Package 'LEANR' October 12, 2022 | Type Package | | |---|-------| | Title Finds `Local Subnetworks" Within an Interaction Network which Show Enrichment for Differentially Expressed Genes | | | Version 1.4.9 | | | Date 2016-11-11 | | | Author Frederik Gwinner | | | Maintainer Frederik Gwinner < frederik.gwinner@gmail.com> | | | Description Implements the method described in ``Network-based analysis of omics data: The LEAN method" [Gwinner Boulday (2016) <doi:10.1093 bioinformatics="" btw676="">] Given a protein interaction network and a list of pvalues describing a measure of interest (as e.g. differential gene expression) this method computes an enrichment p-value for the protein neighborhood of each gene and compares it to a background distribution of randomly drawn p-values. The resulting scores are corrected for multiple testing and significant hits are returned in tabular format.</doi:10.1093> | | | License GPL-3 | | | Depends R (>= 2.14), igraph(>= 0.7.1), foreach(>= 1.4.2) | | | Suggests knitr, doMC, rmarkdown, ROCR, testthat | | | VignetteBuilder knitr | | | NeedsCompilation no | | | Repository CRAN | | | Date/Publication 2016-11-12 15:47:01 | | | R topics documented: | | | LEANR-package CCM.pvals g2 gene.annots gene.list.scores | 23344 | 2 LEANR-package | LEAN | R-package |
nds
ricl | - |
 | ~ - |
 |
- | |
 |
 |
 |
 | io | n | ne | tw | '01 | rk | w | hi | ick | ıs | hc | w | |-------|-------------------|-----------------|---|------|-----|------|-------|--|------|------|------|------|----|---|----|----|-----|----|---|----|-----|----|----|----------| | Index | 10 | | | write.ls.to.sif |
• | | • | | | | |
 | | • | | | | | | | | | | • | • | | 9 | | | subnet.simulation | run.lean | | | | | | | |
 | | | | | | | | | | | | | | | 6 | | | pvals_red | | | | | | | |
 | | | | | | | | | | | | | | | 6 | | | g_red | | | | | | | |
 | | | | | | | | | | | | | | | 5 | | | get.ls.info | | | | | | | |
 | | | | | | | | | | | | | | | 5 | # **Description** Implements the method described in "Network-based analysis of omics data: The LEAN method". Given a protein interaction network and a list of p-values describing a measure of interest (as e.g. differential gene expression) this method computes an enrichment p-value for the protein neighborhood of each gene and compares it to a background distribution of randomly drawn p-values. The resulting scores are corrected for multiple testing and significant hits are returned in tabular format. #### **Details** Package: LEANR Type: Package Version: 1.4.8 Date: 2016-11-11 License: GPL-3 See help page of run.lean for a more detailed description of how to use this package. Type vignette("CCM-data") for an example showing the application of LEAN to the CCM knockout data set discussed in the paper. Type vignette("subnet-sim") for an example showing the application of LEAN to simulated subnetwork data discussed in the paper. # Author(s) Frederik Gwinner Maintainer: Frederik Gwinner <frederik.gwinner@gmail.com> #### References Gwinner et al., Network-based analysis of omics data: The LEAN method, Bioinformatics 2016 # See Also run.lean vignette("CCM-data") vignette("subnet-sim") CCM.pvals 3 | CCM.pvals Gene p-value list derived from knock-out experiments of the three CCM genes | · · · · · · · · · · · · · · · · · · | Gene p-value list derived from knock-out experiments of the three CCM genes | |---|-------------------------------------|---| |---|-------------------------------------|---| # **Description** Gene p-value list derived from knock-out experiments of the three CCM genes CCM1, CCM2 and CCM3. Contains p-values obtained from a limma differential expression analysis of knock-out samples versus control samples (each done in triplicate). # Usage ``` data("CCM.pvals") ``` #### **Format** Named list (CCM1,2,3) of named numericals (names = gene ids, values = limma p-values) g2 igraph graph object used in examples for function run.lean.fromdata # **Description** igraph graph object used in examples for function run.lean.fromdata. Obtained by parsing the STRING v.91 murine interaction network and restricting it to proteins mappable to genes contained on the Affymetrix MouseGene v1.0 ST chip. # Usage ``` data("g2") ``` #### **Format** The format is: IGRAPH UNW- 7342 63617 – #### Source STRING v9.1 Mouse filtered for confidence scores >= 0.9 gene.list.scores gene.annots Annotation for STRING protein Ids ### Description Annotation table giving gene names and descriptions for each protein contained in the STRING network #### Usage ``` data("gene.annots") ``` #### **Format** A data frame with 7342 observations on the following 4 variables. ``` ensembl_gene_id a character vector mgi_symbol a character vector entrezgene a character vector description a character vector ``` #### **Details** Row.names of the data.frame are STRING protein Ids # **Examples** ``` data(gene.annots) str(gene.annots) ``` gene.list.scores Gene p-value list used in examples for function run.lean.fromdata #### **Description** Gene p-value list used in examples for function run.lean.fromdata Contains p-values obtained from a limma differential expression analysis #### Usage ``` data("gene.list.scores") ``` # Format The format is: Named num [1:7342] 0.772 0.813 0.979 0.841 0.607 ... - attr(*, "names")= chr [1:7342] "10090.ENSMUSP000000001" "10090.ENSMUSP00000010205" "10090.ENSMUSP00000053818" "10090.ENSMUSP0000000153" ... get.ls.info 5 get.ls.info Extract the genes of a "local subnetwork"" around a given protein # **Description** Extract the genes of a "local subnetwork"" around a given protein and present in tabular format # Usage ``` get.ls.info(prot_id, LEANres) ``` # **Arguments** prot_id Protein id compatible with node names used in graph. LEAN result object (list) returned by <run.lean> or <run.lean.fromdata> ### Author(s) Frederik Gwinner #### See Also run.lean g_red igraph graph object used in unit tests # Description igraph graph object used in unit tests. Obtained by restricting the graph <g2> to the graph induced by randomly selecting 1500 genes. # Usage ``` data("g_red") ``` #### **Format** The format is: IGRAPH UNW- 1500 2818 - #### Source STRING v9.1 Mouse filtered for confidence scores >= 0.9; radnomly reduced to 1500 genes and all interactions between them 6 run.lean | pvals_red | Gene p-value list used in unit tests | | |-----------|--------------------------------------|--| | | | | #### **Description** Gene p-value list used in unit tests Contains p-values obtained on the CCM2 data for a radnom subselection of 1500 genes. To be used in conjunction with the network contained in <g_red>. #### Usage ``` data("pvals_red") ``` #### **Format** The format is: Named num [1:1500] 0.5091 0.4833 0.0454 0.0814 0.0324 ... - attr(*, "names")= chr [1:1500] "10090.ENSMUSP0000079341" "10090.ENSMUSP00000106951" "10090.ENSMUSP00000045284" "10090.ENSMUSP00000077744" ... run.lean Run the LEAN approach # Description Apply the LEAN approach to a given network and a list of pvalues #### Usage ``` run.lean(ranking, network, ranked = F, add.scored.genes = F, keep.nodes.without.scores = F, verbose = F, n_reps = 10000, bootstrap = F, ncores = NULL) ``` # **Arguments** ranking Either a file containing gene p-values or a named numerical vector of p-values with names matching node names used in the network network Either a file containing the network in sif format or an igraph graph object rep- resenting the network ranked whether to transform input p-values into a uniformly distributed list of p-values based on the genes' rank before p* calculation add.scored.genes whether to create one singleton node for each gene with a score but not occurring in the graph run.lean 7 keep.nodes.without.scores whether to keep nodes of the graph that have no recorded score. For those nodes it is still possible to compute enrichment scores if at least one of their network neighbors has a recorded score. verbose whether to print additional status messages n_reps the number of samples each background distribution should consist of. Largely influences the run-time, but higher values needed for meaningful empirical pval- ues! bootstrap whether to draw the pvalues of the background distributions with or without replacement ncores number of cores to be used in parallel computation. Default (NULL) leads to automatic guessing of max number of cores to be used (depending on operating system). #### Value A list object containing the results of the LEAN run. The list encompasses the following elements: restab Result table of applying LEAN to the real data randtab Result table of applying LEAN to a permuted p-value list indGraph igraph graph representing the input network after adapting it according to pa- rameters <add.scored.genes>, <keep.nodes.without.scores> and the presence of gene scores in the input scores nhs The extracted local subnetworks. Encoded as a named (by protein/gene ids) list of igraph node indices detailing each evaluated local subnetwork gene.scores The gene p-values extracted from the input scores. Encoded as a numeric vector named with protein/gene ids #### Author(s) Frederik Gwinner #### References Gwinner et al., Network-based analysis of omics data: The LEAN method, MS submitted to Bioinformatics #### See Also LEANR-package # **Examples** ``` ## Simple use case starting from a test network and p-value list ## Not run: # compute LEAN p-values starting from a p-value file and a network file rank_file<-system.file('extdata/pvals_red.txt.gz', package='LEANR') net_file<-system.file('extdata/g_red.sif.gz', package='LEANR')</pre> ``` 8 subnet.simulation ``` system.time(res<-run.lean(ranking=rank_file, network=net_file, add.scored.genes=T, verbose=T, n_reps=1000, ncores=3)) # compute LEAN p-values starting from a list of gene scores and a graph data(pvals_red) data(g_red) system.time(res2<-run.lean(ranking=pvals_red, network=g_red, verbose=T, n_reps=1000, ncores=3)) ## End(Not run)</pre> ``` subnet.simulation Simulate subnetworks #### **Description** Simulate subnetworks (also called modules) and gene p-values to be then used in a ROC performance evaluation study. # Usage # **Arguments** g igraph graph representing the network in which subnetworks are supposed to be simulated nmods number of subnetworks/modules to simulate mod_lims minimum and maximum size (number of genes) of each module pval_scaling parameter value for <p_scale> mod_enrich_perc parameter value for <p_enrich> spec string, specifier appended to the created pvalue files (if create.files=T) prob_function probability function used for picking attachment point in iterative construction of subnetworks. defaults to preferential attachment based on node degree. To disable preferential attachment, use prob_function=function(degs)rep(1/length(degs),length(degs)) create.files whether to write subnetwork simulation results to file so external approaches can be run and evaluated on them write.ls.to.sif #### Value A list object containing the simulated subnetworks. The list encompasses the following elements: mods List of simulated modules/subnetworks. Each module is given by the igraph indices of the nodes contained in it. pvals Result table containing for each gene in the graph its simulated pvalue (column P.Value) and its association to subnetworks or background (column NodeType) pvalfile String containing the name of the file containing the equivalent information to <pvals> created in this run if create.files=T #### Author(s) Frederik Gwinner #### References Gwinner et al., Network-based analysis of omics data: The LEAN method, MS submitted to Bioinformatics # **Examples** ``` ### See vignette("subnet-sim") for a use case. ``` write.ls.to.sif Extract the "local subnetwork" around a given protein # Description Extract the "local subnetwork" around a given protein and write it to a Cytoscape-readable .sif file # Usage ``` write.ls.to.sif(prot_id, LEANres, outfile) ``` # Arguments prot_id protein id compatible with node names used in graph g LEAN result object (list) returned by <run.lean> or <run.lean.fromdata> outfile character string describing the location of an output file. Should end in .sif to be able to load it in Cytoscape. #### Author(s) Frederik Gwinner #### See Also run.lean # **Index** ``` * datasets CCM.pvals, 3 g2, 3 g_red, 5 gene.annots, 4 gene.list.scores, 4 pvals_red, 6 * package LEANR-package, 2 CCM.pvals, 3 g2, 3 g_red, 5 gene.annots, 4 gene.list.scores, 4 get.ls.info, 5 LEAN (LEANR-package), 2 lean (run.lean), 6 LEAN-package (LEANR-package), 2 LEANR (LEANR-package), 2 LEANR-package, 2 Local enrichement analysis (LEANR-package), 2 local.subnetwork.export (write.ls.to.sif), 9 local.subnetwork.info(get.ls.info), 5 pvals_red, 6 run.lean, 2, 5, 6, 9 subnet.simulation, 8 write.ls.to.sif, 9 ```