scaled from scratch. Otherwise only
the new observation in the window is scaled. Based on the resulting status from the running
scaling the local cost matrix C is updated by either:

• reusing former results and appending the new column of costs (see 5), if status = 1, or

• recalculating C from scratch if status = 0.

For multivariate time series the update of C depends on the scaling status of all dimensions.

rundtw() also supports the z-scaling yj
..=

cj−µi

σi
, ∀j = i, ...i + n − 1, where µi and σi are

mean and standard deviation of the subsequence {cj}j=i,...i+n−1. The initial µ1 and σ1 are
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calculated with the standard formulas and for i > 1 updated incrementally by:

µi = µi−1 +
(ci+n−1 − ci−1)

n

σ2
i = σ2

i−1 +
(c2

i+n−1 − c2
i−1)

n− 1
+ (µ2

i−1 − µ2
i )

n

n− 1

σi =
√

σ2
i .

(15)

Contrary to the min-max scaling, when applying the z-scaling the scaling of the subsequence
and the local distances need to be calculated from scratch for each single step.

Further, rundtw() makes use of early abandoning and lower bounding as proposed originally
by Keogh (2002) and refined for multivariate time series by Rath and Manmatha (2002).
They define the lower bound as:

lbmv(q, c) =
n

∑

i=1

O
∑

o=1















local_dist(ci,o, ui,o) if ci,o > ui,o

local_dist(ci,o, li,o) if ci,o < li,o

0 else

(16)

where the local_dist function can be any of the predefined local distance functions (’norm1’,
’norm2’, ’norm2_square’, see (13)) and the lower and upper bounds l and u are defined by:

uio
..= max(q[i− r : i + r, o])

lio ..= min(q[i− r : i + r, o]).
(17)

The parameter r depends on the applied warping path restrictions. If the Sakoe Chiba warping
window is applied, r is equal the window size parameter. Rath and Manmatha (2002) prove
that for multivariate time series of equal lengths the lower bound is always smaller or equal
to the DTW distance: lbmv(q, c) ≤ DTW(q, c) for the step pattern "symmetric1". This fact
can be used to decide whether or not to calculate the DTW distance between two time series
and so speed up pattern recognition algorithms as runDTW.

Algorithm 4 describes the algorithm runDTW in detail. For each point of time the respec-
tive segment of x is scaled incrementally (Line 8). Then the lower bounding helps to decide
whether the DTW distance for this time index j is calculated or skipped (Line 9-12). The
matrix of local costs C is updated also incrementally dependent on the exit status of the in-
cremental scaling (Line 14). The Lines 16-23 update the threshold in respect to the calculated
distance measure and the number of time indices between the current time index and the one
of the previous best-sofar-value. The variant of RUNDTW with local z-scaling differs only
slightly from Alg. 4. The scaling (Line 8) is performed according to (15), and the calculation
of C (Line 14) is performed from scratch for each j – except lower bounding causes skipping
index j – contrary to the incremental update for min-max scaling.

The following section discusses how to adjust the algorithm RUNDTW to perform k-NN
search.

3.5. k-NN search with DTW

In general the k nearest neighbors of one object φ∗ are those k objects φi of a given set of
objects Φ = {φj}

J
j=1, where d(φ∗, φi) < d(φ∗, φj), ∀i ∈ I ⊆ J and ∀j ∈ J \ I, and d() is a
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Algorithm 4 Sliding Window approach to detect multiple fits of a query pattern q in a
longer time series c with local min-max scaling.

1: function rundtw(q∈ R
n×o, c∈ R

m×o, w, δ)
2: x← return vector of length m− n + 1
3: C← empty local cost matrix ∈ R

n×m

4: j ← 1
5: x∗, j∗ ← δ, 1 ⊲ best-sofar-value and /-index within the range of w
6: while j ≤ m− n + 1 do

7: jupper ← j + n− 1
8: y ← incscale(c, j − 1, jupper) ⊲ scaling, see Alg. 3
9: lb← lowerbound(q, y, w, x∗) ⊲ see (16), x∗ serves as threshold

10: if lb = NAN then ⊲ lowerbound() breaks if it hits the threshold x∗

11: x[j]← NAN
12: j ← j + 1 and next ⊲ break since best-sofar-in-range ≤ lb
13: else

14: C[1 : n, j : jupper]← dist(y, q) ⊲ update C based on exit status of incscale()
15: x[j]← DTW(C[1 : n, j : jupper], w, x∗) ⊲ x∗ as early abandon threshold
16: if x[j] 6= NAN then ⊲ DTW did not break since x[j] < x∗

17: x∗ ← x[j] ⊲ best value in range
18: j∗ ← j ⊲ index of best value in range
19: end if

20: end if

21: if j − j∗ > n then ⊲ guarantees no overlap of fits
22: x∗ ← δ ⊲ resets the best-sofar-value/ threshold
23: end if

24: j ← j + 1
25: end while

26: return x
27: end function

distance function and |I| = k. For the special case of finding k-NN in a long time series c,
we do not want to return trivial fits, since analyzing trivial fits is meaningless as discussed
by Keogh and Lin (2005). They define trivial fits (i∗ ± j) as follows: Given the function
d(i) = DTW(q, c[i : i + n]), and the best found fit i∗ such that d(i∗) < d(i) ∀i, then it is
very likely that the values d(i∗ + j) and d(i∗− j) for any small additive term j have similarly
low distances as well. To ensure that the found k-NN are no trivial fits we need to guarantee
that two consecutive fits i∗

1 and i∗
2 do not overlap: 4 |i∗

1 − i∗
2| ≥ n.

The algorithm runDTW detects multiple non-trivial fits to a query pattern and saves time
by avoiding computing unnecessary distances. Two modifications of Alg. 4 are necessary to
fulfill the search of the k nearest non-overlapping neighbors:

1 For the threshold adjustment in Line 21 of Alg. 4 we need to keep track of the best k
found fits so far and their positions to prevent overlapping fits. The best k found fits so
far serve as thresholds for lower bounding and early abandoning. However, some nearest

4Per default the function rundtw() does not accept any overlap, but the user may relax this condition with
care by setting the parameter overlap_tol.
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neighbors could be overlooked during the computation process. The second point solves
this.

2 runDTW picks the better of two consecutive candidate fits (i and j, j > i) which have
an overlap. If the fit at position j is better, then i is dropped, no matter how small the
DTW distance at i is. If this happens multiple consecutive time, it is possible that one
of the actual k nearest neighbors is overlooked. To take care of this run-away problem
we append an algorithm that steps through the vector of calculated distances in reverse
order (Alg. 5).

Algorithm 5 steps through the distance vector from end to beginning and remembers the best
so far index i∗ with lowest distance d∗. If the previous (n− 1)-many entries are bigger than
d∗ then i∗ is appended to the result vector. The algorithm doesn’t care about the run-away
problem since the (n−1)-many entries after a found fit are NaN, due to the skipping or early
abandoning in Line 11 and 14 of Alg.4.

Algorithm 5 Step through the vector of DTW distances in reverse order to find the non-
overlapping k-NN

1: procedure rev-knn(distance vector d ∈ R
m−n, window size n = |q|)

2: kNN ← empty vector
3: d∗ ← dm−n ⊲ initiate the best-so-far distance value
4: i∗ ← m− n
5: for i = m− n− 1 : 1 do ⊲ step through distance vector in reverse order
6: if n ≤ i∗ − i then ⊲ guarantees no overlap
7: kNN ← append(kNN, i∗) ⊲ remember the index i∗

8: d∗ ← di

9: i∗ ← i
10: else if di < d∗ then

11: d∗ ← di

12: i∗ ← i
13: end if

14: end for

15: return kNN
16: end procedure

In the following we showcase the functionality of rundtw() for a sine wave query pattern q, and
a long time series c, which is a concatenation of random walks and deformed representations
of q. We simulate the deformation by first simulating a warp, and then shifting and scaling
by random:

R> set.seed(1234)

R> rw <- function(nn) cumsum(rnorm(nn))

R> deform <- function(x, p){

+ (simulate_timewarp(x, p, preserve_length = TRUE) + rnorm(1, 0, 3)) *

+ abs(rnorm(1, 0, 3))

+ }

R> Q <- sin(seq(1, 20, length.out = 100))
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R> C <- c(rw(100), deform(Q, 0.3), rw(10), deform(Q, 0.3), rw(200),

+ deform(Q, 0.3), rw(300))

R> rundtw( Q = Q, C = C, scale = "01", dist_method = "norm1",

+ ws = 10, threshold = NULL, lower_bound = TRUE, k = 3 )

counter:

scale_reset scale_new_extreme scale_1step cm_reset

70 82 659 137

cm_1step early_abandon lower_bound completed

534 628 140 43

Indices of k nearest neighbors knn_indices:

[1] 101 511 211

Distances of k nearest neighbors knn_values:

[1] 0.7101164 0.9022618 2.1050072
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Figure 5: Find the k-NN (here k = 3) of a query pattern q (sine wave) in a long time series c.
The upper graph shows the time series and the fits, the simulated warped representations of
q (red). The bottom graph shows the vector of DTW distances for all subsequence: skipped
or abandoned due to early abandoning or lower bounding (grey), the necessary ones (orange),
and the k-NN (red).

As supposed the algorithm runDTW detects the k-NN to be located at the indices where the
deformed versions of q very put into c: 101, 511 and 211. Also the respective DTW distances
of the scaled subsequences to the query pattern qare printed.

Figure 5 shows time series c (top) and the DTW distances computed with rundtw() (bottom).
There are 811 = 910 − 100 + 1 = m − n + 1 possible combinations that the starting index i
can take to calculate DTW(c[i : i + 100− 1], q). Of these 811 steps, the runDTW algorithm
needs to reset the minimum and maximum of the sliding window (see Lines 12 and 13 in
Alg. 3) 70 times, and 82 times the new observation in the sliding window is smaller than the
current minimum or bigger then the current maximum (Lines 3 to 10 in Alg. 3). In these
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cases the complete window needs to be scaled. In the remaining 659 times only the new
observation in the sliding window is scaled. (Lines 17 and 19 in Alg. 3). The incremental
update of the local cost matrix C depends on the exit status of the scaling and on the lower
bounding. If the calculation is skipped due to the lower bound (here 140 times), C is not
touched at all. For the remaining 671 cases, either one column of C is updated (534 times),
or the complete reset of the matrix was necessary (137). Apart from lower bounding, early
abandoning also reduces the computation time. Here 628 times the computation of DTW
is abandoned due to hitting the threshold. So, only for 43 out of 811 starting indices the
complete DTW computation was performed. These are the orange and red points in Fig. 5.
The red points are the k = 3 nearest neighbors (to plot the grey points we did the calculation
again with the settings lower_bound = FALSE and k = NULL). As soon as runDTW finds
the third NN, the maximum of the distances of the three NN is set as threshold for lower
bounding and early abandoning. For this reason, no DTW calculation is finished beyond the
index 511.

Section. 4.5 demonstrates the computation time benefit of rundtw() contrary to traditional
solutions.

4. Applying IncDTW

This section demonstrates the applicability of IncDTW in different fields of time series data
mining:

• Clustering and prototypical patterns: The DTW distance measure is often applied
for clustering or classifying a database of observed time series which have similar lengths.
Section 4.1 demonstrates the calculation of a matrix of pairwise DTW distances, the
clustering based on this distance matrix and how to calculate a representative – a
prototypical pattern – of a cluster of time series of different lengths and non-linearly
aligned.

• Classification of live data streams: Section 4.2 discusses a time series classifica-
tion task for live data streams solved by either the traditional DTW implementation
dtw2vec() or the incremental updating of DTW distances to speed up calculations with
idtw2vec().

• Pattern recognition: Scanning longer time series to detect similar representations of
query patterns is especially challenging when the representations can vary in speed and
time. DTW is a suitable distance measure to detect such representations, but expensive
to calculate. The incremental calculation algorithm can save computation time to solve
the problem of matching a query pattern. Section 4.3 demonstrates the key principle
on a simple example and based on these principles Sec. 4.4 discusses an exemplary
algorithm to navigate in the plane of possible fits.

Finally Sec. 4.5 compares the run times for different DTW implementations, packages and
use cases.

In the following experiments we work with data sets (Bruno, Mastrogiovanni, Sgorbissa, Ver-
nazza, and Zaccaria 2013) downloaded from UCI machine learning repository (Dheeru and
Karra Taniskidou 2017). The data was collected by participants wearing a smart watch
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recording a 3-dimensional accelerometer signal with a sampling rate of 32 Hz. Among other
actions the participants were asked to collect data during walking (Walk), drinking a glass
(drink_glass) and brushing teeth (brush_teeth), Fig. 6 depicts examples of the three ac-
tivities. The time series data of these experiments are included in the package IncDTW.

Figure 6: Typical accelerometer time series recorded while brushing teeth, drinking a glass,
or walking.

4.1. Time series clustering and prototypes

In the following examples we use DTW as distance measure to cluster a set of time series to
find prototypical patterns. First we calculate the symmetric matrix of pairwise DTW dis-
tances by applying the function IncDTW::dtw_dismat(). For compatibility dtw_dismat()

returns this distance matrix as object of class dist, which is one of the standard classes
accepted by traditional clustering functions like hclust(), agnes() or pam() of the packages
cluster by Maechler, Rousseeuw, Struyf, Hubert, and Hornik (2018) and fastcluster by Müll-
ner (2013), for hierarchical clustering, agglomerative hierarchical clustering and partitioning
around medoids, respectively. Next we apply hierarchical clustering fastcluster::hclust()

to cluster the distance matrix and finally represent the found clusters by prototypical time
series. However it is not trivial to average time series that are non-linearly aligned. Un-
like to averaging time series of equal lengths with 1-1 alignment by Euclidean distance, we
cannot simply calculate the mean of two time series, instead we apply IncDTW::dba() – an
implementation of the DBA algorithm (DTW Barycenter Averaging), proposed by Petitjean,
Ketterlin, and Gançarski (2011) – to achieve a more meaningful representative of a cluster.

Cluster time series of equal lenghts

In this example we cluster the accelerometer time series of walking and brushing teeth. We
select these two data sets, since both activities show patterns of high frequencies. So, for
these two activities we assume to find short distinct prototype patterns that occur repeatedly
in longer time series of the respective activities. First we cut the time series of 3-dimensional
accelerometer recordings of walking and brushing teeth into non-overlapping snippets of 5
seconds each – which is equal to 160 observations – and normalize these snippets and store
them as list of time series, lot. Then we calculate the distance matrix with dtw_dismat() for
all 707 snippets (we skip shorter snippets at the end of the records). The symmetric distance
matrix has N(N − 1)/2 = 249571 entries in the lower triangular matrix to be calculated.
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Figure 7: Dendrogram of clustering accelerometer signals of walking and brushing teeth.

To shorten the calculation time dtw_dismat() distributes the work per default among all
minus one available nodes via RcppPrallel (Allaire et al. 2018). Per default dtw_dismat()

returns the distance matrix as a dist object, which can easily be passed to standard clustering
functions, as e.g., hierarchical clustering:

R> dm <- dtw_dismat(lot, dist_method = "norm2", ws = 10)

R> agn <- fastcluster::hclust(dm$dismat, method = "average")

To find k, the best number of clusters (which is analog to the height where to cut the dendro-
gram), we evaluated the normalized mutual information (NMI) for all k = 2 : 30, and found
that for k = 8 the best clustering is found with an NMI of about 0.55.

R> myclus <- cutree(agn, k = 8)

R> table(Activity, myclus)

myclus

Activity 1 2 3 4 5 6 7 8

Walk 470 6 40 4 2 5 1 0

Brush 11 4 5 5 4 8 2 140

Figure 7 depicts the dendrogram with colored branches as clustered with k = 8. The two
horizontal bars at the bottom visualize the output of the table() command. The upper
bar gives the ground truth (whether a snippet is walking or brushing teeth) and the lower
one summarizes the separation by the clustering. The first, third and eighth clusters are
well separated clusters, meanwhile the other smaller clusters are rather mixed. Next we
aggregate the clusters with dba() to get representatives and plot them to get a deeper insight
into the clusters. Figure 8 visualizes the aggregated prototype patterns for all 8 clusters. The
first cluster is the biggest one and consists almost exclusively of walking snippets. The shown
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Figure 8: Cluster barycenters for all 8 clusters calculated with dba().

pattern is periodic and stable. The eighth cluster (brushing teeth cluster) also shows a stable
periodic pattern, but with a much higher periodicity, which is reasonable since one’s hand
moves faster up and down during brushing teeth than swings forth and back during walking,
or even running. The mixed smaller clusters can be interpreted as hand gestures done during
both activities. Finally Fig. 9 shows exemplary accelerometer recordings for walking and
brushing teeth colored according to the clustering of the snippets. For the walking record
most subsequences belong to cluster 1, and for the brushing teeth record cluster 8 dominates.

To check the convergence behavior of the DBA algorithm Fig. 10 visualizes the iterations and
the distances. The lower three plots are the dimensions of the iterations 1 to 20 (plotted with
plot(x, type = "bary"), where x is the result of the function dba()). The upper left plot
shows the iteration-to-iteration distance of one iteration barycenter to the former (plot(x,

type = "m2m")). And the upper right plot shows per iteration the average distance of the
barycenter to the list of time series and the the standard deviation as the width of the grey
shaded tube (plot(x, type = "m2lot")).

Cluster time series of different lengths

The data set drinking_glass consists of accelerometer records of people moving their hands
to drink a glass. We use these time series to demonstrate the clustering of time series of
different lengths, contrary to the task of clustering the signals of walking and brushing teeth
where we cut the time series into snippets of equal lengths. The motivation for these two
different approaches is that the walking and brushing teeth actions are of high periodicity,
meanwhile signals of drinking a glass are records of a single drinking action. This becomes
clear later, when we compare the prototypes in Fig. 8 and those of drinking in Fig. 12.

First we load the data and have a look at the average length of the time series. The set
consists of 100 time series with lengths between 255 and 1322 recordings, so about 8 to 41
seconds.

R> data("drink_glass")
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Figure 9: Exemplary signals for Walking (left) and brushing teeth (right) colored according
to the cluster assignment.
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Figure 10: Convergence of the DBA algorithm: The dimensions of the barycenters (lower
three plots), iteration-to-iteration distance (upper left), and the average normalized distances
of the n-th iterations to the list of time series (upper right).

R> lot <- drink_glass #list of time series

R> length(lot)

[1] 100
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Figure 11: Dendrogram of the clustering of drinking a glass. We cut at the horizontal red
line and skip small clusters.

R> summary(sapply(lot, nrow))

Min. 1st Qu. Median Mean 3rd Qu. Max.

255.0 303.2 376.0 427.9 471.5 1322.0

R> summary(sapply(lot, nrow)/32)

Min. 1st Qu. Median Mean 3rd Qu. Max.

7.969 9.477 11.750 13.373 14.734 41.312

Unlike the task in 4.1.1 we cannot evaluate the clustering via NMI, since we cluster time
series all of the same class. So for this task our intention is to learn prototypical patterns of
one and the same activity. We proceed as follows:

• We calculate the distance matrix and cluster the time series. Since the time series are
of different lengths, it is important to set the parameter normalize = TRUE.

• Then we plot the dendrogram and cut it at a reasonable height to get clusters of repre-
sentative size.

• Finally we aggregate the clusters with dba() and plot the cluster representatives.

R> dm <- dtw_dismat(lot = lot, dist_method = "norm2")

R> agn <- fastcluster::hclust(dm$dismat, method = "complete")

Figure 11 shows the dendrogram of the clustering. We cut the tree at the height of the red
dashed horizontal line to achieve 6 clusters, four of reasonable size and two minor clusters.
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Figure 12: Prototypes for drinking a glass.

R> hh <- sort(agn$height, decreasing = TRUE)[6]

R> myclus <- cutree(agn, h = hh)

R> table(myclus)

myclus

1 2 3 4 5 6

27 20 5 4 34 10

We proceed with calculating the barycenters with dba() and plot these in Fig. 12. All time
series are records of the same activity, so as expected the clusters show similar patterns but
differ from each other in detail. Further the cluster centers show different lengths of 300 to
800 observations. The most representative pattern shows cluster 5, the biggest cluster. One
can interpret the figure as tripartite: (1) The first few seconds describe the lifting of the glass.
Due to the movement of the hand the axis subtend each other. (2) The middle part of the
figure shows a rather constant pattern, where the hand remains inactive. (3) Putting back the
glass onto the table show the opposite movement to the first. The forth cluster is a smaller
one and shows that some time series possibly are records where the glass was lifted multiple
times for multiple smaller sips.

4.2. Incremental DTW update for live data

When applying data mining methods on live streams of data, it is mandatory that the compu-
tation time of the analysis is smaller than the time in between two consecutive observations.
In this experiment we simulate the situation of dealing with data streams by iteratively in-
cluding more observations of the time series into analysis. As soon as new observations are
’recorded’ we classify the time series streams by comparing their DTW distances to prototype
patterns, so we need to update the DTW calculation for each set of new observations.

We start this experiment with determining representative centroid patterns for each of the
recorded activities, stored in the accelerometer data sets Walk, drink_glass and brush_teeth.
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We calculate these representatives with IncDTW::dba(), which is the DTW Barycenter Aver-
aging method by Petitjean et al. (2011) for averaging multiple time series that are non-linearly
aligned by DTW.

Next we calculate the initial DTW distances for the first 100 observations (about 3 seconds) of
each time series of the three data sets to the three centroids. Then we simulate the continuous
recording of new observations and apply idtw2vec() to update the DTW distance measures,
which requires to store the last columns of G (see (2)) of the previous calculations. For
comparing the computation times we fulfill the same classification task with dtw2vec(), and
of course the classification results are identical. Figure 13 depicts this simulation of a data
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Figure 13: Iteratively increasing the observation window. As the dashed line moves to the
right, more data is included in analysis and the DTW alignment is updated for the new
observations.

stream c and the query time series q, both selected from the drink_glass data set. This
plot shows the situation after the initial step – the first three seconds are already observed
(vertical solid line) – when c has already been recorded for six seconds in total (the vertical
dashed line). As the data stream continuously updates the dashed line moves to the right
and more observations are included to the DTW alignment with q.

Figure 14a plots the classification accuracy against the ’observed’ (used) percentage of the
time series, and shows that the accuracy increases the more observations are recorded. Already
about 75% are enough to reach an F1-score of 90%. We used 4-fold cross validation, where
we calculated the representatives via dba() on one fold and classified the remaining 3 folds.
Figure 14a shows aggregated results.

Figure 14b compares the computation times of idtw2vec() (incremental) and dtw2vec()

(from scratch) to process one set of new observations, which we represent as the set of ob-
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servations recorded within one second, so 3-dim time series with 32 rows (since originally
recorded with 32Hz). The collection of these three data sets consists of 212 time series of
different lengths. The calculation times depend on the length of the observation window and
the number of time series that are at least as long as the observation window. Since the time
series are of different lengths, with increasing observation window, more and more time series
can not be processed further until the observation window is equal to the length of the longest
time series. For this reason the graph for ’scratch’ in Fig. 14b (top) first rises and then drops
continuously. All time series are at least 187 observations long and beyond this observation
window length the shorter time series drop out of further analysis and so are not relevant for
the total computation time. For clarification we also plot the relative times per time series in
Fig. 14b (bottom). It is worth mentioning that the y-axis are log-scaled.

We conclude that the incremental update can process about 7 to 108 times more time series
than the calculation from scratch, dependent on the length of the time series, the observation
window respectively. This exemplary data analysis task would not be solvable in time by
applying dtw2vec() (which is vector-based implemented in C++ via Rcpp) since the calcu-
lation of DTW distances and classification takes longer than one second, which is the time
in-between two sets of new observations. However, the incremental method with idtw2vec()

is capable. As expected this experiment demonstrates the calculation time for the incremental
step to be independent of the total length of the time series, see Fig. 14bc. We performed this
experiment applying a single core of a 2.8 GHz and 16GB RAM laptop. If we split the work
for this example across multiple cores dtw2vec() would manage the classification in time as
well, however the relation of 7 to 108 remains the same, so the incremental solution is capable
to deal with much more time series updates in less time.

(a) Prediction Accuracy. (b) Runtime: Absolute (top) for all time series, and
relative (bottom) per time series.

Figure 14: Prediction accuracy and computation time comparison for classifying multivariate
time series of the data sets Walk, drink_glass and brush_teeth by simulating to observe
these time series live and update the prediction once per second.

4.3. Moving in the plane of possible fits

This section demonstrates by means of a simple example the key principles how the functions
of IncDTW help to navigate in the plane of fits, to detect a warped instance of a query
pattern in a longer time series. Section 4.4 presents an exemplary heuristic that applies these
functions. We presented the more elaborate Caterpillar algorithm in Leodolter et al. (2018),
which relies on the same principles.
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Before we start with the example we give an outlook how we will use the functions of IncDTW.
Say 1 ≤ a ≤ b ≤ m = |c| and we just have initialized the alignment of q and the section of c at
the point Y = (a, b) in Fig. 1b, so initialize_plane(q, c[a:b]). This command calculates
the DTW distance of the respective time series and returns an object of class planedtw (see
Sec. 2.2 and 3.3). To adjust (a, b) and detect an index combination of lower normalized DTW
distance, we make use of two different views on the problem:

• The regular view: The incremental calculation (via idtw2vec() or increment()) in
combination with the open end alignment (via dtw_partial() or decrement(), dis-
cussed in more detail in Appendix A) facilitates the evaluation of the extension and
contraction of the scanning window at the end (index b) while the start (index a) is
fixed. (see vertical arrows in Fig.1b)

• The reverse view: The same logic as for the regular view is applied on q and c in
reverse time order to evaluate the extension and contraction of the scanning window at
the start index a while fixing the end index b (see horizontal arrows in Fig.1b). The
function reverse() helps to reverse the order of the planedtw object.

The reverse view makes use of the fact that DTW is reversible as proved by Assent, Wichterich,
Krieger, Kremer, and Seidl (2009) for the step pattern "symmetric1". Appendix A discusses
deviations of the regular and reverse view for "symmetric2" and shows empirically that those
are minor. For the following examples in Sec. 4.3 and 4.4 we demonstrate the results achieved
with the default step pattern "symmetric2", and we also accomplished all experiments with
"symmetric1" and the results are almost identical.

To start with the example, first we simulate the time series q as random walk. Next we
set c as copy of q and add random noise. To simulate a time warp we compress c for the
following example (in Sec. 4.4 we apply a simple heuristic relying on the same principles on
the drink_glass data, covering longer and shorter instances of the same pattern). Finally
we append additional random walks at the beginning and end of c, representing noise.

R> set.seed(213)

R> Q <- rw(500)

R> C <- Q + rnorm(length(Q))

R> C <- IncDTW::simulate_timewarp(C, stretch = 0, compress = 0.1)

R> C <- c(rw(100), C, rw(100))

R> length(C)

[1] 650

Figure 15 depicts the exemplary time series, q at the top and the simulated c in the middle. c

has a length of 650, where the first and last 100 observations were simulated as noise without
relation to q (green parts of the graph). The purple section at the middle of c, at a length
of 450, represents the compressed noisy instance of q.

A simple but effective heuristic – that applies the functions of IncDTW as kind of vehicles
– is incrementing and testing partial alignments until no further reduction of the normalized
distance can be achieved and the partial alignment does not change for further incremental
steps. Then the best partial alignment of the reverse time series is used to omit initial noise.

We start with the initial DTW alignment of q and the first nQ = n observations of c.
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Figure 15: Example for a query pattern q (top), a noisy time warped candidate pattern
c with additionally appended noise at the beginning and end (middle), and the detected fit
(bottom).

R> nQ <- length(Q)

R> x <- initialize_plane(Q, C[1:nQ])

R> dtw_partial(x, partial_Q = FALSE, partial_C = TRUE)

$rangeQ

[1] 1 500

$rangeC

[1] 1 500

$normalized_distance

[1] 1.335524

The function dtw_partial() returns 500 for the end index of c, which is a full alignment for
the considered range. Next we start the incremental steps with a step width of 25. In each
step the results of the previous step (x) is recycled by increment(), especially the required
parts of the global cost matrix (compare Fig. 4).

R> step <- 25

R> #---- first step ----

R> x <- increment(x, newObs = C[(nQ + 1):(nQ + step)])

R> dtw_partial(x, partial_Q = FALSE)
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$rangeQ

[1] 1 500

$rangeC

[1] 1 519

$normalized_distance

[1] 1.302147

R> #---- second step ----

R> x <- increment(x, newObs = C[(nQ + step + 1):(nQ + step * 2)])

R> dtw_partial(x, partial_Q = FALSE)

$rangeQ

[1] 1 500

$rangeC

[1] 1 550

$normalized_distance

[1] 1.253576

R> #---- third step ----

R> x <- increment(x, newObs = C[(nQ + step * 2 + 1):(nQ + step * 3)])

R> par <- dtw_partial(x, partial_Q = FALSE); par

$rangeQ

[1] 1 500

$rangeC

[1] 1 550

$normalized_distance

[1] 1.253576

R> x <- decrement(x)

At the third step we test the alignment of q and c[1 : 575], and the best partial alignment
has not changed to the previous step with a maximum index of 550. So we decrement() x

and continue with the partial alignment of the reverse time series:

R> x <- reverse(x)

R> dtw_partial(x, partial_Q = FALSE, reverse = TRUE)

$rangeQ

[1] 1 500
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Figure 16: Barycenter of drinking glass records as query pattern to demonstrate simple and
powerful pattern recognition algorithms.

$rangeC

[1] 105 550

$normalized_distance

[1] 0.4919826

R>

Finally we detect the best fit of the query pattern q in c from 105 to 550, which is very close
to the simulated ground truth of 101 and 550. The bottom plot of Fig. 15 shows the detected
fit in red. One can also observe that the normalized distance always decreased from one step
to the next.

4.4. Incremental DTW heuristic

In this section we design a simple heuristic that uses the functions of IncDTW to answer the
following question: What’s the average duration people need to empty the glass, so the time
in-between lifting the glass and putting it back on the table? Or analogously, when is the
start and end of the actual drinking, and not the recording? These questions are examples
for the generic question: When does the event XY start and end within a record? With this
example we demonstrate how to build an algorithm for the 1-SSvl problem (see (10)), that
applies the tools provided by IncDTW, and is designed to detect specific patterns in your
data.

First we plot the barycenter (calculated with dba()) of all time series of drink_glass in
Fig.16.

R> dba0 <- dba(drink_glass, dist_method = "norm2")
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It’s not trivial to set limits by hand when the actual drinking starts and ends, but we define
lower and upper bounds of second 1.5 and 6. In-between these borders the drinking most
certainly takes place, and the amount of additional recorded hand moving action is reduced.

R> Q <- dba0$m1[(1.5*32):(6*32),]

Once we have the query pattern q, we need a tool to detect it in each of the time series c of
drink_glass. So we define two different algorithms, (1) a brute force method that tries out
each alignment of partial c and q, and (2) an algorithm that updates the DTW calculation
incrementally similarly as demonstrated in Sec. 4.3. The brute force algorithm finds the
minimum of (18) by simply trying out each combination.

(i∗, j∗) = argmin
i,j

DTW(q, c[i : j]) (18)

For the two time series q of length n and c of length m, and a fixed i ∈ {1, ...m}, the brute
force method covers all combinations (i, j) ∀j ∈ {i, ...m} by calculating DTW(q, c[i : m])
and comparing all entries in the last row of the global cost matrix, after the appropriate
normalization. In the plane of possible fits (see Fig. 1) this corresponds to all points on a
vertical line starting at the point (i, i) .

R> getBruteFit <- function(C, Q){

+ nC <- nrow(C)

+ tmp <- lapply(1:nC, function(i){

+ x <- idtw2vec(Q = Q, newObs = C[i:nC,, drop = FALSE],

+ dist_method = "norm2")

+ x_par <- dtw_partial(x, partial_Q = FALSE)

+ c(i, x_par$rangeC, x_par$normalized_distance)

+ })

+ tmp <- do.call(rbind, tmp)

+ min_ix <- which.min(tmp[,4]) # 4th column is the normalized distance

+ rangeC_0 <- tmp[min_ix, 1]

+ rangeC_1 <- tmp[min_ix, 1] + tmp[min_ix, 3] - 1

+ return(c(rangeC_0, rangeC_1))

+ }

The advantage of the brute force algorithm is that it certainly detects the fit of minimal
normalized DTW distance, so the section of c that matches best to the query pattern q.
The disadvantage is of course the run time. For bigger problems, with many time series
and long time series, this is not feasible. For this reason the functions of IncDTW can deal
as components for a heuristic that approximates the best solution in reasonable time. The
following heuristic getFit() simply increases the scanning window by incrementing j by the
step size step until no reduction of the DTW distance within this new range can be found.
Finally the DTW distance of the reversed time series is calculated and dtw_partial() finds
the best partial alignment of c, so the best i.

R> getFit <- function(C, Q, i = 1, j = nrow(Q), step = 25){

+ # initial value
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+ best_j_sofar <- j

+ x <- initialize_plane(Q = Q,

+ C = C[i:j, ,drop = FALSE], dist_method = "norm2")

+

+ # step

+ increase_window <- TRUE

+ while(increase_window){

+ j_step <- min(j + step, nrow(C))

+ x <- increment(x, newObs = C[(j + 1):(j_step), , drop=FALSE])

+ x_par <- dtw_partial(x, partial_Q = FALSE)

+

+ # check

+ if(x_par$rangeC[2] <= best_j_sofar | j_step == nrow(C)){

+ increase_window <- FALSE

+ }else{

+ best_j_sofar <- x_par$rangeC[2]

+ j <- j_step

+ }

+ }

+

+ # reverse step

+ x <- decrement(x, nC = best_j_sofar) %>% reverse()

+ x_par <- dtw_partial(x, partial_Q = FALSE, reverse = TRUE)

+ return(c(x_par$rangeC[1], x_par$rangeC[2]))

+ }

With the following two statements we apply the two algorithms getBruteFit and getFit

onto the set of 3-dim time series drink_glass.

R> bf_fits <- lapply(drink_glass, getBruteFit, Q)

R> fits <- lapply(drink_glass, getFit, Q)

We varied the parameter step for getFit() and plot the results in Fig. 17, which shows the
boxplots of the distributions of the first (left plot) and last (right plot) indices of the detected
fits. It seems that if the step parameter is set too small, the heuristic stops in some cases
too early. Beginning with a step size of 30 to 40 the distributions stabilize and are almost
identical to the fits detected by the brute force algorithm. As a refinement step we add the
following lines at the end of getFit(), after the reverse step. These lines are equivalent to
the reverse step, but in the opposite direction. We name the new function geFit2().

R> iC <- x_par$rangeC[1]

R> x <- decrement(x, nC = x$control$nC - iC + 1) %>% reverse() %>%

+ increment(., newObs = C[(best_j_sofar + 1):nrow(C), ])

R> x_par <- dtw_partial(x, partial_Q = FALSE, reverse = FALSE)

Figure 18 summarizes the deviations of the two functions getFit() and getFit2() from the
brute force solution. The two rather simple heuristics show a good approximation of the best
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Figure 18: Deviations of the detected start and end indices of the two algorithms getFit()

and getFit2() to the results of getBruteFit(). The red line for median errors of getFit2()

is overlaid by the blue one.

solutions, especially for detecting the start index. We measured the deviations with the mean
and median absolute deviation since there are some outliers, as Fig. 17 also shows. Next we
compare the results and run time for two time series of drink_glass, we pick the longest and
shortest:

R> sC <- drink_glass[[which.min(lengths(drink_glass))]]

R> lC <- drink_glass[[which.max(lengths(drink_glass))]]

R> rbind(getBruteFit(sC, Q), getFit(sC, Q), getFit2(sC, Q))

[,1] [,2]

[1,] 65 179

[2,] 65 179

[3,] 65 179

R> rbind(getBruteFit(lC, Q), getFit(lC, Q), getFit2(lC, Q))
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[,1] [,2]

[1,] 131 523

[2,] 131 535

[3,] 131 523

We see that the results differ only marginally. Table 2 summarizes the computation times
measured with microbenchmark() for 100 runs, and shows that the brute force method takes
about 77 to 424 times longer than getFit().

shortest longest
heuristic median relative median relative

getBruteFit 96.60 76.72 1687.85 424.10
getFit 1.26 1.00 3.98 1.00
getFit2 1.69 1.35 6.16 1.55

Table 2: Median (in millisec) and relative run times for the shortest and longest glass drinking
sample.

Finally we answer the initial question of this task: How long lasts the average act of drinking?
Figure 19 shows horizontal lines for each step parameter and both heuristics, getFit() and
getFit2(). The start and end of the line indicate the median start and end of the detected
fits. The vertical black lines are the respective start and end of the brute force method, which
is of course independent of the step parameter. We can see rather stable solutions, especially
for getFit2(). Table 3 finally compares the results for the fixed step parameter of 50 obser-
vations. The median duration of the found fits is 4.8 seconds (153.5 observations), starts at
second 3.1 and ends at second 7.9. The standard deviation of the starts and ends detected
by getBruteFit() are 1.9 seconds (59.9 observations) and 3.2 seconds (101.8 observations),
respectively.

Since the found barycenter is shorter than the average record of this data set (8.8 and 12
seconds), it seems reasonable that also the specific pattern of the drinking action is shorter:
We extracted a query pattern of 3.5 seconds and the average found fit has a length of 4.8
seconds.

heuristic start end duration

getBruteFit 99 (3.1) 252.5 (7.9) 153.5 (4.8)
getFit 98 (3.1) 248 (7.8) 150 (4.7)
getFit2 98 (3.1) 252.5 (7.9) 154.5 (4.8)

Table 3: Start, end and duration in number of observations (seconds in brackets) per heuristic
for step equals 50.

4.5. Runtime comparisons

In the following we compare computation times for the 3 data analysis tasks: (1) the incre-
mental update for new observations, (2) single DTW computation for two time series, and
(3) computing the matrix of pairwise DTW distances for a set of time series. Further, we
also compare IncDTW with Python packages for the second task, since this is probably the
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Figure 19: Median start, end and duration of drinking a glass for different step parameters
for the two algorithms getFit(). The gray shaded box, bounded by the vertical black lines,
shows the start, end and duration of the brute force method.

most generic and most applied use case. To compare the calculation times of R packages
we use the package microbenchmark (Mersmann 2018). For comparisons to Python pack-
ages we measure the wall clock time. To the best of our knowledge we set the parameters
of all functions so that a fair computation time comparisons is guaranteed. So we omit to
return additional output objects (like the warping path) which obviously would cause higher
computation times. All runtime experiments were performed on a standard laptop computer
with 2.8 GHz and 16GB RAM. We applied the following versions of the respective packages
(please see Sec. 1 and Table 1 for more details about the packages):

• R: IncDTW (1.0.4), dtw (1.20-1), dtwclust (5.4.1), rucrdtw (0.1.3), parallelDist (0.2.1)

• Python: cydtw (0.1.4), dtaidistance (1.2.3), dtw (1.4.0).

Incremental update of DTW

This paper emphasises methods for accelerating DTW calculations and demonstrates how to
apply the incremental DTW calculation for updating existing results for new observations
(Sec. 2.1 and 4.2). The following experiment underpins that this principle of recycling former
calculated results is a considerable faster approach to compute the DTW distance measure.
For this experiment we simulate the situation of continuously recording new observations
and compare the runtime for the incremental calculation with a traditional calculation from
scratch. Figure 20a shows the results. Each red point is the median of 100 computations
of the DTW distance with dtw2vec() of two univariate time series, both of the respective
length given at the x-axis. The blue points visualize the median computation time for one
incremental step (via idtw2vec()), so one new observation of c, and q of length as given by
the x-axis. Both axes are in log scale.

Single computations

Figure 20b depicts the runtime comparison in a log scale. The only two methods using
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(a) Incremental vs. from scratch. (b) Single DTW computations for two time series.

(c) Matrices of pairwise DTW distances for a list
of time series.

(d) Single DTW without warping window com-
pared with Python packages.

Figure 20: Runtime comparisons for different data analysis tasks.

a vector-based implementations (as discussed in Sec. 3.2) are rucrdtw::ucrdtw_vv() and
IncDTW::dtw2vec(), and these are considerably faster than the remaining functions. To guar-
antee a fair comparison we set the step pattern to ’symmetric1’ (since rucrdtw::ucrdtw_vv()

only supports ’symmetric1’) and the warping window size equal 10 for all functions.

Compute a distance matrix

Time series clustering is a typical task in time series analysis and data mining. Time series
clustering based on the DTW distance measure requires a distance matrix of pairwise DTW
distances. The function IncDTW::dtw_dismat() helps to get this matrix for a list of univariate
or multivariate time series of possibly different lengths. The calculations can be performed
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single threaded (ncores = 1) or multihreaded.

We compare the runtimes for calculating distance matrices for a set of 500 time series of
varying lengths and also set the window size parameter to 10. Figure 20c depicts the run-
times, where dtw_dismat_1() is the standard function dis_mat() without parallelization.
dtw_dismat_3Rcpp() splits the work via RcppParallel and dtw_dismat_3R() uses the pack-
age parallel, both with three cores (ncores = 3). For short time series parDist_3() is up to
10 times faster than dtw_dismat_3Rcpp() and for long time series it’s the other way round
(about 25 times faster).

Comparison with Python

For many data analysis tasks R and Python are interchangeable and it is just a matter of
taste which to prefer. So, we compare the runtimes for calculating the DTW distance across
these two platforms. For each of the time series lengths we measured the wall clock time for
100 DTW computations in the respective programming language environment5, and averaged
it. To guarantee a fair comparison we omit the warping window parameter since the func-
tion cydtw.dtw()6 does not support warping windows. Figure 20d shows the results in log
scale. The functions dtaidistance.distance_fast() and cydtw.dtw() both are functions
written in C, via Cython, but only the former is vector based and so it is comparable fast as
IncDTW::dtw2vec().

5. Conclusion

This paper discusses the incremental calculation of the widely applied DTW distance measure
(Fu 2011). We present the R package IncDTW – current version 1.1.2 available on the
Comprehensive R Archive Network https://CRAN.R-project.org/ – that mainly focuses
on fast R functions for vector based and incremental DTW computation. IncDTW also
offers functions for familiar time series analysis tasks, as time series clustering and pattern
recognition. Section 4.2 showcases how to apply IncDTW to classify three dimensional time
series in a simulated live stream setting, and why the incremental calculation of DTW is
capable to process 7 to 108 times more data.

Due to the intensive computational costs of DTW, we put a special emphasis on accelerating
our algorithms. Consequently, IncDTW transfers the most intensive computations to C++ via
Rcpp and stresses the principle of the incremental calculation of DTW, by recycling previous
calculation results. Section 4.5 demonstrates the benefits of these acceleration methods using
runtime comparisons for various settings. Further accelerating methods as lower bounding
(Keogh, Wei, Xi, Lee, and Vlachos 2006; Rath and Manmatha 2002) and early abandoning
methods are also applied and discussed.

Apart from stream processing, computation time is also key whenever relatively short query
patterns must be detected in longer time series, which usually requires a large number of
comparisons between many segments of the longer time series and the query pattern. For
example, the Caterpillar algorithm presented by Leodolter et al. (2018) scans long time series

5We also performed the experiment by calling the Python functions inside of R via reticulate (Ushey, Allaire,
and Tang 2019), which caused an computation overhead.

6We notate R and Python functions according to their syntax: package::function() in R and
package.function() in Python.

https://CRAN.R-project.org/
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to detect patterns which are possibly warped or of different lengths than a query pattern, based
on a combination of incremental DTW calculation and the Minimum Description Length.
The incremental calculation of DTW enables the Caterpillar algorithm to search the space
of possible fits runtime efficiently. So, the R package IncDTW and its functions can serve as
components for building pattern recognition algorithms.

Future developments for IncDTW will incorporate a parallelized implementation of dba() and
a user-friendly solution for applying lower bounding, which is currently only implemented as
part of rundtw().

A. Open alignments

Section 2 presents the original DTW algorithm with the fixed alignments at the beginning
and the end of the time series, so that when calculating DTW(q, c) the first element of q

must be aligned to the first element of c, and the last element of q to the last element of
c. Here we relax this restriction and allow one time series to be aligned only partially, so
DTW(q, c[1 : m0]), where the lengths of q and c are n and m respectively, and m0 ≤ m.
The counterpart is DTW(q[1 : n0], c) for any n0 ≤ n. Once the global cost matrix G for the
full alignment is determined DTW(q, c) the DTW distances for possible partial open-end
alignments are given by the last column and last row of G. The function dtw_partial()

returns the indices of the open-end alignment with the minimum normalized DTW distance.

Open end

In the following example we simulate two time series, q and c as warped copy of q (the
function simulate_timewarp() randomly stretches and compresses time series) and append
additional noise at the end of c. Then we get the full alignment and use this as input to find
the open-end alignment for a partial match of c and q.

R> set.seed(321)

R> Q <- matrix(rw(100), ncol=2)

R> C <- IncDTW::simulate_timewarp(Q, compress = 0.2)

R> noise <- matrix(10 + rnorm(30), ncol=2)

R> C <- rbind(C, noise)

R> tmp <- IncDTW::dtw(Q = Q, C = C, return_QC = TRUE, return_wp = TRUE)

R> par <- dtw_partial(tmp, partial_Q = FALSE, partial_C = TRUE)

R> par

$rangeQ

[1] 1 50

$rangeC

[1] 1 40

$normalized_distance

[1] 0.1835537

The optimal alignment range for c starts at the first and ends at the 40-th observation. So
dtw_partial() returns the ideal range of c to be aligned to q. Next we plot the second
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dimension of partial alignment of the 2-dimensional time series with the standard plotting
function. Figure 21a shows the time series partially aligned according to the rangeQ and
rangeC until the 40th observation of c where we simulated the level change of c by adding
10. Figure 21b shows the warping path also ending at the 40th index of c:

R> plot(tmp, partial = par, type = "warp", selDim = 2)

R> plot(tmp, partial = par, type = "QC", selDim = 2)

(a) Initial time series (b) Initial warping path

Figure 21: Partial alignment of c and q.

Open start

Assent et al. (2009) proofed the DTW computation to be reversible for the step pattern
’symmetric1’, so DTW(q[1 : n], c[1 : m]) = DTW(q[n : 1], c[m : 1]). Before we apply this
principle for open start alignments, we illustrate it by hand of the following simple example.

R> set.seed(1150)

R> Q <- rw(6)

R> C <- Q + rnorm(6)

R> tmp <- IncDTW::dtw(Q, C, step_pattern = "symmetric1",

+ return_wp = TRUE, return_QC = TRUE)

R> tmpr <- IncDTW::dtw(rev(Q), rev(C), step_pattern = "symmetric1",

+ return_wp = TRUE, return_QC = TRUE)

R> tmp$distance

[1] 3.238752

R> tmpr$distance

[1] 3.238752

Figure 22 depicts the warping paths for the time series aligned in the ordinary order (a) and
in the reverse order (b). Rotating one warping path for 180 degrees results in the other, which
is just because the reverse order of the time series.
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(a) Ordinary (b) Reverse

Figure 22: Ordinary (a) and reverse (b) alignment of c and q.

Now we can demonstrate the open start alignment by hand of the following two time series
which we simulate analogously to the previous example for the open-end alignment, but here
we append the noise at the beginning of c:

R> set.seed(321)

R> Q <- matrix(rw(100), ncol = 2)

R> C <- IncDTW::simulate_timewarp(Q, compress = 0.2)

R> noise <- matrix(10 + rnorm(30), ncol = 2)

R> C <- rbind(noise, C)

R> nrow(C)

[1] 55

Obviously the initial 15 observations of c have no reasonable connection with q. Next we
find the best open-start alignment by first getting the full alignment of the reverse time series
and use this as input to find the open-start alignment for a partial match of c.

R> rev.matrix <- function(x) x[nrow(x):1, ,drop=FALSE]

R> tmp <- IncDTW::idtw2vec(Q = rev(Q), newObs = rev(C))

R> par <- dtw_partial(tmp, partial_Q = FALSE, reverse = TRUE)

R> par$rangeC

[1] 16 55

As for the open-end alignment, dtw_partial() also returns the optimal open-start alignment,
by setting reverse = TRUE.

DTW is not exactly reversible for the step pattern ’symmetric2’, since the double weights
of the diagonal step relative to the horizontal and vertical step can cause different optimal
warping paths, especially initiated at the start and end of the warping paths. We empirically
tested the differences of the DTW distances with the step pattern ’symmetric2’ for pairs of
simulated random walks of lengths ranging from 10 to 104. We calculated DTW for pairs of
time series in regular and reverse order, and measured the deviation by the median absolute



47

percentage error (MdAPE). For random walks of length 10 the difference is at a level of 1.4%,
drops continuously to 0.1% for random walks of length 100, and 0.01% for 1000.

Also we tested the influence of the time order on the accuracy of a 1-NN classifier applying
the DTW distance measure with the ’symmetric2’ step pattern. We downloaded the UCR
benchmark time series database (Chen, Keogh, Hu, Begum, Bagnall, Mueen, and Batista
2015) and classified the test time series by the label of the closest match in the training set,
both for the regular and reverse time order. Across all data sets for 98.1% the predicted
labels of the regular classifier were identical to those of the classifier applied on the tine series
in reverse order. The labels were different and wrong for 0.4%, and different and either the
regular or the reverse was correct for 0.7%. We conclude that the time order doesn’t affect the
classification accuracy of this 1-NN classifier applying the DTW distance with step pattern
’symmetric2’.

Open increment

Combining the incremental calculation and the partial alignment is also possible since the
incremental algorithm returns either the updated global cost matrix (for the matrix based
algorithm idtw()) or the last column and last row (vetor based idet2vec()) for possible
future iterations. As a consequence we can update the partial alignment after each incremental
step, where q is a query pattern and c is recorded at the time of analysis, just like a data
stream:

R> Q <- sin(seq(1, 15, length.out = 200))

R> C <- cos(seq(1, 5, length.out = 20))

R> tmp0 <- IncDTW::dtw(Q = Q, C = C, return_wp = TRUE, return_QC = TRUE)

R> par0 <- dtw_partial(tmp0, partial_Q = TRUE, partial_C = FALSE)

With new observations of c we can easily update the partial matching:

R> newObs <- cos(seq(5, 10, length.out = 20))

R> tmp1 <- idtw(Q = Q, C = C, newObs = newObs, gcm = tmp0$gcm, dm = tmp0$dm)

R> par1 <- dtw_partial(tmp1, partial_Q = TRUE, partial_C = FALSE)

B. Distance function

To calculate the DTW distance measure of two time series a distance function for the local
distance of two observations qi and cj of the time series q and c has to be selected. Equation 13
defines the predefined distance functions. It is also possible to define a customized distance
function and use the local cost matrix C as input for the DTW algorithm, also for the
incremental functions. In the following experiment we apply the cosine distance as local
distance function:

dcos(qi, cj) ..= 1−

∑O
o=1 qiocjo

√

∑O
o=1 q2

io

√

∑O
o=1 c2

jo

. (19)



48 Theory and Applications for the R Package IncDTW

(a) Initial open end (b) Incremental open end

Figure 23: Warping paths of the initial (a) and incremental (b) open end alignment of c and
q.

R> d_cos <- function(x, y){

+ 1 - sum(x * y)/(sqrt(sum(x^2)) * sqrt(sum(y^2)))}

After defining the function d_cos() we use it as input for the cost matrix function cm().

R> set.seed(123)

R> Q <- matrix(rnorm(100), ncol=5, nrow=20)

R> C <- matrix(rnorm(150), ncol=5, nrow=30)

R> cm1 <- cm(Q, C, dist_method = d_cos)

R> dtw2vec(Q = cm1, C = "cm")$distance

[1] 30.35285

R> res0 <- idtw2vec(Q = cm1[ ,1:20], newObs = "cm")

R> idtw2vec(Q = cm1[ ,21:30], newObs = "cm",

+ gcm_lc = res0$gcm_lc_new)$distance

[1] 30.35285

The DTW distances – based on the customized distance function – of the incremental calcu-
lation and the one from scratch are identical.

References

Allaire J, Francois R, Ushey K, Vandenbrouck G, Geelnard M, Intel (2018). RcppPa-

rallel: Parallel Programming Tools for Rcpp. R package version 4.4.1, URL https:

//CRAN.R-project.org/package=RcppParallel.

Assent I, Wichterich M, Krieger R, Kremer H, Seidl T (2009). “Anticipatory DTW for
Efficient Similarity Search in Time Series Databases.” Proc. VLDB Endow., 2(1), 826–837.
ISSN 2150-8097. doi:10.14778/1687627.1687721. URL http://dx.doi.org/10.14778/

1687627.1687721.

https://CRAN.R-project.org/package=RcppParallel
https://CRAN.R-project.org/package=RcppParallel
http://dx.doi.org/10.14778/1687627.1687721
http://dx.doi.org/10.14778/1687627.1687721
http://dx.doi.org/10.14778/1687627.1687721


49

Behnel S, Bradshaw R, Citro C, Dalcin L, Seljebotn D, Smith K (2011). “Cython: The
Best of Both Worlds.” Computing in Science Engineering, 13(2), 31 –39. ISSN 1521-9615.
doi:10.1109/MCSE.2010.118.

Berndt DJ, Clifford J (1994). “Using Dynamic Time Warping to Find Patterns in Time Se-
ries.” In Proceedings of the 3rd International Conference on Knowledge Discovery and Data
Mining, AAAIWS’94, pp. 359–370. AAAI Press. URL http://dl.acm.org/citation.

cfm?id=3000850.3000887.

Boersch-Supan P (2016). “rucrdtw: Fast Time Series Subsequence Search in R.” The Journal
of Open Source Software, 1, 1–2. doi:10.21105/joss.00100. URL http://doi.org/10.

21105/joss.00100.

Bruno B, Mastrogiovanni F, Sgorbissa A, Vernazza T, Zaccaria R (2013). “Analysis of Human
Behavior Recognition Algorithms Based on Acceleration Data.” In Robotics and Automation
(ICRA), 2013 IEEE International Conference on, pp. 1602–1607. IEEE.

Chen Y, Keogh E, Hu B, Begum N, Bagnall A, Mueen A, Batista G (2015). “The UCR Time
Series Classification Archive.” www.cs.ucr.edu/~eamonn/time_series_data/.

Dheeru D, Karra Taniskidou E (2017). “UCI Machine Learning Repository.” URL http:

//archive.ics.uci.edu/ml.

Ding H, Trajcevski G, Scheuermann P, Wang X, Keogh E (2008). “Querying and Mining of
Time Series Data: Experimental Comparison of Representations and Distance Measures.”
Proceedings of the VLDB Endowment, 1(2), 1542–1552.

Dixon S (2005). “An On-Line Time Warping Algorithm for Tracking Musical Performances.”
In IJCAI, pp. 1727–1728.

Eckert A (2017). parallelDist: Parallel Distance Matrix Computation Using Multiple Threads.
R package version 0.2.1, URL https://CRAN.R-project.org/package=parallelDist.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal
of Statistical Software, 40(8), 1–18. doi:10.18637/jss.v040.i08. URL http://www.

jstatsoft.org/v40/i08/.

Eddelbuettel D, Sanderson C (2014). “RcppArmadillo: Accelerating R with High-Performance
C++ Linear Algebra.” Computational Statistics and Data Analysis, 71, 1054–1063. URL
http://dx.doi.org/10.1016/j.csda.2013.02.005.

Fu Tc (2011). “A Review on Time Series Data Mining.” Engineering Applications of Artificial
Intelligence, 24(1), 164–181.

Giorgino T, et al. (2009). “Computing and Visualizing Dynamic Time Warping Alignments
in R: The dtw Package.” Journal of Statistical Software, 31(7), 1–24.

Keogh E (2002). “Exact Indexing of Dynamic Time Warping.” In VLDB’02: Proceedings of
the 28th International Conference on Very Large Databases, pp. 406–417. Elsevier.

Keogh E, Lin J (2005). “Clustering of Time-Series Subsequences is Meaningless: Implications
for Previous and Future Research.” Knowledge and information systems, 8(2), 154–177.

http://dx.doi.org/10.1109/MCSE.2010.118
http://dl.acm.org/citation.cfm?id=3000850.3000887
http://dl.acm.org/citation.cfm?id=3000850.3000887
http://dx.doi.org/10.21105/joss.00100
http://doi.org/10.21105/joss.00100
http://doi.org/10.21105/joss.00100
www.cs.ucr.edu/~eamonn/time_series_data/
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://CRAN.R-project.org/package=parallelDist
http://dx.doi.org/10.18637/jss.v040.i08
http://www.jstatsoft.org/v40/i08/
http://www.jstatsoft.org/v40/i08/
http://dx.doi.org/10.1016/j.csda.2013.02.005


50 Theory and Applications for the R Package IncDTW

Keogh E, Wei L, Xi X, Lee SH, Vlachos M (2006). “LB_Keogh Supports Exact Indexing of
Shapes under Rotation Invariance with Arbitrary Representations and Distance Measures.”
In Proceedings of the 32nd international conference on Very large data bases, pp. 882–893.
VLDB Endowment.

Keogh EJ, Pazzani MJ (2000). “Scaling Up Dynamic Time Warping for Datamining Appli-
cations.” In Proceedings of the Sixth ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’00, pp. 285–289. ACM, New York, NY, USA.
ISBN 1-58113-233-6. doi:10.1145/347090.347153. URL http://doi.acm.org/10.1145/

347090.347153.

Kwankhoom W, Muneesawang P (2017). “An Incremental Dynamic Time Warping for Person
Re-Identification.” In Computer Science and Software Engineering (JCSSE), 2017 14th
International Joint Conference on, pp. 1–5. IEEE.

Lawrence R, Biing-Hwang J (2008). Fundamentals of speech recognition. Pearson Education
India.

Leodolter M, Brändle N, Plant C (2018). “Automatic Detection of Warped Patterns in
Time Series: The Caterpillar Algorithm.” In 2018 IEEE International Conference on Big
Knowledge (ICBK), pp. 423–431. doi:10.1109/ICBK.2018.00063.

Leodolter M, Plant C, Brändle N (2019). “runDTW: An Algorithm to Detect Prototypical
Patterns in Long Time Series.” Accepted at useR! 2019 Toulouse - France.

Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K (2018). cluster: Cluster Analysis
Basics and Extensions. R package version 2.0.7-1 — For new features, see the ’Changelog’
file (in the package source), URL https://CRAN.R-project.org/package=cluster.

Maus V, Câmara G, Appel M, Pebesma E (2019). “dtwSat: Time-Weighted Dynamic Time
Warping for Satellite Image Time Series Analysis in R.” Journal of Statistical Software,
88(5), 1–31. doi:10.18637/jss.v088.i05.

Meert W (2017). dtaidistance. URL https://pypi.org/project/dtaidistance/.

Mersmann O (2018). microbenchmark: Accurate Timing Functions. R package version 1.4-6,
URL https://CRAN.R-project.org/package=microbenchmark.

Mori A, Uchida S, Kurazume R, Taniguchi R, Hasegawa T, Sakoe H (2006). “Early Recogni-
tion and Prediction of Gestures.” In 18th International Conference on Pattern Recognition
(ICPR’06), volume 3, pp. 560–563. ISSN 1051-4651. doi:10.1109/ICPR.2006.467.

Mueen A, Keogh E (2016). “Extracting optimal performance from dynamic time warping.” In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 2129–2130. ACM.

Müllner D (2013). “fastcluster: Fast Hierarchical, Agglomerative Clustering Routines for R

and Python.” Journal of Statistical Software, 53(9), 1–18. URL http://www.jstatsoft.

org/v53/i09/.

http://dx.doi.org/10.1145/347090.347153
http://doi.acm.org/10.1145/347090.347153
http://doi.acm.org/10.1145/347090.347153
http://dx.doi.org/10.1109/ICBK.2018.00063
https://CRAN.R-project.org/package=cluster
http://dx.doi.org/10.18637/jss.v088.i05
https://pypi.org/project/dtaidistance/
https://CRAN.R-project.org/package=microbenchmark
http://dx.doi.org/10.1109/ICPR.2006.467
http://www.jstatsoft.org/v53/i09/
http://www.jstatsoft.org/v53/i09/


51

Oregi I, Pérez A, Del Ser J, Lozano JA (2017). “On-Line Dynamic Time Warping for Stream-
ing Time Series.” In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pp. 591–605. Springer-Verlag.

Petitjean F, Ketterlin A, Gançarski P (2011). “A Global Averaging Method for Dynamic
Time Warping, with Applications to Clustering.” Pattern Recogn., 44(3), 678–693. ISSN
0031-3203. doi:10.1016/j.patcog.2010.09.013. URL http://dx.doi.org/10.1016/j.

patcog.2010.09.013.

Rabiner L, Rosenberg A, Levinson S (1978). “Considerations in dynamic time warping algo-
rithms for discrete word recognition.” IEEE Transactions on Acoustics, Speech, and Signal
Processing, 26(6), 575–582.

Rakthanmanon T, Campana B, Mueen A, Batista G, Westover B, Zhu Q, Zakaria J, Keogh E
(2012). “Searching and Mining Trillions of Time Series Subsequences under Dynamic Time
Warping.” In Proceedings of the 18th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 262–270. ACM. doi:10.1145/2339530.2339576. URL
http://doi.org/10.1145/2339530.2339576.

Rath TM, Manmatha R (2002). “Lower-Bounding of Dynamic Time Warping Distances for
Multivariate Time Series.” University of Massachusetts Amherst Technical Report MM, 40.

Rath TM, Manmatha R (2003). “Word Image Matching using Dynamic Time Warping.”
In Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer
Society Conference on, volume 2, pp. II–II. IEEE.

R Core Team (2018). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rouanet P (2014). dtw. URL https://pypi.org/project/dtw/.

Sakoe H, Chiba S (1978). “Dynamic Programming Algorithm Optimization for Spoken Word
Recognition.” IEEE Transactions on Acoustics, Speech, and Signal Processing, 26(1), 43–
49. ISSN 0096-3518. doi:10.1109/TASSP.1978.1163055.

Sakurai Y, Faloutsos C, Yamamuro M (2007). “Stream Monitoring under the Time Warping
Distance.” In Data Engineering, 2007. ICDE 2007. IEEE 23rd International Conference
on, pp. 1046–1055. IEEE.

Sarda-Espinosa A (2018). dtwclust: Time Series Clustering Along with Optimizations for
the Dynamic Time Warping Distance. R package version 5.4.1, URL https://CRAN.

R-project.org/package=dtwclust.

Tavenard R (2017). cydtw. URL https://pypi.org/project/cydtw/.

Tormene P, Giorgino T, Quaglini S, Stefanelli M (2008). “Matching Incomplete Time Series
with Dynamic Time Warping: An Algorithm and an Application to Post-Stroke Rehabil-
itation.” Artificial Intelligence in Medicine, 45(1), 11–34. doi:10.1016/j.artmed.2008.

11.007.

Ushey K, Allaire J, Tang Y (2019). reticulate: Interface to ’Python’. R package version
1.13.0-9000, URL https://github.com/rstudio/reticulate.

http://dx.doi.org/10.1016/j.patcog.2010.09.013
http://dx.doi.org/10.1016/j.patcog.2010.09.013
http://dx.doi.org/10.1016/j.patcog.2010.09.013
http://dx.doi.org/10.1145/2339530.2339576
http://doi.org/10.1145/2339530.2339576
https://www.R-project.org/
https://pypi.org/project/dtw/
http://dx.doi.org/10.1109/TASSP.1978.1163055
https://CRAN.R-project.org/package=dtwclust
https://CRAN.R-project.org/package=dtwclust
https://pypi.org/project/cydtw/
http://dx.doi.org/10.1016/j.artmed.2008.11.007
http://dx.doi.org/10.1016/j.artmed.2008.11.007
https://github.com/rstudio/reticulate


52 Theory and Applications for the R Package IncDTW

Wang X (2011). “A Fast Exact k-Nearest Neighbors Algorithm for High Dimensional Search
Using k-Means Clustering and Triangle Inequality.” In The 2011 International Joint Con-
ference on Neural Networks, pp. 1293–1299. IEEE.

Yeh CCM, Zhu Y, Ulanova L, Begum N, Ding Y, Dau A, Silva D, Mueen A, Keogh E (2016).
“Matrix Profile I: All Pairs Similarity Joins for Time Series: A Unifying View That Includes
Motifs, Discords and Shapelets.” pp. 1317–1322. doi:10.1109/ICDM.2016.0179.

http://dx.doi.org/10.1109/ICDM.2016.0179

	Introduction
	Dynamic Time Warping
	Incremental calculation
	The plane of possible fits

	The R package IncDTW
	Matrix-based implementation
	Vector-based implementation
	IncDTW for incremental DTW calculations
	New observations for both time series

	runDTW: Detect multiple fits of the same length
	k-NN search with DTW

	Applying IncDTW
	Time series clustering and prototypes
	Cluster time series of equal lenghts
	Cluster time series of different lengths

	Incremental DTW update for live data
	Moving in the plane of possible fits
	Incremental DTW heuristic
	Runtime comparisons
	Incremental update of DTW
	Single computations
	Compute a distance matrix
	Comparison with Python


	Conclusion
	Open alignments
	Open end
	Open start
	Open increment


	Distance function

