
LaplacesDemon: A Complete Environment for

Bayesian Inference within R

Statisticat, LLC

Abstract

LaplacesDemon, also referred to as LD, is a contributed R package for Bayesian infer-
ence, and is freely available at https://web.archive.org/web/20141224051720/http:

//www.bayesian-inference.com/indexe. The user may build any kind of probability
model with a user-specified model function. The model may be updated with iterative
quadrature, Laplace Approximation, MCMC, PMC, or variational Bayes. After updat-
ing, a variety of facilities are available, including MCMC diagnostics, posterior predictive
checks, and validation. Hopefully, LaplacesDemon is generalizable and user-friendly for
Bayesians, especially Laplacians.

Keywords: Bayesian, Big Data, High Performance Computing, HPC, Importance Sampling,
Iterative Quadrature, Laplace Approximation, LaplacesDemon, LaplacesDemonCpp, Markov
chain Monte Carlo, MCMC, Metropolis, Optimization, Parallel, PMC, R, Rejection Sampling,
Variational Bayes.

Bayesian inference is named after Reverend Thomas Bayes (1701-1761) for developing Bayes’
theorem, which was published posthumously after his death (Bayes and Price 1763). This
was the first instance of what would be called inverse probability1.

Unaware of Bayes, Pierre-Simon Laplace (1749-1827) independently developed Bayes’ theo-
rem and first published his version in 1774, eleven years after Bayes, in one of Laplace’s first
major works (Laplace 1774, p. 366–367). In 1812, Laplace introduced a host of new ideas
and mathematical techniques in his book, Theorie Analytique des Probabilites (Laplace 1812).
Before Laplace, probability theory was solely concerned with developing a mathematical anal-
ysis of games of chance. Laplace applied probabilistic ideas to many scientific and practical
problems. Although Laplace is not the father of probability, Laplace may be considered the
father of the field of probability.

In 1814, Laplace published his “Essai Philosophique sur les Probabilites”, which introduced

1‘Inverse probability’ refers to assigning a probability distribution to an unobserved variable, and is in
essence, probability in the opposite direction of the usual sense. Bayes’ theorem has been referred to as “the
principle of inverse probability”. Terminology has changed, and the term ‘Bayesian probability’ has displaced
‘inverse probability’. The adjective “Bayesian” was introduced by R. A. Fisher as a derogatory term.

https://web.archive.org/web/20141224051720/http://www.bayesian-inference.com/indexe
https://web.archive.org/web/20141224051720/http://www.bayesian-inference.com/indexe

2 LaplacesDemon

a mathematical system of inductive reasoning based on probability (Laplace 1814). In it,
the Bayesian interpretation of probability was developed independently by Laplace, much
more thoroughly than Bayes, so some “Bayesians” refer to Bayesian inference as Laplacian
inference. This is a translation of a quote in the introduction to this work:

“We may regard the present state of the universe as the effect of its past and
the cause of its future. An intellect which at a certain moment would know all
forces that set nature in motion, and all positions of all items of which nature is
composed, if this intellect were also vast enough to submit these data to analysis,
it would embrace in a single formula the movements of the greatest bodies of
the universe and those of the tiniest atom; for such an intellect nothing would
be uncertain and the future just like the past would be present before its eyes”
(Laplace 1814).

The ‘intellect’ has been referred to by future biographers as Laplace’s Demon. In this quote,
Laplace expresses his philosophical belief in hard determinism and his wish for a computa-
tional machine that is capable of estimating the universe.

This article is an introduction to an R (R Core Team 2014) package called LaplacesDe-

mon (Statisticat LLC. 2015), which was designed without consideration for hard determin-
ism, but instead with a lofty goal toward facilitating high-dimensional Bayesian (or Lapla-
cian) inference2, posing as its own intellect that is capable of impressive analysis. The
LaplacesDemon R package is often referred to as LD. This article guides the user through
installation, data, specifying a model, initial values, updating a numerical approximation
algorithm, summarizing and plotting output, posterior predictive checks, general sugges-
tions, discusses independence and observability, high performance computing, covers details
of the algorithms, and introduces https://web.archive.org/web/20141224051720/http:

//www.bayesian-inference.com/index.

Herein, it is assumed that the reader has basic familiarity with Bayesian inference, numerical
approximation, and R. If any part of this assumption is violated, then suggested sources in-
clude the vignette entitled “Bayesian Inference” that comes with the LaplacesDemon package,
Robert (2007), and Crawley (2007).

1. Installation

To obtain the LaplacesDemon package, simply download the source code from https://web.

archive.org/web/20141224051720/http://www.bayesian-inference.com/softwaredownload,
open R, and install the LaplacesDemon package from source:

> install.packages(pkgs="path/LaplacesDemon_ver.tar.gz", repos=NULL, type="source")

where path is a path to the zipped source code, and _ver is replaced with the latest version
found in the name of the downloaded file.

A goal in developing the LaplacesDemon package was to minimize reliance on other packages
or software. Therefore, the usual dep=TRUE argument does not need to be used, because

2Even though the LaplacesDemon package is dedicated to Bayesian inference, frequentist inference may be
used instead with the same functions by omitting the prior distributions and maximizing the likelihood.

https://web.archive.org/web/20141224051720/http://www.bayesian-inference.com/index
https://web.archive.org/web/20141224051720/http://www.bayesian-inference.com/index
https://web.archive.org/web/20141224051720/http://www.bayesian-inference.com/softwaredownload
https://web.archive.org/web/20141224051720/http://www.bayesian-inference.com/softwaredownload

Statisticat 3

the LaplacesDemon package does not depend on anything other than base R and its parallel

package. LaplacesDemonCpp is an extension package that uses C++, and imports these
packages: parallel, Rcpp, and RcppArmadillo. This tutorial introduces only LaplacesDemon,
but the use of LaplacesDemonCpp is identical. Once installed, simply use the library or
require function in R to activate the LaplacesDemon package and load its functions into
memory:

> library(LaplacesDemon)

2. Data

The LaplacesDemon package requires data that is specified in a list3. As an example, there is
a data set called demonsnacks that is provided with the LaplacesDemon package. For no good
reason, other than to provide an example, the log of Calories will be fit as an additive, linear
function of the log of some of the remaining variables. Since an intercept will be included, a
vector of 1’s is inserted into design matrix X.

> data(demonsnacks)

> N <- nrow(demonsnacks)

> y <- log(demonsnacks$Calories)

> X <- cbind(1, as.matrix(log(demonsnacks[,c(1,4,10)]+1)))

> J <- ncol(X)

> for (j in 2:J) {X[,j] <- CenterScale(X[,j])}

> mon.names <- "LP"

> parm.names <- as.parm.names(list(beta=rep(0,J), sigma=0))

> pos.beta <- grep("beta", parm.names)

> pos.sigma <- grep("sigma", parm.names)

> PGF <- function(Data) {

+ beta <- rnorm(Data$J)

+ sigma <- runif(1)

+ return(c(beta, sigma))

+ }

> MyData <- list(J=J, PGF=PGF, X=X, mon.names=mon.names,

+ parm.names=parm.names, pos.beta=pos.beta, pos.sigma=pos.sigma, y=y)

There are J=4 independent variables (including the intercept), one for each column in design
matrix X. However, there are 5 parameters, since the residual variance, σ2, must be included
as well. Each parameter must have a name specified in the vector parm.names, and parameter
names must be included with the data. This is using a function called as.parm.names. Also,
note that each predictor has been centered and scaled, as per Gelman (2008). A CenterScale

function is provided to center and scale predictors4.

PGF is an optional, but highly recommended, user-specified function. PGF stands for Parameter-
Generating Function, and is used by the GIV function, where GIV stands for Generating Initial

3Though most R functions use data in the form of a data frame, LaplacesDemon uses one or more numeric
matrices in a list. It is much faster to process a numeric matrix than a data frame in iterative estimation.

4Centering and scaling a predictor is x.cs <- (x - mean(x)) / (2*sd(x)).

4 LaplacesDemon

Values. Although the PGF is not technically data, it is most conveniently placed in the list
of data. When PGF is not specified and GIV is used, initial values are generated randomly
without respect to prior distributions. To see why PGF was specified as it was, consider the
following sections on specifying a model and initial values.

3. Specifying a Model

The LaplacesDemon package is capable of estimating any Bayesian model for which the
likelihood is specified5. To use the LaplacesDemon package, the user must specify a model.
Let’s consider a linear regression model, which is often denoted as:

y ∼ N (µ, σ2)

µ = Xβ

The dependent variable, y, is normally distributed according to expectation vector µ and
scalar variance σ2, and expectation vector µ is equal to the inner product of design matrix X

and transposed parameter vector β.

For a Bayesian model, the notation for the residual variance, σ2, has often been replaced
with the inverse of the residual precision, τ−1. Here, σ2 will be used. Prior probabilities are
specified for β and σ (the standard deviation, rather than the variance):

βj ∼ N (0, 1000), j = 1, . . . , J

σ ∼ HC(25)

Each of the J β parameters is assigned a vague6 prior probability distribution that is normally-
distributed according to µ = 0 and σ2 = 1000. The large variance or small precision indicates
a lot of uncertainty about each β, and is hence a vague distribution. The residual standard
deviation σ is half-Cauchy-distributed according to its hyperparameter, scale=25. When
exploring new prior distributions, the user is encouraged to use the is.proper function to
check for prior propriety.

To specify a model, the user must create a function called Model. Here is an example for a
linear regression model written in R code7:

> Model <- function(parm, Data)

+ {

+ ### Parameters

5Examples of more than 100 Bayesian models may be found in the “Examples” vignette that comes with
the LaplacesDemon package. Likelihood-free estimation is also possible by approximating the likelihood, such
as in Approximate Bayesian Computation (ABC).

6‘Traditionally, a vague prior would be considered to be under the class of uninformative or non-informative
priors. ’Non-informative’ may be more widely used than ’uninformative’, but here that is considered poor
English, such as saying something is ‘non-correct’ when there’s a word for that . . . ‘incorrect’. In any case,
uninformative priors do not actually exist (Irony and Singpurwalla 1997), because all priors are informative in
some way. These priors are being described here as vague, but not as uninformative.

7A model specification function for the LaplacesDemon or LaplacesDemonCpp packages may be written and
compiled in a faster language, such as in C++ via the Rcpp package family.

Statisticat 5

+ beta <- parm[Data$pos.beta]

+ sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)

+ parm[Data$pos.sigma] <- sigma

+ ### Log-Prior

+ beta.prior <- dnormv(beta, 0, 1000, log=TRUE)

+ sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)

+ ### Log-Likelihood

+ mu <- tcrossprod(beta, Data$X)

+ LL <- sum(dnorm(Data$y, mu, sigma, log=TRUE))

+ ### Log-Posterior

+ LP <- LL + sum(beta.prior) + sigma.prior

+ Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,

+ yhat=rnorm(length(mu), mu, sigma), parm=parm)

+ return(Modelout)

+ }

A numerical approximation algorithm iteratively maximizes the logarithm of the unnormal-
ized joint posterior density as specified in this Model function. In Bayesian inference, the
logarithm of the unnormalized joint posterior density is proportional to the sum of the log-
likelihood and logarithm of the prior densities:

log[p(Θ|y)] ∝ log[p(y|Θ)] + log[p(Θ)]

where Θ is a set of parameters, y is the data, ∝ means ‘proportional to’8, p(Θ|y) is the joint
posterior density, p(y|Θ) is the likelihood, and p(Θ) is the set of prior densities.

During each iteration in which a numerical approximation algorithm is maximizing the loga-
rithm of the unnormalized joint posterior density, two arguments are passed to Model: parm

and Data, where parm is short for the set of parameters, and Data is a list of data. These
arguments are specified in the beginning of the function:

Model <- function(parm, Data)

Then, the Model function is evaluated and the logarithm of the unnormalized joint posterior
density is calculated as LP, and returned in a list called Modelout, along with the deviance
(Dev), a vector (Monitor) of any variables desired to be monitored in addition to the param-
eters, yrep (yhat) or replicates of y, and the parameter vector parm. All arguments must be
returned. Even if there is no desire to observe the deviance and any monitored variable, a
scalar must be placed in the second position of the Modelout list, and at least one element
of a vector for a monitored variable. This can be seen in the end of the function:

LP <- LL + sum(beta.prior) + sigma.prior

Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,

yhat=rnorm(length(mu), mu, sigma), parm=parm)

return(Modelout)

The rest of the function specifies the parameters, log of the prior densities, and calculates

8For those unfamiliar with ∝, this symbol simply means that two quantities are proportional if they vary
in such a way that one is a constant multiplier of the other. This is due to an unspecified constant of
proportionality in the equation. Here, this can be treated as ‘equal to’.

6 LaplacesDemon

the log-likelihood. Since design matrix X has J=4 column vectors (including the intercept),
there are 4 beta parameters and a sigma parameter for the residual standard deviation.

Since a vector of parameters called parm is passed to Model, the function needs to know which
parameter is associated with which element of parm. For this, the vector beta is declared,
and then each element of beta is populated with the value associated in the corresponding
element of parm. Above, the grep function was used to populate pos.beta and pos.sigma,
which indicate the positions of β and σ. These positions are stored in the list of data, and
used in the Model function to extract the appropriate parameters from vector parm:

beta <- parm[Data$pos.beta

sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)

parm[Data$pos.sigma] <- sigma

The σ parameter must be positive-only, and so it is constrained to be positive in the interval

function. The algorithm, outside of the Model function needs to be aware that σ has been
constrained, so the parm vector is updated with the constrained value.

The user does not have to constrain parameters in this way. For example, an alternative is
to reparameterize to real values, such as with a logarithm, in this case. If the user does not
constrain or reparameterize a parameter that is not on the real line, then the algorithm will
be unaware, and probably attempt a value outside of realistic bounds, such as a negative
standard deviation in this example.

To work with the log of the prior densities and according to the assigned names of the
parameters and hyperparameters, they are specified as follows:

beta.prior <- dnormv(beta, 0, 1000, log=TRUE)

sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)

In the above example, the residual standard deviation sigma receives a half-Cauchy dis-
tributed prior of the form:

σ ∼ HC(25)

Finally, everything is put together to calculate LP, the logarithm of the unnormalized joint
posterior density. The expectation vector mu is the inner product of the design matrix, Data$X,
and the transpose of the vector beta. Expectation vector mu, vector Data$y, and scalar sigma

are used to estimate the sum of the log-likelihoods, where:

y ∼ N (µ, σ2)

and as noted before, the logarithm of the unnormalized joint posterior density is:

log[p(Θ|y)] ∝ log[p(y|Θ)] + log[p(Θ)]

mu <- tcrossprod(Data$X, t(beta))

LL <- sum(dnorm(Data$y, mu, sigma, log=TRUE)

LP <- LL + sum(beta.prior) + sigma.prior

In retrospect, the PGF function was specified so that when the list of data is passed to it, it
generates and returns an initial value for each of the beta parameters, as well as one for the
sigma parameter.

Statisticat 7

Specifying the model in the Model function is the most involved aspect for the user of the
LaplacesDemon package. But this package has been designed so it is also incredibly flexible,
allowing a wide variety of Bayesian models to be specified.

4. Initial Values

Each numerical approximation algorithm in the LaplacesDemon package requires a vector of
initial values for the parameters. Each initial value is a starting point for the estimation of a
parameter. In this example, there are 5 parameters. The order of the elements of the vector
of initial values must match the order of the parameters associated with each element of parm

passed to the Model function. With no prior knowledge, it is a good idea to randomize each
initial value, such as with the GIV function (which stands for “generate initial values”).

When all initial values are set to zero for MCMC, the LaplacesDemon function optimizes
initial values using a spectral projected gradient algorithm in the LaplaceApproximation

function. Laplace Approximation is asymptotic with respect to sample size, so it is inappro-
priate in this example with a sample size of 39 and 5 parameters. MCMC will not use Laplace
Approximation when the sample size is not at least five times the number of parameters.

> Initial.Values <- c(rep(0,J), 1)

5. Numerical Approximation

Compared to specifying the model in the Model function, updating a model is easy. Since
pseudo-random numbers are involved, it’s a good idea to set a ‘seed’ for pseudo-random
number generation, so results can be reproduced. Pick any number you like, but there’s only
one number appropriate for a demon9:

> set.seed(666)

The LaplacesDemon package offers a wide variety of numerical approximation algorithms. De-
tails may be found below in section 12, and also in the appropriate function documentation.
If the user is new to Bayesian inference, then the best suggestion may be to consider Laplace
Approximation with the LaplaceApproximation function when sufficient sample size is avail-
able, or MCMC with the LaplacesDemon function otherwise. This guideline is too simple,
but serves as a place to start. For this example, the LaplacesDemon function will be used.

As with any R package, the user can learn about a function by using the help function
and including the name of the desired function. To learn the details of the LaplacesDemon

function, enter:

> help(LaplacesDemon)

Here is one of many possible ways to begin:

9Demonic references are used only to add flavor to the software and its use, and in no way endorses beliefs
in demons. This specific pseudo-random seed is often referred to, jokingly, as the ‘demon seed’.

8 LaplacesDemon

> Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,

+ Covar=NULL, Iterations=1000, Status=100, Thinning=1,

+ Algorithm="AFSS", Specs=list(A=500, B=NULL, m=100, n=0, w=1))

In this example, an output object called Fit will be created as a result of using the Laplaces-

Demon function. Fit is an object of class demonoid, which means that since it has been
assigned a customized class, other functions have been custom-designed to work with it. The
above example specifies the AFSS algorithm for updating.

This example tells the LaplacesDemon function to maximize the first component in the list
output from the user-specified Model function, given a data set called Data, and according to
several settings.

• The Initial.Values argument requires a vector of initial values for the parameters.

• The Covar=NULL argument indicates that a user-specified variance vector or covariance
matrix has not been supplied. AFSS requires proposal covariance, and when not speci-
fied, will begin with a scaled identity matrix.

• The Iterations=1000 argument indicates that the LaplacesDemon function will update
1,000 times before completion.

• The Status=100 argument indicates that a status message will be printed to the R

console every 100 iterations.

• The Thinning=1 argument indicates that only ever Kth iteration will be retained in
the output, and in this case, every iteration will be retained. See the Thin function for
more information on thinning.

• The Algorithm argument requires the abbreviated name of the MCMC algorithm in
quotes.

• Finally, the Specs argument contains specifications for each algorithm named in the
Algorithm argument. The AFSS algorithm has several specifications. The A specification
indicates at which iteration adaptation will stop, and it is arbitrarily set here so that it
adapts for the first half, and is non-adaptive in the second half. The B specification is
for blockwise sampling, which is not performed here. The m specification indicates the
maximum number of steps when searching for the slice interval. The n specification is
set to zero and indicates the number of previous adaptive iterations. The w specification
is the step-size, which is adapted in this algorithm.

By running10 the LaplacesDemon function, the following output was obtained:

> Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,

+ Covar=NULL, Iterations=1000, Status=100, Thinning=1,

+ Algorithm="AFSS", Specs=list(A=500, B=NULL, m=100, n=0, w=1))

10This is “turning the Bayesian crank”, as Dennis Lindley used to say.

Statisticat 9

Laplace's Demon was called on Fri Jul 9 15:01:57 2021

Performing initial checks...

Algorithm: Automated Factor Slice Sampler

Laplace's Demon is beginning to update...

Eigendecomposition will occur every 50 iterations.

Iteration: 100, Proposal: Multivariate, LP: -59.9

Iteration: 200, Proposal: Multivariate, LP: -62.5

Iteration: 300, Proposal: Multivariate, LP: -62.8

Iteration: 400, Proposal: Multivariate, LP: -61.1

Iteration: 500, Proposal: Multivariate, LP: -62.8

Iteration: 600, Proposal: Multivariate, LP: -61.7

Iteration: 700, Proposal: Multivariate, LP: -64.9

Iteration: 800, Proposal: Multivariate, LP: -61.6

Iteration: 900, Proposal: Multivariate, LP: -62.3

Iteration: 1000, Proposal: Multivariate, LP: -62.4

Assessing Stationarity

Assessing Thinning and ESS

Creating Summaries

Estimating Log of the Marginal Likelihood

Creating Output

Laplace's Demon has finished.

LaplacesDemon finished quickly, though it had a small data set (N=39), few parameters
(K=5), and the model was very simple. The output object, Fit, was created as a list. As
with any R object, use str() to examine its structure:

> str(Fit)

To access any of these values in the output object Fit, simply append a dollar sign and the
name of the component. For example, here is how to access the observed acceptance rate:

> Fit$Acceptance.Rate

[1] 1

5.1. Warnings

During updating in LaplacesDemon, warnings are converted to errors, and the proposal is re-
jected. Warnings may appear due to checks before updating, or summarizing after updating,
but not during updating. If chains appear to have numerous rejections after trying a variety

10 LaplacesDemon

of samplers, then the model specification function may be producing warnings with certain
configurations of parameters. If warnings continue to occur, then the priors or parameteriza-
tion should be considered. An example is when a scale parameter for the posterior predictive
distribution is allowed to be too small or large.

6. Summarizing Output

The output object, Fit, has many components. The (copious) contents of Fit can be printed
to the screen with the usual R functions:

> Fit

> print(Fit)

While a user is welcome to continue this R convention, the LaplacesDemon package adds an-
other feature below the print function output in the Consort function. But before describing
the additional feature, the results are obtained as:

> Consort(Fit)

###

Consort with Laplace's Demon

###

Call:

LaplacesDemon(Model = Model, Data = MyData, Initial.Values = Initial.Values,

Covar = NULL, Iterations = 1000, Status = 100, Thinning = 1,

Algorithm = "AFSS", Specs = list(A = 500, B = NULL, m = 100,

n = 0, w = 1))

Acceptance Rate: 1

Algorithm: Automated Factor Slice Sampler

Covariance Matrix: (NOT SHOWN HERE; diagonal shown instead)

beta[1] beta[2] beta[3] beta[4] sigma

0.3168365 2.0443071 0.5006300 1.2549289 9.1070585

Covariance (Diagonal) History: (NOT SHOWN HERE)

Deviance Information Criterion (DIC):

All Stationary

Dbar 84.319 84.319

pD 168.304 168.304

DIC 252.623 252.623

Initial Values:

[1] 0 0 0 0 1

Iterations: 1000

Log(Marginal Likelihood): -43.09668

Minutes of run-time: 0.09

Statisticat 11

Model: (NOT SHOWN HERE)

Monitor: (NOT SHOWN HERE)

Parameters (Number of): 5

Posterior1: (NOT SHOWN HERE)

Posterior2: (NOT SHOWN HERE)

Recommended Burn-In of Thinned Samples: 0

Recommended Burn-In of Un-thinned Samples: 0

Recommended Thinning: 5

Specs: (NOT SHOWN HERE)

Status is displayed every 100 iterations

Summary1: (SHOWN BELOW)

Summary2: (SHOWN BELOW)

Thinned Samples: 1000

Thinning: 1

Summary of All Samples

Mean SD MCSE ESS LB Median

beta[1] 5.0674313 0.3881116 0.03209044 262.46086 4.80629623 5.0453469

beta[2] 0.5626217 0.9801194 0.01122436 1000.00000 0.01015566 0.5897531

beta[3] 1.1527036 0.5240461 0.03092996 489.77815 0.51270058 1.1676728

beta[4] 0.9175097 0.7853261 0.04229660 831.93085 0.29616070 0.8925621

sigma 0.8296769 2.0304076 0.14930278 391.77511 0.56895992 0.7028861

Deviance 84.3191400 18.3468593 2.57262112 95.09835 78.16379573 81.8669855

LP -63.3399937 9.2272430 1.29137332 96.41188 -67.07279854 -62.1103802

UB

beta[1] 5.2565626

beta[2] 1.1292602

beta[3] 1.7674250

beta[4] 1.5079865

sigma 0.9509739

Deviance 91.7961753

LP -60.2580047

Summary of Stationary Samples

Mean SD MCSE ESS LB Median

beta[1] 5.0674313 0.3881116 0.03209044 262.46086 4.80629623 5.0453469

beta[2] 0.5626217 0.9801194 0.01122436 1000.00000 0.01015566 0.5897531

beta[3] 1.1527036 0.5240461 0.03092996 489.77815 0.51270058 1.1676728

beta[4] 0.9175097 0.7853261 0.04229660 831.93085 0.29616070 0.8925621

sigma 0.8296769 2.0304076 0.14930278 391.77511 0.56895992 0.7028861

Deviance 84.3191400 18.3468593 2.57262112 95.09835 78.16379573 81.8669855

LP -63.3399937 9.2272430 1.29137332 96.41188 -67.07279854 -62.1103802

UB

beta[1] 5.2565626

beta[2] 1.1292602

12 LaplacesDemon

beta[3] 1.7674250

beta[4] 1.5079865

sigma 0.9509739

Deviance 91.7961753

LP -60.2580047

Demonic Suggestion

Due to the combination of the following conditions,

1. Automated Factor Slice Sampler

2. The acceptance rate (1) is within the interval [1,1].

3. At least one target MCSE is >= 6.27% of its marginal posterior

standard deviation.

4. Each target distribution has an effective sample size (ESS)

of at least 100.

5. Each target distribution became stationary by

1 iteration.

WARNING: Diminishing adaptation did not occur.

Laplace's Demon has not been appeased, and suggests

copy/pasting the following R code into the R console,

and running it.

Initial.Values <- as.initial.values(Fit)

Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,

Covar=Fit$Covar, Iterations=5000, Status=70, Thinning=5,

Algorithm="AFSS", Specs=list(A=500, B=NULL, m=Fit$Specs$m,

n=1000, w=Fit$CovarDHis[nrow(Fit$CovarDHis),]))

Laplace's Demon is finished consorting.

Several components are labeled as NOT SHOWN HERE, due to their size, such as the covariance
matrix Covar or the stationary posterior samples Posterior2. As usual, these can be printed
to the screen by appending a dollar sign, followed by the desired component, such as:

> Fit$Posterior2

Although a lot can be learned from the above output, notice that it completed 1000 iterations
of 5 variables in 0.09 minutes. Of course this was fast, since there were only 39 records, and
the form of the specified model was simple.

In R, there is usually a summary function associated with each class of output object. The
summary function usually summarizes the output. For example, with frequentist models, the
summary function usually creates a table of parameter estimates, complete with p-values.

Since this is not a frequentist package, p-values are not part of any table with the LaplacesDemon

function, and the marginal posterior distributions of the parameters and other variables have

Statisticat 13

already been summarized in Fit, there is no point to have an associated summary function.
Going one more step toward useability, the Consort function of LaplacesDemon allows the
user to consort with Laplace’s Demon about the output object.

The additional feature is a second section called Demonic Suggestion. The Demonic Suggestion

is a very helpful section of output. When the LaplacesDemon package was developed initially
in late 2010, there were not to my knowledge any tools of Bayesian inference that make
suggestions to the user.

Before making its Demonic Suggestion, Laplace’s Demon considers and presents five condi-
tions: the algorithm, acceptance rate, Monte Carlo standard error (MCSE), effective sample
size (ESS), and stationarity. In addition to these conditions, there are other suggested val-
ues, such as a recommended number of iterations or values for the Periodicity and Status

arguments. The suggested value for Status is seeking to print a status message every minute
when the expected time is longer than a minute, and is based on the time in minutes it took,
the number of iterations, and the recommended number of iterations.

In the above output, Laplace’s Demon is appeased. However, if any of these five conditions
is unsatisfactory, then Laplace’s Demon is not appeased, and suggests it should continue
updating, and that the user should copy, paste, and execute its suggested R code. Here are
the criteria it measures against. The final algorithm must be non-adaptive, so that the Markov
property holds (this is covered in section 12.5.2). The acceptance rate of most algorithms
is considered satisfactory if it is within the interval [15%, 50%]11. LMC or MALA must be
in the interval [40%, 80%], and others (AFSS, AGG, ESS, GG, OHSS, SGLD, Slice, and
UESS) have an acceptance rate of 100%. For more information on acceptance rates, see the
AcceptanceRate function. MCSE is considered satisfactory for each target distribution if it
is less than 6.27% of the standard deviation of the target distribution. This allows the true
mean to be within 5% of the area under a Gaussian distribution around the estimated mean.
ESS is considered satisfactory for each target distribution if it is at least 100, which is usually
enough to describe 95% probability intervals. And finally, each variable must be estimated
as stationary.

In this example, notice that all criteria have been met: MCSEs are sufficiently small, ESSs
are sufficiently large, and all parameters were estimated to be stationary. Although the
algorithm adapted in the first half, it was non-adaptive in the second half of the run, the
Markov property holds, so let’s look at some plots.

7. Plotting Output

The LaplacesDemon package has a plot.demonoid function to enable its own customized
plots with demonoid objects. The variable BurnIn (below) may be left as it is so it will show
only the stationary samples (samples that are no longer trending), or set equal to zero so
that all samples can be plotted. In this case, only samples are considered that were generated
while the algorithm was non-adaptive, so BurnIn=500.

The plot function also enables the user to specify whether or not the plots should be
saved as a .pdf file, and allows the user to select the parameters to be plotted. For ex-

11While Spiegelhalter, Thomas, Best, and Lunn (2003) recommend updating until the acceptance rate is
within the interval [20%, 40%], and Roberts and Rosenthal (2001) suggest [10%, 40%], the interval recom-
mended here is [15%,50%]. HMC and Refractive must be in the interval [60%, 70%].

14 LaplacesDemon

500 700 900

4
.7

5
.0

5
.3

beta[1]

Thinned Samples

V
a

lu
e

4.6 4.8 5.0 5.2 5.4

0
1

2
3

beta[1]

Value

D
e

n
s
it
y

0 5 10 20

0
.0

0
.4

0
.8

beta[1]

Lag

C
o

rr
e

la
ti
o

n

500 700 900

0
.0

1
.0

beta[2]

Thinned Samples

V
a

lu
e

−0.5 0.5 1.5

0
.0

1
.0

beta[2]

Value

D
e

n
s
it
y

0 5 10 20

0
.0

0
.4

0
.8

beta[2]

Lag

C
o

rr
e

la
ti
o

n

500 700 900

0
.5

1
.5

beta[3]

Thinned Samples

V
a

lu
e

0.0 0.5 1.0 1.5 2.0

0
.0

0
.6

1
.2

beta[3]

Value

D
e

n
s
it
y

0 5 10 20

0
.0

0
.4

0
.8

beta[3]

Lag

C
o

rr
e

la
ti
o

n

Figure 1: Plots of Marginal Posterior Samples

ample, Parms=c("beta[1]","beta[2]") would plot only the first two regression effects, and
Parms=NULL will plot everything.

> plot(Fit, BurnIn=500, MyData, PDF=FALSE, Parms=NULL)

There are three plots for each parameter, the deviance, and each monitored variable (which
in this example are LP and sigma). The leftmost plot is a trace-plot, showing the history
of the value of the parameter according to the iteration. The middlemost plot is a kernel
density plot. The rightmost plot is an ACF or autocorrelation function plot, showing the
autocorrelation at different lags. The chains look stationary (do not exhibit a trend), the
kernel densities look Gaussian, and the ACF’s show low autocorrelation.

The Hellinger distances between batches of chains can be plotted with

> plot(BMK.Diagnostic(Fit$Posterior1[501:1000,]))

These distances occur in the interval [0, 1], and lower (darker) is better. The LaplacesDemon

function considers any Hellinger distance greater than 0.5 to indicate non-stationarity and
non-convergence. This plot is useful for quickly finding problematic parts of chains. All
Hellinger distances here are acceptably small (dark).

Another useful plot is called the caterpillar plot, which plots a horizontal representation
of three quantiles (2.5%, 50%, and 97.5%) of each selected parameter from the posterior
samples summary. The caterpillar plot will attempt to plot the stationary samples first
(Fit$Summary2), but if stationary samples do not exist, then it will plot all samples (Fit$Summary1).
Here, only the first four parameters are selected for a caterpillar plot:

> caterpillar.plot(Fit, Parms="beta")

Statisticat 15

500 700 900

0
.0

1
.0

beta[4]

Thinned Samples

V
a

lu
e

0.0 1.0 2.0

0
.0

0
.6

1
.2

beta[4]

Value

D
e

n
s
it
y

0 5 10 20

0
.0

0
.4

0
.8

beta[4]

Lag

C
o

rr
e

la
ti
o

n

500 700 900

0
.5

0
.7

0
.9

sigma

Thinned Samples

V
a

lu
e

0.5 0.7 0.9

0
2

4

sigma

Value

D
e

n
s
it
y

0 5 10 20

0
.0

0
.4

0
.8

sigma

Lag

C
o

rr
e

la
ti
o

n

500 700 900

8
0

9
0

Deviance

Thinned Samples

V
a

lu
e

75 85 95

0
.0

0
0

.0
6

0
.1

2

Deviance

Value

D
e

n
s
it
y

0 5 10 20

0
.0

0
.4

0
.8

Deviance

Lag

C
o

rr
e

la
ti
o

n

Figure 2: Plots of Marginal Posterior Samples

500 700 900

−
7

0
−

6
4

LP

Thinned Samples

V
a

lu
e

−72 −68 −64 −60

0
.0

0
0

.1
5

LP

Value

D
e

n
s
it
y

0 5 10 20

0
.0

0
.4

0
.8

LP

Lag

C
o

rr
e

la
ti
o

n

Figure 3: Plots of Marginal Posterior Samples

16 LaplacesDemon

50 100 150 200 250 300 350 400 450

sigma

beta[4]

beta[3]

beta[2]

beta[1]

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 4: Hellinger Distances

0 1 2 3 4 5

Stationary Samples

beta[4]

beta[3]

beta[2]

beta[1]

Figure 5: Caterpillar Plot

Statisticat 17

If all is well, then the Markov chains should be studied with MCMC diagnostics (such as visual
inspections with the CSF or Cumulative Sample Function), and finally, further assessments of
model fit should be estimated with posterior predictive checks, showing how well (or poorly)
the model fits the data. When the user is satisfied, the BayesFactor function may be useful
in selecting the best model, and the marginal posterior samples may be used for inference.

8. Posterior Predictive Checks

A posterior predictive check is a method to assess discrepancies between the model and the
data (Gelman, Meng, and Stern 1996). To perform posterior predictive checks with the the
LaplacesDemon package, simply use the predict function:

> Pred <- predict(Fit, Model, MyData, CPUs=1)

This creates Pred, which is an object of class demonoid.ppc (where ppc is short for posterior
predictive check). Pred is a list that contains three components: y, yhat, and Deviance

(though the LaplaceApproximation output differs a little). If the data set that was used to
estimate the model is supplied in predict, then replicates of y (also called yrep) are estimated.
If, instead, a new data set is supplied in predict, then new, unobserved instances of y (called
ynew) are estimated. Note that with new data, a y vector must still be supplied, and if
unknown, can be set to something sensible such as the mean of the y vector in the model.

The predict function calls the Model function once for each set of stationary samples in
Fit$Posterior2. When there are few discrepancies between y and yrep, the model is consid-
ered to fit well to the data. Parallel processing is enabled when multiple CPUs exist and are
specified.

Since Pred$yhat is a large (39 x 1000) matrix, let’s look at the summary of the posterior
predictive distribution:

> summary(Pred, Discrep="Chi-Square")

Bayesian Predictive Information Criterion:

Dbar pD BPIC

84.319 168.304 420.927

Concordance: 0.9487179

Discrepancy Statistic: 5.2

L-criterion: 88.713, S.L: 0.922

Records:

y Mean SD LB Median UB PQ Discrep

1 4.174387 4.104 1.595 2.568 4.120 5.730 0.486 0.002

2 5.361292 5.025 1.828 3.421 4.973 6.505 0.311 0.034

3 6.089045 6.099 1.261 4.358 6.063 7.736 0.485 0.000

4 5.298317 4.831 1.183 3.279 4.822 6.464 0.271 0.156

5 4.406719 5.117 2.253 3.614 5.020 6.578 0.778 0.099

6 2.197225 3.658 1.768 2.173 3.663 5.317 0.972 0.682

7 5.010635 4.655 2.144 3.106 4.580 6.052 0.268 0.028

8 1.609438 3.578 2.510 1.966 3.486 5.087 0.991 0.615

18 LaplacesDemon

9 4.343805 4.736 1.682 3.160 4.674 6.206 0.673 0.054

10 4.812184 3.810 1.214 2.319 3.835 5.232 0.098 0.682

11 4.189655 3.683 1.841 2.192 3.627 5.301 0.241 0.076

12 4.919981 4.363 3.406 2.899 4.491 5.936 0.262 0.027

13 4.753590 4.601 3.345 2.867 4.467 6.105 0.360 0.002

14 4.127134 4.361 1.328 2.852 4.314 5.843 0.608 0.031

15 3.713572 3.403 2.189 1.899 3.393 5.078 0.337 0.020

16 4.672829 4.584 0.854 3.111 4.558 6.076 0.456 0.011

17 6.930495 7.000 3.234 5.291 6.920 8.436 0.496 0.000

18 5.068904 4.188 1.881 2.612 4.071 5.652 0.094 0.219

19 6.775366 6.885 2.668 5.326 6.787 8.266 0.503 0.002

20 6.553933 6.470 2.841 5.068 6.535 8.056 0.485 0.001

21 4.890349 4.477 1.147 3.012 4.514 6.008 0.281 0.130

22 4.442651 4.605 1.254 3.077 4.563 6.043 0.565 0.017

23 2.833213 4.578 1.416 3.017 4.523 6.010 0.983 1.518

24 4.787492 4.317 3.857 2.821 4.358 5.925 0.276 0.015

25 6.933423 6.272 4.041 4.897 6.397 7.946 0.227 0.027

26 6.180017 5.600 1.394 4.141 5.585 7.273 0.229 0.173

27 5.652489 5.578 1.076 4.037 5.552 7.030 0.446 0.005

28 5.429346 5.399 1.503 3.911 5.332 6.961 0.449 0.000

29 5.634790 6.321 3.067 4.687 6.275 7.920 0.796 0.050

30 4.262680 4.167 2.067 2.562 4.145 5.630 0.432 0.002

31 3.891820 4.433 3.244 2.913 4.510 6.020 0.796 0.028

32 6.613384 6.539 1.138 4.998 6.533 8.064 0.466 0.004

33 4.919981 4.532 2.555 2.986 4.533 6.136 0.283 0.023

34 6.541030 6.729 3.346 5.014 6.608 8.136 0.529 0.003

35 6.345636 6.566 2.757 5.003 6.440 8.040 0.551 0.006

36 3.737670 4.747 1.699 3.262 4.770 6.355 0.905 0.353

37 7.356280 7.679 1.971 5.948 7.661 9.333 0.633 0.027

38 5.739793 5.840 1.753 4.258 5.800 7.235 0.543 0.003

39 5.517453 4.306 4.417 2.842 4.415 5.869 0.068 0.075

The summary.demonoid.ppc function returns a list with 5 components when y is continu-
ous (different output occurs for categorical dependent variables when given the argument
Categorical=TRUE):

• BPIC is the Bayesian Predictive Information Criterion of Ando (2007). BPIC is a varia-
tion of the Deviance Information Criterion (DIC) that has been modified for predictive
distributions. For more information on DIC, see the accompanying vignette entitled
“Bayesian Inference”.

• Concordance is the predictive concordance of Gelfand (1996), that indicates the per-
centage of times that y was within the 95% probability interval of yhat. A goal is to
have 95% predictive concordance. For more information, see the accompanying vignette
entitled “Bayesian Inference”. In this case, roughly 95% of the time, y is within the 95%
probability interval of yhat. These results suggest that the model should be attempted
again under different conditions, such as using different predictors, or specifying a dif-
ferent form to the model.

Statisticat 19

−30 −10 10

0
.0

0
.2

0
.4

Post. Pred. Plot of yhat[1,]

Black=Density, Red=y
Value

D
e

n
s
it
y

−10 10 30 50

0
.0

0
.2

0
.4

Post. Pred. Plot of yhat[2,]

Black=Density, Red=y
Value

D
e

n
s
it
y

0 5 15 25

0
.0

0
.2

0
.4

Post. Pred. Plot of yhat[3,]

Black=Density, Red=y
Value

D
e

n
s
it
y

−10 0 5 15

0
.0

0
.2

0
.4

Post. Pred. Plot of yhat[4,]

Black=Density, Red=y
Value

D
e

n
s
it
y

0 10 30 50

0
.0

0
.2

0
.4

Post. Pred. Plot of yhat[5,]

Black=Density, Red=y
Value

D
e

n
s
it
y

−40 −20 0 20

0
.0

0
.2

0
.4

Post. Pred. Plot of yhat[6,]

Black=Density, Red=y
Value

D
e

n
s
it
y

−10 10 30 50

0
.0

0
.2

0
.4

Post. Pred. Plot of yhat[7,]

Black=Density, Red=y
Value

D
e

n
s
it
y

0 20 40 60

0
.0

0
.2

0
.4

Post. Pred. Plot of yhat[8,]

Black=Density, Red=y
Value

D
e

n
s
it
y

0 10 20 30 40

0
.0

0
.2

0
.4

Post. Pred. Plot of yhat[9,]

Black=Density, Red=y
Value

D
e

n
s
it
y

Figure 6: Posterior Predictive Densities

• Discrepancy.Statistic is a summary of a specified discrepancy measure. There are
many options for discrepancy measures that may be specified in the Discrep argument.
In this example, the specified discrepancy measure was the χ2 test in Gelman, Carlin,
Stern, and Rubin (2004, p. 175), and higher values indicate a worse fit.

• L-criterion is a posterior predictive check for model and variable selection that mea-
sures the distance between y and yrep, providing a criterion to be minimized (Laud and
Ibrahim 1995).

• The last part of the summarized output reports y, information about the distribution of
yhat, and the predictive quantile (PQ). The mean prediction of y[1], or y

rep
1

, given the
model and data, is 4.104. Most importantly, PQ[1] is 0.486, indicating that 48.6% of the
time, yhat[1,] was greater than y[1], or that y[1] is close to the mean of yhat[1,].
Contrast this with the 6th record, where y[6]=2.197 and PQ[6]=0.972. Therefore,
yhat[6,] was not a good replication of y[6], because the distribution of yhat[6,] is
almost always greater than y[6]. While y[1] is within the 95% probability interval of
yhat[1,], yhat[6,] is above y[6] 97.2% of the time, indicating a strong discrepancy
between the model and data, in this case.

There are also a variety of plots for posterior predictive checks, and the type of plot is
controlled with the Style argument. Many styles exist, such as producing plots of covariates
and residuals. The last component of this summary may be viewed graphically as posterior
densities. Rather than observing plots for each of 39 records or rows, only the first 9 densities
will be shown here:

> plot(Pred, Style="Density", Rows=1:9)

Among many other options, the fit may be observed:

20 LaplacesDemon

2 3 4 5 6 7

2
4

6
8

Fitted

y

y
h
a
t

Figure 7: Posterior Predictive Fit

> plot(Pred, Style="Fitted")

This plot shows a poor fit between the dependent variable and its expectation, and model
revision should be considered.

The Importance function is not presented here in detail, but may be a useful way to assess
variable importance, which is defined here as the impact of each variable on yrep, when the
variable is removed (or set to zero). Variable importance consists of differences in model fit or
discrepancy statistics, showing how well the model fits the data with each variable removed.
This information may be used for model revision, or presenting the relative importance of
variables.

These posterior predictive checks indicate that there is plenty of room to improve this model.

9. General Suggestions

Following are general suggestions on how best to use the LaplacesDemon package:

• As suggested by Gelman (2008), continuous predictors should be centered and scaled.
Here is an explicit example in R of how to center and scale a single predictor called
x: x.cs <- (x - mean(x)) / (2*sd(x)). However, it is instead easier to use the
CenterScale function provided in LaplacesDemon.

• Do not forget to reparameterize any bounded parameters in the Model function to be
real-valued in the parm vector, and this is a good time to check for prior propriety with
the is.proper function.

• If sufficient sample size is available, begin with a deterministic numerical approximation
algorithm such as Laplace Approximation or variational Bayes.

Statisticat 21

• MCMC and PMC are stochastic methods of numerical approximation, and as such,
results may differ with each run due to the use of pseudo-random number generation.
It is good practice to set a seed so that each update of the model may be reproduced.
Here is an example in R: set.seed(666).

• Rather than specify the final, intended model in the Model function, start by specifying
the simplest possible form. Rather than beginning with actual data, start by simulating
data given specified parameters. Update the simple model on simulated data and verify
that the algorithm converges to the correct target distributions. One by one, add
components to the model specification, simulate more complicated data, update, verify,
and progress toward the intended model. If using MCMC during this phase, then use
the Juxtapose function to compare the inefficiency of several MCMC algorithms (via
integrated autocorrelation time or IAT), and use this information to select the least
inefficient algorithm for your particular model. When confident the model is specified
correctly and with informed algorithmic selection, finally use actual data, but with few
iterations, such as Iterations=20.

• After studying MCMC updates with few iterations, the first “actual” update should be
long enough that proposals are accepted (the acceptance rate is not zero), adaptation
begins to occur (if used), and that enough iterations occur after the first adaptation to
allow the user to study the adaptation (assuming an adaptive algorithm is used).

• Depending on the model specification function, data, and intended iterations, it is a
good idea to use the LaplacesDemon.RAM function to estimate the amount of random-
access memory (RAM) that LaplacesDemon will use. If LaplacesDemon uses more RAM
than the computer has available, then the computer will crash. This can be used to
estimate the maximum number of iterations or thinned samples for a particular model
and data set on a given computer.

• Once the final, intended model has begun (finally!), the mixing of the chains should
be observed after a larger trial run, say, arbitrarily, for 10,000 iterations. If the chains
do not mix as expected, then try a different algorithm, either one suggested by the
Consort function (such as when diminishing adaptation is violated), or use the next
least inefficient algorithm as indicated previously in the Juxtapose function.

• When speed is a concern, such as with complex models, there may be things in the
Model function that can be commented out, such as sometimes calculating yhat. The
model can be updated without some features, that can be un-commented and used for
posterior predictive checks. By commenting out things that are strictly unnecessary to
updating, the model will update more quickly. Other helpful hints for speed are found
in the documentation for the Model.Spec.Time function.

• If the numerical approximation algorithm is exploring areas of the state space that the
user knows a priori should not be explored, then the parameters may be constrained in
the Model function before being passed back to the numerical approximation function.
Simply change the parameter of interest as appropriate and place the constrained value
back in the parm vector.

• For MCMC, Demonic Suggestion is intended as an aid, not an infallible replacement
for critical thinking. As with anything else, its suggestions are based on assumptions,

22 LaplacesDemon

and it is the responsibility of the user to check those assumptions. For example, the
BMK.Diagnostic may indicate stationarity (lack of a trend) when it does not exist. Or,
the Demonic Suggestion may indicate that the next update may need to run for a
million iterations in a complex model, requiring weeks to complete.

• If an adaptive MCMC algorithm is used, then use a two-phase approach, where the first
phase consists of using an adaptive algorithm to achieve stationary samples that seem to
have converged to the target distributions (convergence can never be determined with
MCMC, but some instances of non-convergence can be observed). Once it is believed
that convergence has occurred, use a non-adaptive algorithm. The final samples should
again be checked for signs of non-convergence. If satisfactory, then the non-adaptive
algorithm should have estimated the logarithm of the marginal likelihood (LML). This
is most easily checked with the is.proper function, which considers the joint posterior
distribution to be proper if it can verify that the LML is finite.

• The desirable number of final, thinned samples for inference depends on the required
precision of the inferential goal. A good, general goal is to end up with 1,000 thinned
samples (Gelman et al. 2004, p. 295), where the ESS is at least 100 (and more is
desirable). See the ESS function for more information.

• Disagreement exists in MCMC literature as to whether to update one, long chain (Geyer
1992, 2011), or multiple, long chains with different, randomized initial values (Gel-
man and Rubin 1992). Multiple chains are enabled with an extension function called
LaplacesDemon.hpc, which uses parallel processing. The Gelman.Diagnostic function
may be used to compare multiple chains. Samples from multiple chains may be put
together with the Combine function.

• After a deterministic numerical approximation algorithm has converged, consider follow-
ing it up with a stochastic numerical approximation algorithm such as MCMC, if prac-
tical. When MCMC seems to have converged, consider updating the model again, this
time with Population Monte Carlo (PMC). PMC may improve the model fit obtained
with MCMC, and should reduce the variance of the marginal posterior distributions,
which is desirable for predictive modeling.

• After a model has been updated, consider posterior predictive checks and any necessary
model revisions. Afterward, consider updating a model with different prior distributions
and compare results with the BayesFactor and SensitivityAnalysis functions, as
well as comparing posterior predictive checks. Consider applying the model to different
data sets and using the Validate function. Consider beyond the model how decision
theory applies to the problem. Finally, make inferences, given the model and data.

10. Independence and Observability

The LaplacesDemon package was designed with independence and observability in mind. By
independence, it is meant that a goal was to minimize dependence on other software. The
LaplacesDemon package requires only base R, and the parallel package bundled with it. The
variety of packages makes R extremely attractive. However, depending on multiple packages

Statisticat 23

can be problematic when different packages have functions with the same name, or when
a change is made in one package, but other packages do not keep pace, and the user is
dependent on packages being in sync. By avoiding dependencies on packages that are not
in or accompanying base R, the LaplacesDemon package is attempting to be consistent and
dependable for the user.

For example, common MCMC diagnostics and probability distributions (such as Dirichlet,
multivariate normal, Wishart, and many others, as well as truncated forms of distributions)
in Bayesian inference have been included in the LaplacesDemon package so the user does not
have to load numerous R packages, except of course for exotic distributions that have not
been included.

LaplacesDemonCpp is an optional extension package that uses C++, and is not an indepen-
dent package in the sense that it imports parallel, but also Rcpp and RcppArmadillo. Once
obtained and activated, its use is seamless to a LaplacesDemon user. LaplacesDemonCpp is
a stand-alone replacement of LaplacesDemon, and is currently in development.

By observability, it is meant that the base LaplacesDemon package is written entirely in R.
Certain functions could be sped up in another language such as C++, but this may prevent
some R users from understanding the code. The base LaplacesDemon package is intended
to be open and accessible. The optional LaplacesDemonCpp package is available for faster
computations via C++. If a user desires speed and is familiar with a faster language, then
the user is encouraged to program the model specification function in the faster language.
See the documentation for the Model.Spec.Time function for more information.

Observability also enables users to investigate or customize functions in the LaplacesDemon

package. To access any function, simply enter the function name and press enter. For example,
to print the source code for the LaplacesDemon function to the R console, simply enter:

> LaplacesDemon

Most undocumented, internal-only functions are exported in the namespace and have an alias
in the LaplacesDemon-package.Rd file.

LaplacesDemon seeks to provide a complete, Bayesian environment within R. Independence
from other software facilitates dependability, and its open code makes it easier for a user to
investigate and customize.

11. High Performance Computing

High performance computing (HPC) is a broad term that can mean many different things.
The LaplacesDemon package currently uses the term HPC to refer to two topics: big data
and parallel processing.

11.1. Big Data

There are several definitions for big data. Here, big data is defined as data that is too big
for the computer memory (RAM). The BigData function enables updating a Bayesian model
with big data by reading in and processing smaller batches or chunks of data and performing
a user-specified function on the batch before combining and outputing the result, so the entire

24 LaplacesDemon

data set does not consume RAM. BigData is also parallelized. The read.matrix function
allows sampling from big data. Finally, the Stochastic Gradient Descent (SGD) algorithm (see
12.4.16) in LaplaceApproximation and the Stochastic Gradient Langevin Dynamics (SGLD)
algorithm in LaplacesDemon are designed specifically for use with big data.

11.2. Parallel Processing

Parallel processing occurs when software is designed to simultaneously use multiple central
processing units (CPUs). The motherboard of a computer may contain multiple CPUs, such
as a quad-core contains four, and this is called a multicore computer. Several computers may
be linked together with network communication, forming what is called a computer cluster.
The LaplacesDemon package has several functions that optionally take advantage of multicore
computers or may utilize large computer clusters.

In the context of MCMC, there are three approaches to parallelization that are avilable in
LaplacesDemon: parallel approximation within a chain, parallel sets of independent chains,
and parallel sets of interactive chains. There are more parallelized functions in LaplacesDemon

in addition to MCMC.

11.3. Iterative Quadrature

The IterativeQuadrature function provides several numerical integration algorithms, and
each may be parallelized. At each iteration, the conditional density is evaluated at several
nodes, and this processing may take advantage of multiple CPUs. For more information, see
12.3.

11.4. Parallel Approximation within a Chain

The Griddy-Gibbs (GG) sampler of Ritter and Tanner (1992), Adaptive Griddy-Gibbs (AGG),
and Multiple-Try Metropolis (MTM) of Liu, Liang, and Wong (2000) are examples of algo-
rithms in which an approximation is made within a chain, and the approximation may be
parallelized.

11.5. Parallel Sets of Independent Chains

The LaplacesDemon function is extended with the LaplacesDemon.hpc function for the par-
allel processing of multiple chains on different central processing units (CPUs). This requires
a minimum of two additional arguments: Chains to specify the number of parallel chains,
and CPUs to specify the number of CPUs. The LaplacesDemon.hpc function allows the
parallelization of most MCMC algorithms in the LaplacesDemon function.

An example of using LaplacesDemon.hpc is to simultaneously update three independent
chains as an aid to checking MCMC convergence, as Gelman recommends (Gelman and Rubin
1992). Aside from aiding convergence, another benefit of parallelization is that more posterior
samples are updated in the same time-frame as a non-parallel implementation. A multicore
computer, such as a quad-core, will yield more posterior samples (which is valuable only if it
converges, because it does not process more iterations), but a supercomputing environment
or large computer cluster will yield many orders more. If multiple CPUs are available, then
it only makes sense to use them...all.

Statisticat 25

It is important to note that Status messages do not print to the console during parallel pro-
cessing with LaplacesDemon.hpc, and should alternately be directed by the user to a log file
with the LogFile argument, if desired. The LaplacesDemon.hpc function sends the infor-
mation associated with each chain as well as the LaplacesDemon function to each CPU. The
LaplacesDemon function may very well return status messages, but the LaplacesDemon.hpc

function is unaware.

After updating a model with LaplacesDemon.hpc, the plot function may be applied so that
multiple chains may be viewed simultaneously, and this is helpful when comparing samplers
for a specific model. If this looks good, then the Gelman.Diagnostic function may be applied
to assess convergence. Otherwise, the as.initial.values function may be used to extract
the latest values from the chains and use these to begin the next update. Once results seem
acceptable, the Combine function may be used to combine the posterior samples of multiple
chains into one demonoid object, from which the remaining facilities of the LaplacesDemon

package are available.

The Metropolis-Coupled Markov Chain Monte Carlo (MCMCMC) algorithm of Geyer (1991)
is an example of an MCMC algorithm in which multiple chains are updated in parallel, but
in LaplacesDemon, not LaplacesDemon.hpc.

11.6. Parallel Sets of Interactive Chains

Parallel sets of independent chains should each run as efficiently as a traditional single set of
chains. However, independent chains cannot benefit from the fact that there are other chains,
while each chain is running. They are independent of each other.

In contrast, parallel sets of interactive chains are able to learn from each other through
interaction. In the LaplacesDemon package, some of these algorithms are called with the
LaplacesDemon function, and some with the LaplacesDemon.hpc function.

The Interchain Adaptation (INCA) algorithm (Craiu, Rosenthal, and Yang 2009; Solonen,
Ollinaho, Laine, Haario, Tamminen, and Jarvinen 2012) performs Adaptive Metropolis (AM)
with parallel chains that share the adaptive component, and this sharing speeds convergence.
Whenever the chains are specified to adapt, adaptation is performed by pooling the historical
covariance matrix across all parallel chains, and then returns the combined result to all chains.
Network communication time slows the adaptation, but once returned to each CPU, chains
iterate at their usual speed. This algorithm must be used with the LaplacesDemon.hpc

function, and there is not an un-parallelized form of it.

The Affine-Invariant Ensemble Sampler (AIES) of (Goodman and Weare 2010) must be used
with the LaplacesDemon function, and is available in either a parallelized or un-parallelized
form. A large, even number of parallel chains (or walkers) are grouped into two batches,
and each iteration, each chain moves in relation to a randomly selected chain (walker) in
the other batch. Since these interactive chains interact each iteration, computer network
communication is frequent, and this communication may be much slower than processing
with one CPU. However, in a large-scale computing environment and when a Model function
is not trivial to evaluate, this form of parallelization can result in very early convergence.

11.7. Population Monte Carlo

The PMC function has been parallelized at each iteration to speed up the evaluation of the

26 LaplacesDemon

model specification function over numerous importance samples.

11.8. Predict Functions

The predict functions (predict.demonoid, predict.laplace, predict.pmc) have been par-
allelized to speed up the prediction, or scoring, of larger data sets or when models have many
posterior samples. The Importance function, which extensively uses predict functions, has
also been parallelized.

11.9. Model Specification Function

A user may have a model with a model specification function that is computationally ex-
pensive, and may write their own parallelization code to speed up its processing by breaking
down challenging computations and sending them to separate CPUs.

11.10. Parallelization Details

Parallelization is enabled by the parallel package that comes with base R. Parallelization
is accomplished by default with socket-transport functions derived from the snow package,
which is an acronym for a Simple Network of Workstations. Alternatively, Message Passing
Interface (MPI) may be used. SNOW is more general, being cross-platform, and works on
multicore computers, computer clusters, and supercomputers. More performance may be
found with MPI, but it is more specialized. LaplacesDemon.hpc was reported to have been
used successfully on a cluster with over 200 nodes.

12. Details

The LaplacesDemon package uses five broad types of numerical approximation algorithms:
Importance Sampling (IS), Iterative Quadrature, Laplace Approximation, Markov chain Monte
Carlo (MCMC), and Variational Bayes (VB). Approximate Bayesian Computation (ABC)
may be estimated within each. These numerical approximation algorithms are introduced
below.

12.1. Approximate Bayesian Computation

Approximate Bayesian Computation (ABC), also called likelihood-free estimation, is a family
of numerical approximation techniques in Bayesian inference. ABC is especially useful when
evaluation of the likelihood, p(y|Θ) is computationally prohibitive, or when suitable likeli-
hoods are unavailable. As such, ABC algorithms estimate likelihood-free approximations.
ABC is usually faster than a similar likelihood-based numerical approximation technique,
because the likelihood is not evaluated directly, but replaced with an approximation that is
usually easier to calculate. The approximation of a likelihood is usually estimated with a
measure of distance between the observed sample, y, and its replicate given the model, yrep,
or with summary statistics of the observed and replicated samples. See the accompanying
vignette entitled “Examples” for an example.

12.2. Importance Sampling

Statisticat 27

Importance Sampling (IS) is a method of estimating a distribution with samples from a
different distribution, called the importance distribution. Importance weights are assigned to
each sample. The main difficulty with IS is in the selection of the importance distribution.
IS dates back at least to the 1950s, including iterative IS. IS is the basis of a wide variety
of algorithms, some of which involve the combination of IS and Markov chain Monte Carlo
(MCMC). There are also many variations of IS, including adaptive IS, and parametric and
nonparametric self-normalized IS (SNIS). Some popular algorithms, or families of algorithms,
that include IS are Particle Filtering, Population Monte Carlo (PMC), and Sequential Monte
Carlo (SMC).

Population Monte Carlo

Population Monte Carlo (PMC) uses adaptive IS, and the proposal or importance distribu-
tion is a multivariate Gaussian (Cappe, Guillin, Marin, and Robert 2004), or a mixture of
multivariate Gaussian distributions (Cappe, Douc, Guillin, Marin, and Robert 2008; Wraith,
Kilbinger, Benabed, Cappé, Cardoso, Fort, Prunet, and Robert 2009). LaplacesDemon uses
the version presented in the appendix of Wraith et al. (2009). At each iteration, the impor-
tance distribution of N samples and M mixture components is adapted. Parallel processing
is available.

Compared with Markov chain Monte Carlo (MCMC), very few iterations are required, con-
vergence and ergodicity are not problems, posterior samples are independent, and PMC lends
itself well to parallelization. However, PMC requires much more prior information about
the model (better initial values and proposal covariance matrix) than MCMC, and becomes
harder to apply as the number of variables increases.

Amazingly, PMC may improve the model fit obtained with MCMC, and should reduce the
variance of the marginal posterior distributions. This reduction in variance is desirable for
predictive modeling. Therefore, it is recommended that a model is attempted to be updated
with PMC after the model seems to have converged with MCMC.

12.3. Iterative Quadrature

Quadrature is a historical term in mathematics that means determining area. Mathematicians
of ancient Greece, according to the Pythagorean doctrine, understood determination of area of
a figure as the process of geometrically constructing a square having the same area (squaring).
Thus the name quadrature for this process.

In medieval Europe, quadrature meant the calculation of area by any method. With the
invention of integral calculus, quadrature has been applied to the computation of a univariate
definite integral. Numerical integration is a broad family of algorithms for calculating the
numerical value of a definite integral. Numerical quadrature is a synonym for quadrature
applied to one-dimensional integrals. Multivariate quadrature, also called cubature, is the
application of quadrature to multidimensional integrals.

A quadrature rule is an approximation of the definite integral of a function, usually stated as
a weighted sum of function values at specified points within the domain of integration. The
specified points are referred to as abscissae, abscissas, integration points, or nodes, and have
associated weights. The calculation of the nodes and weights of the quadrature rule differs by
the type of quadrature. There are numerous types of quadrature algorithms. Bayesian forms
of quadrature usually use Gauss-Hermite quadrature (Naylor and Smith 1982), and placing

28 LaplacesDemon

a Gaussian Process on the function is a common extension (O’Hagan 1991; Rasmussen and
Ghahramani 2003) that is called ‘Bayesian Quadrature’. Often, these and other forms of
quadrature are also referred to as model-based integration.

Gauss-Hermite quadrature uses Hermite polynomials to calculate the rule. However, there
are two versions of Hermite polynomials, which result in different kernels in different fields.
In physics, the kernel is exp(−x2), while in probability the kernel is exp(−x2/2). The weights
are a normal density. If the parameters of the normal distribution, µ and σ2, are estimated
from data, then it is referred to as adaptive Gauss-Hermite quadrature, and the parameters
are the conditional mean and conditional variance. Outside of Gauss-Hermite quadrature,
adaptive quadrature implies that a difficult range in the integrand is subdivided with more
points until it is well-approximated. Gauss-Hermite quadrature performs well when the inte-
grand is smooth, and assumes normality or multivariate normality. Adaptive Gauss-Hermite
quadrature has been demonstrated to outperform Gauss-Hermite quadrature in speed and
accuracy.

A goal in quadrature is to minimize integration error, which is the error between the evalu-
ations and the weights of the rule. Therefore, a goal in Bayesian Gauss-Hermite quadrature
is to minimize integration error while approximating a marginal posterior distribution that is
assumed to be smooth and normally-distributed. This minimization often occurs by increas-
ing the number of nodes until a change in mean integration error is below a tolerance, rather
than minimizing integration error itself, since the target may be only approximately normally
distributed, or minimizing the sum of integration error, which would change with the number
of nodes.

To approximate integrals in multiple dimensions, one approach applies N nodes of a univari-
ate quadrature rule to multiple dimensions (using the GaussHermiteCubeRule function for
example) via the product rule, which results in many more multivariate nodes. This requires
the number of function evaluations to grow exponentially as dimension increases. Multidi-
mensional quadrature is usually limited to less than ten dimensions, both due to the number
of nodes required, and because the accuracy of multidimensional quadrature algorithms de-
creases as the dimension increases. Three methods may overcome this curse of dimensionality
in varying degrees: componentwise quadrature, sparse grids, and Monte Carlo.

Componentwise quadrature is the iterative application of univariate quadrature to each pa-
rameter. It is applicable with high-dimensional models, but sacrifices the ability to calculate
the conditional covariance matrix, and calculates only the variance of each parameter.

Sparse grids were originally developed by Smolyak for multidimensional quadrature. A sparse
grid is based on a one-dimensional quadrature rule. Only a subset of the nodes from the
product rule is included, and the weights are appropriately rescaled. Although a sparse grid
is more efficient because it reduces the number of nodes to achieve the same accuracy, the
user must contend with increasing the accuracy of the grid, and it remains inapplicable to
high-dimensional integrals.

Monte Carlo is a large family of sampling-based algorithms. O’Hagan (1987) asserts that
Monte Carlo is frequentist, inefficient, regards irrelevant information, and disregards relevant
information. Quadrature, he maintains (O’Hagan 1992), is the most Bayesian approach, and
also the most efficient. In high dimensions, he concedes, a popular subset of Monte Carlo
algorithms is currently the best for cheap model function evaluations. These algorithms are
called Markov chain Monte Carlo (MCMC). High-dimensional models with expensive model

Statisticat 29

evaluation functions, however, are not well-suited to MCMC. A large number of MCMC
algorithms is available in the LaplacesDemon function.

Following are some reasons to consider iterative quadrature rather than MCMC. Once an
MCMC sampler finds equilibrium, it must then draw enough samples to represent all targets.
Iterative quadrature does not need to continue drawing samples. Multivariate quadrature
is consistently reported as more efficient than MCMC when its assumptions hold, though
multivariate quadrature is limited to small dimensions. High-dimensional models therefore
default to MCMC, between the two. Componentwise quadrature algorithms like CAGH, how-
ever, may also be more efficient with clock-time than MCMC in high dimensions, especially
against componentwise MCMC algorithms. Another reason to consider iterative quadrature
are that assessing convergence in MCMC is a difficult topic, but not for iterative quadrature.
A user of iterative quadrature does not have to contend with effective sample size and auto-
correlation, assessing stationarity, acceptance rates, diminishing adaptation, etc. Stochastic
sampling in MCMC is less efficient when samples occur in close proximity (such as when
highly autocorrelated), whereas in quadrature the nodes are spread out by design.

In general, the conditional means and conditional variances progress smoothly to the target
in multidimensional quadrature. For componentwise quadrature, movement to the target is
not smooth, and often resembles a Markov chain or optimization algorithm.

Iterative quadrature is often applied after LaplaceApproximation to obtain a more reliable
estimate of parameter variance or covariance than the negative inverse of the Hessian ma-
trix of second derivatives, which is suitable only when the contours of the logarithm of the
unnormalized joint posterior density are approximately ellipsoidal (Naylor and Smith 1982).

Adaptive Gauss-Hermite

The Adaptive Gauss-Hermite (AGH) algorithm is the Naylor and Smith (1982) algorithm.
The AGH algorithm uses multivariate quadrature with the physicist’s (not the probabilist’s)
kernel.

There are four algorithm specifications: N is the number of univariate nodes, Nmax is the
maximum number of univariate nodes, Packages accepts any package required for the model
function when parallelized, and Dyn.libs accepts dynamic libraries for parallelization, if
required. The number of univariate nodes begins at N and increases by one each iteration.
The number of multivariate nodes grows quickly with N . Naylor and Smith (1982) recommend
beginning with as few nodes as N = 3. Any of the following events will cause N to increase
by 1 when N is less than Nmax:

• All LP weights are zero (and non-finite weights are set to zero)

• µ does not result in an increase in LP

• All elements in Σ are not finite

• The square root of the sum of the squared changes in µ is less than or equal to the
Stop.Tolerance

Tolerance includes two metrics: change in mean integration error and change in parameters.
Including the change in parameters for tolerance was not mentioned in Naylor and Smith
(1982).

30 LaplacesDemon

Naylor and Smith (1982) consider a transformation due to correlation. This is not included
here.

The AGH algorithm does not currently handle constrained parameters, such as with the
interval function. If a parameter is constrained and changes during a model evaluation,
this changes the node and the multivariate weight. This is currently not corrected.

An advantage of AGH over componentwise adaptive quadrature is that AGH estimates co-
variance, where a componentwise algorithm ignores it. A disadvantage of AGH over a com-
ponentwise algorithm is that the number of nodes increases so quickly with dimension, that
AGH is limited to small-dimensional models.

Adaptive Gauss-Hermite Sparse Grid

The Adaptive Gauss-Hermite Sparse Grid (AGHSG) algorithm is the Naylor and Smith (1982)
algorithm applied to a sparse grid, rather than a traditional multivariate quadrature rule. This
is identical to the AGH algorithm above, except that a sparse grid replaces the multivariate
quadrature rule.

The sparse grid reduces the number of nodes. The cost of reducing the number of nodes is
that the user must consider the accuracy, K.

There are four algorithm specifications: K is the accuracy (as a positive integer), Kmax is
the maximum accuracy, Packages accepts any package required for the model function when
parallelized, and Dyn.libs accepts dynamic libraries for parallelization, if required. These
arguments represent accuracy rather than the number of univariate nodes, but otherwise are
similar to the AGH algorithm.

Componentwise Adaptive Gauss-Hermite

The Componentwise Adaptive Gauss-Hermite (CAGH) algorithm is a componentwise version
of the adaptive Gauss-Hermite quadrature of Naylor and Smith (1982). Each iteration, each
marginal posterior distribution is approximated sequentially, in a random order, with univari-
ate quadrature. The conditional mean and conditional variance are also approximated each
iteration, making it an adaptive algorithm.

There are four algorithm specifications: N is the number of nodes, Nmax is the maximum
number of nodes, Packages accepts any package required for the model function when paral-
lelized, and Dyn.libs accepts dynamic libraries for parallelization, if required. The number
of nodes begins at N . All parameters have the same number of nodes. Any of the following
events will cause N to increase by 1 when N is less than Nmax, and these conditions refer to
all parameters (not individually):

• Any LP weights are not finite

• All LP weights are zero

• µ does not result in an increase in LP

• The square root of the sum of the squared changes in µ is less than or equal to the
Stop.Tolerance

Statisticat 31

It is recommended to begin with N=3 and set Nmax between 10 and 100. As long as CAGH
does not experience problematic weights, and as long as CAGH is improving LP with µ, the
number of nodes does not increase. When CAGH becomes either universally problematic or
universally stable, then N slowly increases until the sum of both the mean integration error
and the sum of the squared changes in µ is less than the Stop.Tolerance for two consecutive
iterations.

If the highest LP occurs at the lowest or highest node, then the value at that node becomes
the conditional mean, rather than calculating it from all weighted samples; this facilitates
movement when the current integral is poorly centered toward a well-centered integral. If all
weights are zero, then a random proposal is generated with a small variance.

Tolerance includes two metrics: change in mean integration error and change in parameters,
as the square root of the sum of the squared differences.

When a parameter constraint is encountered, the node and weight of the quadrature rule is
recalculated.

An advantage of CAGH over multidimensional adaptive quadrature is that CAGH may be
applied in large dimensions. Disadvantages of CAGH are that only variance, not covariance,
is estimated, and ignoring covariance may be problematic.

12.4. Laplace Approximation

The Laplace Approximation or Laplace Method is a family of asymptotic techniques used to
approximate integrals. Laplace’s method seems to accurately approximate unimodal posterior
moments and marginal posterior distributions in many cases. Since it is not applicable in all
cases, it is recommended here that Laplace Approximation is used cautiously in its own right,
or preferably, it is used before MCMC.

After introducing the Laplace Approximation (Laplace 1774, p. 366–367), a proof was pub-
lished later (Laplace 1814) as part of a mathematical system of inductive reasoning based on
probability. Laplace used this method to approximate posterior moments.

Since its introduction, the Laplace Approximation has been applied successfully in many
disciplines. In the 1980s, the Laplace Approximation experienced renewed interest, espe-
cially in statistics, and some improvements in its implementation were introduced (Tierney
and Kadane 1986; Tierney, Kass, and Kadane 1989). Only since the 1980s has the Laplace
Approximation been seriously considered by statisticians in practical applications.

There are many variations of Laplace Approximation, with an effort toward replacing Markov
chain Monte Carlo (MCMC) algorithms as the dominant form of numerical approximation in
Bayesian inference. The run-time of Laplace Approximation is a little longer than Maximum
Likelihood Estimation (MLE), usually shorter than variational Bayes, and much shorter than
MCMC (Azevedo-Filho and Shachter 1994).

The speed of Laplace Approximation depends on the optimization algorithm selected, and
typically involves many evaluations of the objective function per iteration (where an MCMC
algorithm with a multivariate proposal usually evaluates once per iteration), making many
MCMC algorithms faster per iteration. The attractiveness of Laplace Approximation is that it
typically improves the objective function better than iterative quadrature, MCMC, and PMC
when the parameters are in low-probability regions. Laplace Approximation is also typically
faster than MCMC and PMC because it is seeking point-estimates, rather than attempting

32 LaplacesDemon

to represent the target distribution with enough simulation draws. Laplace Approximation
extends MLE, but shares similar limitations, such as its asymptotic nature with respect to
sample size and that marginal posterior distributions are Gaussian. Bernardo and Smith
(2000) note that Laplace Approximation is an attractive family of numerical approximation
algorithms, and will continue to develop.

LaplaceApproximation seeks a global maximum of the logarithm of the unnormalized joint
posterior density. The approach differs by Method. The LaplacesDemon function uses the
LaplaceApproximation algorithm to optimize initial values and save time for the user.

Most optimization algorithms assume that the logarithm of the unnormalized joint posterior
density is defined and differentiable12. Some methods calculate an approximate gradient for
each initial value as the difference in the logarithm of the unnormalized joint posterior density
due to a slight increase in the parameter.

The user may select from numerous optimization algorithms:

Adaptive Gradient Ascent

With adaptive gradient ascent, the direction and distance for each parameter is proposed
based on an approximate truncated graident and an adaptive step size. The step size pa-
rameter, which is often plural and called rate parameters in other literature, is adapted each
iteration with the univariate version of the Robbins-Monro stochastic approximation in Garth-
waite, Fan, and Sisson (2010). The step size shrinks when a proposal is rejected and expands
when a proposal is accepted.

Gradient ascent is criticized for sometimes being relatively slow when close to the maximum,
and its asymptotic rate of convergence is inferior to other methods. However, compared
to other popular optimization algorithms such as Newton-Raphson, an advantage of the
gradient ascent is that it works in infinite dimensions, requiring only sufficient computer
memory. Although Newton-Raphson converges in fewer iterations, calculating the inverse
of the negative Hessian matrix of second-derivatives is more computationally expensive and
subject to singularities. Therefore, gradient ascent takes longer to converge, but is more
generalizable.

BFGS

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm was proposed independently by
Broyden (1970), Fletcher (1970), Goldfarb (1970), and Shanno (1970). BFGS may be the
most efficient and popular quasi-Newton optimiziation algorithm. As a quasi-Newton algo-
rithm, the Hessian matrix is approximated using rank-one updates specified by (approximate)
gradient evaluations. Since BFGS is very popular, there are many variations of it. This is a
version by Nash that has been adapted from the Rvmmin package, and is used in the optim

function of base R. The approximate Hessian is not guaranteed to converge to the Hessian.
When BFGS is used, the approximate Hessian is not used to calculate the final covariance
matrix.

12When the joint posterior is not differentiable, and should be, it has probably encountered an area of flat
density. It is recommended that WIPs are used for regularization. For more information on WIPs, see the
accompanying vignette entitled “Bayesian Inference”.

Statisticat 33

BHHH

The BHHH algorithm of Berndt, Hall, Hall, and Hausman (1974) is a quasi-Newton method
that includes a step-size parameter, partial derivatives, and an approximation of a covariance
matrix that is calculated as the inverse of the sum of the outer product of the gradient (OPG),
calculated from each record. The OPG method becomes more costly with data sets with more
records. Since partial derivatives must be calculated per record of data, the list of data has
special requirements with this method, and must include design matrix X, and dependent
variable y or Y. Records must be row-wise. An advantage of BHHH over NR (see below)
is that the covariance matrix is necessarily positive definite, and gauranteed to provide an
increase in LP each iteration (given a small enough step-size), even in convex areas. The
covariance matrix is better approximated with larger data sample sizes, and when closer to
the maximum of LP. Disadvantages of BHHH include that it can give small increases in LP,
especially when far from the maximum or when LP is highly non-quadratic.

Conjugate Gradient

Conjugate gradient (CG) is a family of algorithms that uses partial derivatives, but does not
use the Hessian matrix or any approximation of it. CG usually requires more iterations to
reach convergence than other algorithms that use the Hessian or an approximation. However,
since the Hessian becomes computationally expensive as the dimension of the model grows,
CG is applicable to large dimensional models. CG was originally developed by Hestenes and
Stiefel (1952). The version here is a nonlinear CG method.

Davidon-Fletcher-Powell

The Davidon-Fletcher-Powell (DFP) algorithm was the first popular, multidimensional, quasi-
Newton optimization algorithm. The DFP update of an approximate Hessian matrix main-
tains symmetry and positive-definiteness. The approximate Hessian is not guaranteed to
converge to the Hessian. When DFP is used, the approximate Hessian is not used to calcu-
late the final covariance matrix. Although DFP is very effective, it was superseded by the
BFGS algorithm.

Hit-And-Run

This version of the Hit-And-Run (HAR) algorithm makes multivariate proposals and uses
an adpative length parameter. The length parameter is adapted each iteration with the
univariate version of the Robbins-Monro stochastic approximation in Garthwaite et al. (2010).
The length shrinks when a proposal is rejected and expands when a proposal is accepted.
This is the same algorithm as the HARM or Hit-And-Run Metropolis MCMC algorithm with
adaptive length, except that a Metropolis step is not used.

Hooke-Jeeves

The Hooke-Jeeves algorithm (Hooke and Jeeves 1961) is a derivative-free, direct search
method. Each iteration involves two steps: an exploratory move and a pattern move. The
exploratory move explores local behavior, and the pattern move takes advantage of pattern
direction. It is sometimes described as a hill-climbing algorithm. If the solution improves,
it accepts the move, and otherwise rejects it. Step size decreases with each iteration. The

34 LaplacesDemon

decreasing step size can trap it in local maxima, where it gets stuck and convergences erro-
neously. Users are encouraged to attempt again after what seems to be convergence, starting
from the latest point. Although getting stuck at local maxima can be problematic, the Hooke-
Jeeves algorithm is also attractive because it is simple, fast, does not depend on derivatives,
and is otherwise relatively robust.

Levenberg-Marquardt

Also known as the Levenberg-Marquardt Algorithm (LMA) or the Damped Least-Squares
(DLS) method, Levenberg-Marquardt (LM) is a trust region (not to be confused with TR
below) optimization algorithm that minimizes nonlinear least squares, and has been adapted
here to maximize LP. LM uses partial derivatives and approximates the Hessian with outer-
products. It is suitable for nonlinear optimization up to a few hundred parameters, but
loses its efficiency in larger problems due to matrix inversion. LM is considered between the
Gauss-Newton algorithm and gradient descent. When far from the solution, LM moves slowly
like gradient descent, but is guaranteed to converge. When LM is close to the solution, LM
becomes a damped Gauss-Newton method.

Limited-Memory BFGS

The limited-memory BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm is a quasi-Newton
optimization algorithm that compactly approximates the Hessian matrix. Rather than storing
the dense Hessian matrix, L-BFGS stores only a few vectors that represent the approximation.
This algorithm is better suited for large-scale models than the BFGS algorithm. When
(method="LBFGS") for LaplaceApproximation, method="L-BFGS-B" is called in the optim

function of base R.

Nelder-Mead

The Nelder-Mead algorithm (Nelder and Mead 1965) is a derivative-free, direct search method
that is known to become inefficient in large-dimensional problems. As the dimension increases,
the search direction becomes increasingly orthogonal to the steepest ascent (usually descent)
direction. However, in smaller dimensions it is a popular algorithm. At each iteration, three
steps are taken to improve a simplex: reflection, extension, and contraction.

Newton-Raphson

The Newton-Raphson optimization algorithm, also known as Newton’s Method, uses deriva-
tives and a Hessian matrix. The algorithm is included for its historical significance, but is
known to be problematic when starting values are far from the targets, and calculating and
inverting the Hessian matrix can be computationally expensive. As programmed here, when
the Hessian is problematic, it tries to use only the derivatives, and when that fails, a jitter is
applied. Newton-Raphson should not be the first choice of the user, and BFGS should always
be preferred.

Particle Swarm Optimization

Of numerous Particle Swarm Optimization (PSO) algorithms, the Standard Particle Swarm
Optimization 2007 (SPSO 07) algorithm is used here. A swarm of particles is moved according

Statisticat 35

to velocity, neighborhood, and the best previous solution. The neighborhood for each particle
is a set of informing particles. PSO is derivative-free.

Resilient Backpropagation

“Rprop” stands for resilient backpropagation. In Rprop, the approximate gradient is taken for
each parameter in each iteration, and its sign is compared to the approximate gradient in the
previous iteration. A weight element in a weight vector is associated with each approximate
gradient. A weight element is multiplied by 1.2 when the sign does not change, or by 0.5 if
the sign changes. The weight vector is the step size, and is constrained to the interval [0.001,
50], and initial weights are 0.0125. This is the resilient backpropagation algorithm, which is
often denoted as the “Rprop-” algorithm of Riedmiller (1994).

Self-Organizing Migration Algorithm

The Self-Organizing Migration Algorithm (SOMA) of Zelinka (2004), as used here, moves
a population of ten particles or individuals in the direction of the best particle, the leader.
The leader does not move in each iteration, and a line-search is used for each non-leader,
up to three times the difference in parameter values between each non-leader and leader.
This algorithm is derivative-free and often considered in the family of evolution algorithms.
Numerous model evaluations are performed per non-leader per iteration.

Spectral Projected Gradient

The Spectral Projected Gradient (SPG) algorithm is a non-monotone algorithm that is suit-
able for high-dimensional models. The approximate gradient is used, but the Hessian matrix
is not. SPG is the default algorithm for the LaplaceApproximation function.

Stochastic Gradient Descent

The stochastic gradient descent (SGD) algorithm, here, is designed only for big data. Tradi-
tional optimization algorithms require the entire data set to be included in the model evalu-
ation each iteration. In contrast, SGD reads and processes only a small, randomly selected
batch of records each iteration. In addition to saving computation time, the entire data set
does not need to be loaded into memory at once.

In this version of SGD, a multivariate proposal is used, and it is merely the vector of current
values plus a step size times the gradient.

SGD requires five objects in the Data list: epsilon or ǫ is the step size as a scalar, file is a
quoted name of a .csv file that is the big data set, Nr is the number of rows in the big data
set, Nc is the number of columns in the big data set, and size is the number of rows to be
read and processed each iteration.

Since SGD, as implemented here, is designed for big data, the entire data set is not included in
the Data list, but one small batch must be included and named X. All data must be included.
For example, both the dependent variable y and design matrix X in linear regression are
included. The requirement for the small batch to be in Data is so that numerous checks may
be passed after LaplaceApproximation is called and before the SGD algorithm begins. Each
iteration, SGD uses the scan function, without headers, to read a random block of rows from,
say, X.csv, stores it in Data$X, and passes it to the Model specification function. The Model

36 LaplacesDemon

function must differ from the other examples found in this package in that multiple objects,
such as X and y must be read from Data$X, where usually there is both Data$X and Data$y.

The user tunes SGD with step size ǫ via Data$epsilon. The step size must be scalar and
remain in the interval (0,1). When ǫ = 0, SGD is reduced to zero, the algorithm will not
move, and false convergence occurs. When ǫ is too large, degenerate results occur. A good
recommendation seems to be to begin with ǫ set to 1/Nr. The user may perform several short
runs, and experimenting with adjusting Data$epsilon. At least Nr / size iterations are
suggested.

Symmetric Rank-One

The Symmetric Rank-One (SR1) algorithm is a quasi-Newton optimization algorithm, and the
Hessian matrix is approximated, often without being positive-definite. At the posterior modes,
the true Hessian is usually positive-definite, but this is often not the case during optimization
when the parameters have not yet reached the posterior modes. Other restrictions, including
constraints, often result in the true Hessian being indefinite at the solution. For these reasons,
SR1 often outperforms BFGS. The approximate Hessian is not guaranteed to converge to the
Hessian. When SR1 is used, the approximate Hessian is not used to calculate the final
covariance matrix.

Trust Region

The Trust Region (TR) algorithm of Nocedal and Wright (1999) attempts to reach its objec-
tive in the fewest number of iterations, is therefore very efficient, as well as safe. The efficiency
of TR is attractive when model evaluations are expensive.The Hessian is approximated each
iteration, making TR best suited to models with small to medium dimensions, say up to a
few hundred parameters.

Afterward

After LaplaceApproximation finishes, due either to early convergence or completing the
number of specified iterations, it approximates the Hessian matrix of second derivatives (by
default, but the user has other options), and attempts to calculate the covariance matrix by
taking the inverse of the negative of this matrix. If successful, then this covariance matrix
may be passed to IterativeQuadrature, LaplacesDemon, or PMC, and the diagonal of this
matrix is the variance of the parameters. If unsuccessful, then a scaled identity matrix is
returned, and each parameter’s variance will be 1.

12.5. Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) algorithms are also called samplers. There are a large
number of MCMC algorithms, too many to review here. Popular families (which are often non-
distinct) include Gibbs sampling, Metropolis-Hastings, slice sampling, Hamiltonian Monte
Carlo, and many others. Though the name is misleading, Metropolis-within-Gibbs (MWG)
was developed first (Metropolis, Rosenbluth, M.N., and Teller 1953), and Metropolis-Hastings
was a generalization of MWG (Hastings 1970). All MCMC algorithms are known as special
cases of the Metropolis-Hastings algorithm. Regardless of the algorithm, the goal in Bayesian
inference is to maximize the unnormalized joint posterior distribution and collect samples

Statisticat 37

of the target distributions, which are marginal posterior distributions, later to be used for
inference.

The most generalizable MCMC algorithm is the Metropolis-Hastings (MH) generalization of
the MWG algorithm. The MH algorithm extended MWG to include asymmetric proposal
distributions. For years, the main disadvantage of the MWG algorithms was that the proposal
variance (see below) had to be tuned manually, and therefore other MCMC algorithms have
become popular because they do not need to be tuned.

Gibbs sampling became popular for Bayesian inference, though it requires conditional sam-
pling of conjugate distributions, so it is precluded from non-conjugate sampling in its purest
form. Gibbs sampling also suffers under high correlations (Gilks and Roberts 1996). Due to
these limitations, Gibbs sampling is less generalizable than RWM, though RWM and other al-
gorithms are not immune to problems with correlation. The Griddy-Gibbs sampler evaluates a
grid of proposals and approximates the conditional distribution, which enables non-conjugate
sampling. Componentwise slice sampling is a special case of Gibbs sampling that samples
a distribution by sampling uniformly from the region under the plot of its density function,
and is more appropriate with bounded distributions that cannot approach infinity, though
the improved slice sampler of Neal (2003) is available here.

Blockwise Sampling

Usually, there is more than one target distribution, in which case it must be determined
whether it is best to sample from target distributions individually, in groups, or all at once.
Block updating refers to splitting a multivariate vector into groups called blocks, and each
block is sampled separately. A block may contain one or more parameters.

Parameters are usually grouped into blocks such that parameters within a block are as corre-
lated as possible, and parameters between blocks are as independent as possible. This strategy
retains as much of the parameter correlation as possible for blockwise sampling, as opposed
to componentwise sampling where parameter correlation is ignored. The PosteriorChecks

function can be used on the output of previous runs to find highly correlated parameters, and
the Blocks function may be used to create blocks based on posterior correlation.

Advantages of blockwise sampling are that a different MCMC algorithm may be used for each
block (or parameter, for that matter), creating a more specialized approach (though different
algorithms by block are not supported here), the acceptance of a newly proposed state is
likely to be higher than sampling from all target distributions at once in high dimensions,
and large proposal covariance matrices can be reduced in size, which is most helpful again in
high dimensions.

Disadvantages of blockwise sampling are that correlations probably exist between parameters
between blocks, and each block is updated while holding the other blocks constant, ignoring
these correlations of parameters between blocks. Without simultaneously taking everything
into account, the algorithm may converge slowly or never arrive at the proper solution. How-
ever, there are instances when it may be best when everything is not taken into account at
once, such as in state-space models. Also, as the number of blocks increases, more com-
putation is required, which slows the algorithm. In general, blockwise sampling allows a
more specialized approach at the expense of accuracy, generalization, and speed. Blockwise
sampling is offered in the following algorithms: Adaptive Metropolis-within-Gibbs (AMWG),
Adaptive-Mixture Metropolis (AMM), Automated Factor Slice Sampler (AFSS), Elliptical

38 LaplacesDemon

Slice Sampler (ESS), Hit-And-Run Metropolis (HARM), Metropolis-within-Gibbs (MWG),
Random-Walk Metropolis (RWM), Robust Adaptive Metropolis (RAM), and the Univariate
Eigenvector Slice Sampler (UESS).

Markov Chain Properties

This tutorial introduces only briefly the basics of Markov chain properties. A Markov chain
is Markovian when the current iteration depends only on the previous iteration. Many (but
not all) adaptive algorithms are merely chains but not Markov chains when the adaptation
is based on the history of the chains, not just the previous iteration. A Markov chain is said
to be aperiodic when it is not repeating a cycle. A Markov chain is considered irreducible
when it is possible to go from any state to any other state, though not necessarily in one
iteration. A Markov chain is said to be recurrent if it will eventually return to a given state
with probability 1, and it is positive recurrent if the expected return time is finite, and null
recurrent otherwise. The ergodic theorem states that a Markov chain is ergodic when it is
aperiodic, irreducible, and positive recurrent.

The non-Markovian chains of an adaptive algorithm that adapt based on the history of the
chains should have two conditions: containment and diminishing adaptation. Containment
is difficult to implement and is not currently programmed into LaplacesDemon. The con-
dition of diminishing adaptation is fulfilled when the amount of adaptation diminishes with
the length of the chain. Diminishing adaptation can be achieved when the proposal vari-
ances become smaller or by decreasing the probability of performing adaptations with more
iterations (Roberts and Rosenthal 2007). Trace-plots of the output of the LaplacesDemon

function automatically include plots of the absolute differences in proposal variance with each
adaptation for adaptive algorithms, and the Consort function will try to suggest a different
adaptive algorithm when these absolute differences are not trending downward.

Descriptions of the MCMC algorithms in the LaplacesDemon package are available online at
https://web.archive.org/web/20150227012508/http://www.bayesian-inference.com/

mcmc.

Sampler Selection

The optimal sampler differs for each problem, and it is recommended that the Juxtapose

function is used to help select the least inefficient MCMC algorithm. Nonetheless, some
general observations here may be helpful to a user attempting to select the most appropriate
sampler for a given model. Suggestions in this section have been reached by attempting to
compare all samplers on most models in the accompanying “Examples” vignette. Comparisons
consisted of

• diminishing adaptation, if applicable

• how many iterations it took the sampler to seem to converge

• how many minutes it took the sampler to seem to converge

• how quickly the sampler improved in the beginning

• Juxtapose results based on integrated autocorrelation time (IAT)

https://web.archive.org/web/20150227012508/http://www.bayesian-inference.com/mcmc
https://web.archive.org/web/20150227012508/http://www.bayesian-inference.com/mcmc

Statisticat 39

• mixing of the chains

• whether or not the sampler arrived at the correct solution

When the user is ready to select a general-purpose sampler, the best place to begin is with the
AFSS algorithm. This is not to say that AFSS is the best sampler and everything else pales
by comparison. Instead, AFSS is a great sampler with which to start in the general case, and
for beginners. Although AFSS has several algorithm specifications, the default specifications
are suitable for many cases.

A new user should not begin to learn AFSS and this package with a complicated and high-
dimensional model. When this is necessary, the user of AFSS will need to learn how to create
blocks of parameters and a list of proposal covariance matrices. In smaller cases, more suitable
to learning, the user should not generally have to adjust the m or w specifications, and need
only learn A and n. A new user should begin with A=Inf and n=0, and use code provided by
the Consort function for the next run. When the user is satified that equilibrium is reached,
then another run should be made without adaptation: A=0.

Models with multimodal marginal posterior distributions are potentially troublesome for any
numerical approximation algorithm, though MCMC may be better suited in general. It is best
to begin either with MCMCMC or RDMH. Alternatives include AFSS, AGG, CHARM, GG,
HARM, RAM, Slice, THMC, or t-walk. The MCMCMC and RDMH algorithms have demon-
strated remarkable performance with multimodal distributions. The use of parallel chains in
MCMCMC increases the chances that different chains may settle on different modes. Paral-
lel chains from other parallelized algorithms may be helpful in finding multiple modes, but
when the chains are combined with the Combine function for inference, each mode probably
is not represented in a proportion correct for the distribution. Consider updating the model
with PMC, with multiple mixture components, after MCMC is finished. Unlike MCMC with
parallel chains, the proportion of each mode will be correctly represented with PMC.

Models with discrete parameters currently require either the AGG, GG, or Slice algorithms, or
converting the discrete parameters to continuous parameters so that any MCMC algorithm
may be used. This is performed via the continuous relaxation of a Markov random field
(MRF), as in Zhang, Ghahramani, Storkey, and Sutton (2012). For more information, see
the dcrmrf and rcrmrf functions.

Models with big data sets, too big for memory, may use the SGLD algorithm, the BigData

function, or opt for alternative methods suggested in the details of the documentation for the
BigData function.

Regardless of the model or algorithm, parallel chains are recommended in general, provided
the user has multiple CPUs and enough random-access memory (RAM). However, it is best
to begin with a single chain, until the user is confident in the model specification. Parallel
chains produce more posterior samples upon convergence than single chains in roughly the
same amount of time, and may facilitate the discovery of multimodal marginal posterior
distributions that would otherwise have been overlooked. Although algorithms may update
independently in parallel, there are several that learn from other parallel updates, such as
AIES and INCA.

The Demonic Suggestion section of output from the Consort function also attempts to help
the user to select a sampler. There are exceptions to each of these suggestions above. In some

40 LaplacesDemon

cases, a particular algorithm will fail to update for a given example. Hopefully this section
assists the user in selecting a sampler.

Afterward

Once the model is updated with the LaplacesDemon function, the BMK.Diagnostic function
is applied to 10 batches of the thinned samples to assess stationarity (or lack of trend). When
all parameters are estimated as stationary beyond a given iteration, the previous iterations
are suggested to be considered as burn-in and discarded.

The importance of Monte Carlo Standard Error (MCSE) is debated (Gelman et al. 2004;
Jones, Haran, Caffo, and Neath 2006). It is included in posterior summaries of LaplacesDemon,
and is one of five main criteria as a stopping rule to appease Laplace’s Demon. MCSE has
been shown to be a better stopping rule than MCMC diagnostics (Jones et al. 2006). Laplaces-

Demon provides a MCSE function that allows three methods of estimation: sample variance,
batch means (Jones et al. 2006), and Geyer’s method (Geyer 1992).

The user is encouraged to explore MCMC diagnostics (also called convergence diagnostics).
The LaplacesDemon package offers AcceptanceRate, the BMK.Diagnostic, a Cumulative
Sample Function (CSF), Effective Sample Size (ESS), Gelfand.Diagnostic, Gelman.Diagnostic,
Geweke.Diagnostic, Heidelberger.Diagnostic, Integrated Autocorrelation Time (IAT),
the Kolmogorov-Smirnov test (KS.Diagnostic), Monte Carlo Standard Error (MCSE), Raftery.Diagnostic,
and both the plot and PosteriorChecks functions include multiple diagnostics.

12.6. Variational Bayes

Variational Bayes (VB) is a family of numerical approximation algorithms that is a subset of
variational inference algorithms, or variational methods. Some examples of variational meth-
ods include the mean-field approximation, loopy belief propagation, tree-reweighted belief
propagation, and expectation propagation (EP). Variational inference for probabilistic mod-
els was introduced in the field of machine learning, influenced by statistical physics literature.

A VB algorithm deterministically estimates the marginal posterior distributions (target dis-
tributions) in a Bayesian model with approximated distributions by minimizing the Kullback-
Leibler Divergence (KLD) between the target and its approximation. The complicated posterior
distribution is approximated with a simpler distribution. The simpler, approximated distribu-
tion is called the variational approximation, or approximation distribution, of the posterior.
The term variational is derived from the calculus of variations, and regards optimization al-
gorithms that select the best function (which is a distribution in VB), rather than merely
selecting the best parameters.

VB algorithms often use Gaussian distributions as approximating distributions. In this case,
both the mean and variance of the parameters are estimated.

Usually, a VB algorithm is slower to convergence than a Laplace Approximation algorithm,
and faster to convergence than a Monte Carlo algorithm such as Markov chain Monte Carlo
(MCMC). VB often provides solutions with comparable accuracy to MCMC in less time.
Though Monte Carlo algorithms provide a numerical approximation to the exact posterior
using a set of samples, VB provides a locally-optimal, exact analytical solution to an ap-
proximation of the posterior. VB is often more applicable than MCMC to big data or large-
dimensional models.

Statisticat 41

Since VB is deterministic, it is asymptotic and subject to the same limitations with respect
to sample size as Laplace Approximation. However, VB estimates more parameters than
Laplace Approximation, such as when Laplace Approximation optimizes the posterior mode
of a Gaussian distribution, while VB optimizes both the Gaussian mean and variance.

Traditionally, VB algorithms required customized equations. The VariationalBayes func-
tion uses general-purpose algorithms. A general-purpose VB algorithm is less efficient than
an algorithm custom designed for the model form. However, a general-purpose algorithm is
applied consistently and easily to numerous model forms.

Salimans2

The Salimans2 algorithm is the second algorithm of Salimans and Knowles (2013) is used.
This requires the gradient and Hessian, which is more efficient with a small number of param-
eters as long as the posterior is twice differentiable. The step size is constant. This algorithm
is suitable for marginal posterior distributions that are Gaussian and unimodal. A stochastic
approximation algorithm is used in the context of fixed-form VB, inspired by considering
fixed-form VB to be equivalent to performing a linear regression with the sufficient statistics
of the approximation as independent variables and the unnormalized logarithm of the joint
posterior density as the dependent variable. The number of requested iterations should be
large, since the step-size decreases for larger requested iterations, and a small step-size will
eventually converge. A large number of requested iterations results in a smaller step-size and
better convergence properties, so hope for early convergence. However convergence is checked
only in the last half of the iterations after the algorithm begins to average the mean and
variance from the samples of the stochastic approximation. The history of stochastic samples
is returned.

13. Bayesian-Inference.com

Many additional resources may be found at https://web.archive.org/web/20141224051720/

http://www.bayesian-inference.com/index, as well as other places online:

• Bayesian information is being compiled under https://web.archive.org/web/20150206004608/

http://www.bayesian-inference.com/bayesian.

• C++ examples of model functions: https://web.archive.org/web/20140513065103/

http://www.bayesian-inference.com/cpp/LaplacesDemonExamples.txt.

• MCMC algorithms are described at https://web.archive.org/web/20150430054005/

http://www.bayesian-inference.com/mcmc.

• Merchandise may be found at http://www.zazzle.com/statisticat, such as Laplaces-

Demon t-shirts, coffee mugs, and more.

• LaplacesDemon and LaplacesDemonCpp development is public and occurs at https://

github.com/LaplacesDemonR/LaplacesDemon and https://github.com/LaplacesDemonR/

LaplacesDemonCpp, respectively.

• And, the home of LaplacesDemon is https://web.archive.org/web/20150430054143/

http://www.bayesian-inference.com/software.

https://web.archive.org/web/20141224051720/http://www.bayesian-inference.com/index
https://web.archive.org/web/20141224051720/http://www.bayesian-inference.com/index
https://web.archive.org/web/20150206004608/http://www.bayesian-inference.com/bayesian
https://web.archive.org/web/20150206004608/http://www.bayesian-inference.com/bayesian
https://web.archive.org/web/20140513065103/http://www.bayesian-inference.com/cpp/LaplacesDemonExamples.txt
https://web.archive.org/web/20140513065103/http://www.bayesian-inference.com/cpp/LaplacesDemonExamples.txt
https://web.archive.org/web/20150430054005/http://www.bayesian-inference.com/mcmc
https://web.archive.org/web/20150430054005/http://www.bayesian-inference.com/mcmc
http://www.zazzle.com/statisticat
https://github.com/LaplacesDemonR/LaplacesDemon
https://github.com/LaplacesDemonR/LaplacesDemon
https://github.com/LaplacesDemonR/LaplacesDemonCpp
https://github.com/LaplacesDemonR/LaplacesDemonCpp
https://web.archive.org/web/20150430054143/http://www.bayesian-inference.com/software
https://web.archive.org/web/20150430054143/http://www.bayesian-inference.com/software

42 LaplacesDemon

14. Conclusion

The LaplacesDemon package is a significant contribution toward Bayesian inference in R.
In turn, contributions toward the development of LaplacesDemon are welcome. Please visit
https://github.com/LaplacesDemonR to contribute to development or report software bugs
by opening an issue.

References

Ando T (2007). “Bayesian Predictive Information Criterion for the Evaluation of Hierarchical
Bayesian and Empirical Bayes Models.” Biometrika, 94(2), 443–458.

Azevedo-Filho A, Shachter R (1994). “Laplace’s Method Approximations for Probabilistic
Inference in Belief Networks with Continuous Variables.” In R Mantaras, D Poole (eds.),
Uncertainty in Artificial Intelligence, pp. 28–36. Morgan Kauffman, San Francisco, CA.

Bayes T, Price R (1763). “An Essay Towards Solving a Problem in the Doctrine of Chances.
By the late Rev. Mr. Bayes, communicated by Mr. Price, in a letter to John Canton, MA.
and F.R.S.” Philosophical Transactions of the Royal Society of London, 53, 370–418.

Bernardo J, Smith A (2000). Bayesian Theory. John Wiley & Sons, West Sussex, England.

Berndt E, Hall B, Hall R, Hausman J (1974). “Estimation and Inference in Nonlinear Struc-
tural Models.” Annals of Economic and Social Measurement, 3, 653–665.

Broyden C (1970). “The Convergence of a Class of Double Rank Minimization Algorithms:
2. The New Algorithm.” Journal of the Institute of Mathematics and its Applications, 6,
76–90.

Cappe O, Douc R, Guillin A, Marin J, Robert C (2008). “Adaptive Importance Sampling in
General Mixture Classes.” Statistics and Computing, 18, 587–600.

Cappe O, Guillin A, Marin J, Robert C (2004). “Population Monte Carlo.” Journal of

Computational and Graphical Statistics, 13, 907–929.

Craiu R, Rosenthal J, Yang C (2009). “Learn From Thy Neighbor: Parallel-Chain and
Regional Adaptive MCMC.” Journal of the American Statistical Association, 104(488),
1454–1466.

Crawley M (2007). The R Book. John Wiley & Sons Ltd, West Sussex, England.

Fletcher R (1970). “A New Approach to Variable Metric Algorithms.” Computer Journal,
13(3), 317–322.

Garthwaite P, Fan Y, Sisson S (2010). “Adaptive Optimal Scaling of Metropolis-Hastings
Algorithms Using the Robbins-Monro Process.”

Gelfand A (1996). “Model Determination Using Sampling Based Methods.” In W Gilks,
S Richardson, D Spiegelhalter (eds.), Markov Chain Monte Carlo in Practice, pp. 145–161.
Chapman & Hall, Boca Raton, FL.

https://github.com/LaplacesDemonR

Statisticat 43

Gelman A (2008). “Scaling Regression Inputs by Dividing by Two Standard Deviations.”
Statistics in Medicine, 27, 2865–2873.

Gelman A, Carlin J, Stern H, Rubin D (2004). Bayesian Data Analysis. 2nd edition. Chapman
& Hall, Boca Raton, FL.

Gelman A, Meng X, Stern H (1996). “Posterior Predictive Assessment of Model Fitness via
Realized Discrepancies.” Statistica Sinica, 6, 773–807.

Gelman A, Rubin D (1992). “Inference from Iterative Simulation Using Multiple Sequences.”
Statistical Science, 7(4), 457–472.

Geyer C (1991). “Markov Chain Monte Carlo Maximum Likelihood.” In E Keramidas (ed.),
Computing Science and Statistics: Proceedings of the 23rd Symposium of the Interface, pp.
156–163. Fairfax Station VA: Interface Foundation.

Geyer C (1992). “Practical Markov Chain Monte Carlo (with Discussion).” Statistical Science,
7(4), 473–511.

Geyer C (2011). “Introduction to Markov Chain Monte Carlo.” In S Brooks, A Gelman,
G Jones, M Xiao-Li (eds.), Handbook of Markov Chain Monte Carlo, pp. 3–48. Chapman
& Hall, Boca Raton, FL.

Gilks W, Roberts G (1996). “Strategies for Improving MCMC.” In W Gilks, S Richardson,
D Spiegelhalter (eds.), Markov Chain Monte Carlo in Practice, pp. 89–114. Chapman &
Hall, Boca Raton, FL.

Goldfarb D (1970). “A Family of Variable Metric Methods Derived by Variational Means.”
Mathematics of Computation, 24(109), 23–26.

Goodman J, Weare J (2010). “Ensemble Samplers with Affine Invariance.” Communications

in Applied Mathematics and Computational Science, 5(1), 65–80.

Hastings W (1970). “Monte Carlo Sampling Methods Using Markov Chains and Their Ap-
plications.” Biometrika, 57(1), 97–109.

Hestenes M, Stiefel E (1952). “Methods of Conjugate Gradients for Solving Linear Systems.”
Journal of Research of the National Bureau of Standards, 49(6), 409–436.

Hooke R, Jeeves T (1961). “’Direct Search’ Solution of Numerical and Statistical Problems.”
Journal of the Association for Computing Machinery, 8(3), 212–229.

Irony T, Singpurwalla N (1997). “Noninformative Priors Do Not Exist: a Discussion with
Jose M. Bernardo.” Journal of Statistical Inference and Planning, 65, 159–189.

Jones G, Haran M, Caffo B, Neath R (2006). “Fixed-Width Output Analysis for Markov
chain Monte Carlo.” Journal of the American Statistical Association, 100(1), 1537–1547.

Laplace P (1774). “Memoire sur la Probabilite des Causes par les Evenements.” l’Academie

Royale des Sciences, 6, 621–656. English translation by S.M. Stigler in 1986 as “Memoir
on the Probability of the Causes of Events” in Statistical Science, 1(3), 359–378.

44 LaplacesDemon

Laplace P (1812). Theorie Analytique des Probabilites. Courcier, Paris. Reprinted as “Oeuvres
Completes de Laplace”, 7, 1878–1912. Paris: Gauthier-Villars.

Laplace P (1814). “Essai Philosophique sur les Probabilites.” English translation in Truscott,
F.W. and Emory, F.L. (2007) from (1902) as “A Philosophical Essay on Probabilities”.
ISBN 1602063281, translated from the French 6th ed. (1840).

Laud P, Ibrahim J (1995). “Predictive Model Selection.” Journal of the Royal Statistical

Society, B 57, 247–262.

Liu J, Liang F, Wong W (2000). “The Multiple-Try Method and Local Optimization in
Metropolis Sampling.” Journal of the American Statistical Association, 95, 121–134.

Metropolis N, Rosenbluth A, MN R, Teller E (1953). “Equation of State Calculations by Fast
Computing Machines.” Journal of Chemical Physics, 21, 1087–1092.

Naylor J, Smith A (1982). “Applications of a Method for the Efficient Computation of
Posterior Distributions.” Applied Statistics, 31(3), 214–225.

Neal R (2003). “Slice Sampling (with Discussion).” Annals of Statistics, 31(3), 705–767.

Nelder J, Mead R (1965). “A Simplex Method for Function Minimization.” The Computer

Journal, 7(4), 308–313.

Nocedal J, Wright S (1999). Numerical Optimization. Springer-Verlag, New York, New York.

O’Hagan A (1987). “Monte Carlo is Fundamentally Unsound.” The Statistician, 31(3), 214–
225.

O’Hagan A (1991). “Bayes-Hermite Quadrature.” Statistical Planning and Inference, 29,
245–260.

O’Hagan A (1992). “Some Bayesian Numerical Analysis.” In J Bernardo, J Berger, A David,
A Smith (eds.), Bayesian Statistics 4, pp. 356–363. Oxford University Press, England.

R Core Team (2014). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org.

Rasmussen C, Ghahramani Z (2003). “Bayesian Monte Carlo.” In S Becker, K Obermayer
(eds.), Advances in Neural Information Processing Systems. MIT Press, Cambridge, MA.

Riedmiller M (1994). “Advanced Supervised Learning in Multi-Layer Perceptrons - From
Backpropagation to Adaptive Learning Algorithms.” Computer Standards and Interfaces,
16, 265–278.

Ritter C, Tanner M (1992). “Facilitating the Gibbs Sampler: the Gibbs Stopper and the
Griddy-Gibbs Sampler.” Journal of the American Statistical Association, 87, 861–868.

Robert C (2007). The Bayesian Choice. 2nd edition. Springer, Paris, France.

Roberts G, Rosenthal J (2001). “Optimal Scaling for Various Metropolis-Hastings Algo-
rithms.” Statistical Science, 16, 351–367.

http://www.R-project.org

Statisticat 45

Roberts G, Rosenthal J (2007). “Coupling and Ergodicity of Adaptive Markov Chain Monte
Carlo Algorithms.” Journal of Applied Probability, 44, 458–475.

Salimans T, Knowles D (2013). “Fixed-Form Variational Posterior Approximation through
Stochastic Linear Regression.” Bayesian Analysis, 8(4), 837–882.

Shanno D (1970). “Conditioning of quasi-Newton Methods for Function Minimization.” Math-

ematics of Computation, 24, 647–650.

Solonen A, Ollinaho P, Laine M, Haario H, Tamminen J, Jarvinen H (2012). “Efficient MCMC
for Climate Model Parameter Estimation: Parallel Adaptive Chains and Early Rejection.”
Bayesian Analysis, 7(2), 1–22.

Spiegelhalter D, Thomas A, Best N, Lunn D (2003). WinBUGS User Manual, Version 1.4.
MRC Biostatistics Unit, Institute of Public Health and Department of Epidemiology and
Public Health, Imperial College School of Medicine, UK.

Statisticat LLC (2015). LaplacesDemon: Complete Environment for Bayesian Inference. R

package version 15.03.19, URL http://www.bayesian-inference.com/software.

Tierney L, Kadane J (1986). “Accurate Approximations for Posterior Moments and Marginal
Densities.” Journal of the American Statistical Association, 81(393), 82–86.

Tierney L, Kass R, Kadane J (1989). “Fully Exponential Laplace Approximations to Ex-
pectations and Variances of Nonpositive Functions.” Journal of the American Statistical

Association, 84(407), 710–716.

Wraith D, Kilbinger M, Benabed K, Cappé O, Cardoso J, Fort G, Prunet S, Robert C (2009).
“Estimation of Cosmological Parameters Using Adaptive Importance Sampling.” Physical

Review D, 80(2), 023507.

Zelinka I (2004). “SOMA - Self Organizing Migrating Algorithm.” In G Onwubolu, B Babu
(eds.), New Optimization Techniques in Engineering. Springer, Berlin, Germany.

Zhang Y, Ghahramani Z, Storkey A, Sutton C (2012). “Continuous Relaxations for Discrete
Hamiltonian Monte Carlo.” Advances in Neural Information Processing Systems, 25, 3203–
3211.

Affiliation:

Statisticat, LLC
Hot Springs, SD
E-mail: defunct
URL: https://web.archive.org/web/20141224051720/http://www.bayesian-inference.

com/index

http://www.bayesian-inference.com/software
https://web.archive.org/web/20141224051720/http://www.bayesian-inference.com/index
https://web.archive.org/web/20141224051720/http://www.bayesian-inference.com/index

	Installation
	Data
	Specifying a Model
	Initial Values
	Numerical Approximation
	Warnings

	Summarizing Output
	Plotting Output
	Posterior Predictive Checks
	General Suggestions
	Independence and Observability
	High Performance Computing
	Big Data
	Parallel Processing
	Iterative Quadrature
	Parallel Approximation within a Chain
	Parallel Sets of Independent Chains
	Parallel Sets of Interactive Chains
	Population Monte Carlo
	Predict Functions
	Model Specification Function
	Parallelization Details

	Details
	Approximate Bayesian Computation
	Importance Sampling
	Population Monte Carlo

	Iterative Quadrature
	Adaptive Gauss-Hermite
	Adaptive Gauss-Hermite Sparse Grid
	Componentwise Adaptive Gauss-Hermite

	Laplace Approximation
	Adaptive Gradient Ascent
	BFGS
	BHHH
	Conjugate Gradient
	Davidon-Fletcher-Powell
	Hit-And-Run
	Hooke-Jeeves
	Levenberg-Marquardt
	Limited-Memory BFGS
	Nelder-Mead
	Newton-Raphson
	Particle Swarm Optimization
	Resilient Backpropagation
	Self-Organizing Migration Algorithm
	Spectral Projected Gradient
	Stochastic Gradient Descent
	Symmetric Rank-One
	Trust Region
	Afterward

	Markov Chain Monte Carlo
	Blockwise Sampling
	Markov Chain Properties
	Sampler Selection
	Afterward

	Variational Bayes
	Salimans2

	Bayesian-Inference.com
	Conclusion

