
Package ‘MetaIntegrator’
October 12, 2022

Type Package

Title Meta-Analysis of Gene Expression Data

Version 2.1.3

Date 2020-02-25

Author Winston A. Haynes, Francesco Vallania, Aurelie Tomczak, Timothy Sweeney,
Erika Bongen, Aditya M. Rao, Purvesh Khatri

Maintainer Aditya M. Rao <adityamr@stanford.edu>

Description A pipeline for the meta-analysis of gene expression data. We have
assembled several analysis and plot functions to

perform integrated multi-cohort analysis of gene expression data (meta-
analysis). Methodology described in:

<http://biorxiv.org/content/early/2016/08/25/071514>.

License LGPL

biocViews
Imports BiocManager, rmeta, multtest, ggplot2, parallel, Rmisc,

gplots, Biobase, RMySQL, DBI, stringr, preprocessCore,
GEOquery, GEOmetadb, RSQLite, data.table, ggpubr, ROCR, zoo,
pracma, COCONUT, Metrics, manhattanly, DT, pheatmap, plyr,
boot, dplyr, reshape2, rmarkdown, AnnotationDbi, HGNChelper,
magrittr, readr, plotly, httpuv

Suggests BiocStyle, knitr, RUnit, BiocGenerics, snplist, magick

VignetteBuilder knitr

LazyData true

RoxygenNote 6.1.1

Depends R (>= 3.6)

Encoding UTF-8

URL http://biorxiv.org/content/early/2016/08/25/071514

NeedsCompilation no

Repository CRAN

Date/Publication 2020-02-26 13:00:11 UTC

1

http://biorxiv.org/content/early/2016/08/25/071514
http://biorxiv.org/content/early/2016/08/25/071514

2 R topics documented:

R topics documented:
backwardSearch . 3
calcMetaPower . 4
calculateROC . 5
calculateScore . 6
checkDataObject . 7
classFunction . 9
cleanUpPheno . 9
coconutMetaIntegrator . 10
ens_ensgID_table . 11
ens_entrez_table . 11
filterGenes . 11
forestPlot . 12
forwardSearch . 13
geneSymbolCorrection . 15
getGEOData . 16
getMostRecentFilter . 16
getSampleLevelGeneData . 17
ggForestPlot . 18
heatmapPlot . 19
immunoStatesDecov . 20
immunoStatesGenePropCorr . 20
immunoStatesMatrix . 21
immunoStatesMeta . 21
imputeSex . 22
lincsBaitCorr . 23
lincsCorrelate . 24
lincsTools . 26
manhattanPlot . 27
MetaIntegrator . 28
multiplePRCPlot . 29
multipleROCPlot . 31
pooledROCPlot . 31
prcPlot . 33
predvalPlot . 35
regressionPlot . 36
rocPlot . 37
runMetaAnalysis . 38
subsetOriginalData . 39
summarizeFilterResults . 39
summaryROCCalc . 40
summaryROCPlot . 41
tinyMetaObject . 42
ucsc_genbank_table . 42
ucsc_refseq_table . 42
violinPlot . 43

Index 45

backwardSearch 3

backwardSearch Backward Search Function

Description

Backward search is useful for reducing the size of the gene set in your filterObject. In general,
backward search identifies a small set of genes with maximum ability to distinguish cases from
controls.

backwardSearch is a method of optimizing a given set of significant genes to maximize discrimi-
natory power, as measured by area under the ROC curve (AUC). The function works by taking a
given set of genes (presumably a set that has been filtered for statistical significance), and iteratively
removing one gene at a time, until the stopping threshold is reached. At each round, the gene whose
removal contributes the greatest increase in weighted AUC is removed. Weight AUC is defined as
the sum of the AUC of each dataset, times the number of samples in that dataset. The stopping
threshold is in units of weighted AUC.

Usage

backwardSearch(metaObject, filterObject, backThresh = 0)

Arguments

metaObject The metaObject from the main metaIntegrator function.

filterObject An object matching the specifications for Filter

backThresh Stopping threshold for the backward search. Default=0.

Details

The forwardSearch and backwardSearch functions are designed to assist in selection of gene sets
optimized for discriminatory power. The selection of an optimized set is a non-convex problem,
and hence both functions will yield gene sets that are only locally optimized (ie, they are not global
optima). Both the forwardSearch and backwardSearch functions follow a greedy algorithm, either
adding (or removing) genes that contribute the most (or the least) to the overall weighted AUC of
the discovery datasets from the metaObject.

Both search functions allow a user to set a stopping threshold; the fundamental tradeoff here will
be sparsity of the returned gene set vs. overall discriminatory power. The default threshold is 0,
such the functions will return the set of genes at which no gene could be added or removed for the
forward or backward functions, respectively, and increase the weighted AUC.

Note that the weighted AUC returned during the function run is dependent on sample size; this was
done (instead of a simple mean) so that the gene set discriminates the MOST SAMPLES, rather
than being optimized for any particular dataset.

Value

A Filter object which has results from backward search

4 calcMetaPower

Author(s)

Timothy E. Sweeney

References

Sweeney et al., Science Translational Medicine, 2015

See Also

forwardSearch

Examples

#Run backward search to reduce the size of our filter results
backwardRes <- backwardSearch(tinyMetaObject, tinyMetaObject$filterResults[[1]], backThresh = -3)
#See the results
print(backwardRes$posGeneNames)
print(backwardRes$negGeneNames)

calcMetaPower Calculates the statistical power of a random effects meta-analysis

Description

Calculates the statistical power of a random effects meta-analysis based on the methods described
by Valentine et al. 2010, J of Educational and Behavioral Studies.

Usage

calcMetaPower(es, avg_n, nStudies, hg, tail=2)

Arguments

es effect size you’re trying to detect (e.g. 0.6)

avg_n the average sample size of each GROUP in each STUDY (e.g. 10)

nStudies the number of studies you put in the meta-analysis (aka Discovery cohort) (e.g.
5)

hg heterogeneity, (".33" for small, "1" for moderate, & "3" for large) (e.g. 0.33)

tail whether you have a one tail or two tail p-value

calculateROC 5

Details

Based on the paper by Valentine et al.: JC Valentine, TD Pigott, and HR Rothstein. How Many
Studies Do You Need? A Primer on Statistical Power for Meta-Analysis J of Educational and
Behavioral Statistics April 2010 Vol 35, No 2, pp 215-247

The code itself is adapted from a blog post by Dan Quintana, Researcher at Oslo University in
Biological Psychiatry On the website Towards Data Science, July 2017

https://towardsdatascience.com/how-to-calculate-statistical-power-for-your-meta-analysis-e108ee586ae8

avg_n is the average number people in each group in each study, so if you have 4 studies, and each
study compared 10 cases and 10 controls, then avg_n = 10.

NOTE: THIS CODE DOES NOT TAKE MULTIPLE HYPOTHESIS TESTING INTO ACCOUNT
IT ASSUMES P< 0.05

For clarity, avg_n is the average number people in each group in each study, so if you have 4 studies,
and each study compared 10 cases and 10 controls, then avg_n = 10.

Value

Statistic Power of the random effects meta-analysis described. Most statisticians want a statistical
power of at least 0.8, which means that there is an 80 that if there is a true effect, you will detect it.

Examples

effect size =0.7
10 samples on average in each group in each study
5 studies included in meta-analysis
low heterogeneity (0.33)
calcMetaPower(es=0.7, avg_n=10, nStudies=5, hg=0.33)

calculateROC Calculate ROC Curve Statistics

Description

Calculates receiver operating characteristic curve data, including AUC (using trapezoidal method).
Takes only a vector of labels and a vector of predictions.

Usage

calculateROC(labels, predictions, AUConly = FALSE)

Arguments

labels Vector of labels; must have exactly two unique values (ie, cases and controls).

predictions Vector of predictions (for instance, test scores) to be evaluated for ability to
separate the two classes. Must be exactly the same length as labels.

AUConly Return all ROC values, or just the AUC.

6 calculateScore

Details

The code borrows its core ROC calculations from the ROCR package. AUC is calculated by the
trapezoidal method. AUC standard errors are calculated according to Hanley’s method.

Value

Assuming AUConly=F, returns a list of values:

roc dataframe consisting of two columns, FPR and TPR, meant for plotting

auc area under the curve

auc.CI 95% confidence interval for AUC

Author(s)

Timothy E. Sweeney

References

The code borrows its core ROC calculations from the ROCR package.

See Also

calculateScore, rocPlot

Examples

expect an AUC near 0.5 with random test
labels <- c(rep(0, 500), rep(1, 500))
scores <- runif(1000)
calculateROC(labels, scores)
#With the real data, AUC should be around 0.85606
scoreResults <- calculateScore(tinyMetaObject$filterResults[[1]], tinyMetaObject$originalData[[1]])
rocRes <- calculateROC(predictions=scoreResults, labels=tinyMetaObject$originalData[[1]]$class)
print(rocRes$auc[[1]])

calculateScore Calculate a signature Z-score for a set of genes in a single dataset

Description

Given a gene set of interest, it is often desirable to summarize the expression of that gene set
using a single integrated score. The calculateScore method calculates the geometric mean of
the expression level of all positive genes, minus the geometric mean of the expression level of all
negative genes. The resulting scores are then standardized within the given dataset, such that the
output Z-score has mean=0 and std. dev=1. Such a Z-score can then be used for classification, etc.

Usage

calculateScore(filterObject, datasetObject, suppressMessages=FALSE)

checkDataObject 7

Arguments

filterObject a MetaFilter object generated with filterGenes() containing the signature
genes that will be used for Z-score calculation.

datasetObject A Dataset object for which the signature score (Z-score) will be calculated. This
vector would typically be added as $score column in datasetObject$pheno.

suppressMessages

Boolean value (TRUE/FALSE) about whether to display verbose output. De-
fault: FALSE.

Details

The Z-score is based off of the geometric mean of expression. As such, negative expression values
are not allowed. A dataset is thus always scaled by its minimum value + 1, such that the lowest
value = 1. Any individual NANs or NAs are also set to 1. If a dataset does not have any information
on a given gene, the entire gene is simply left out of the score. When run, the function will print
to command line the number of genes used, and the number passed in. Although mostly used
internally, the function has been exported in case users want to compare multiple classes, etc., using
the same Z-score as is used for producing two-class comparisons.

Value

A vector of Z-scores, of length ncols(datasetObject$expr) (and in the same order).

Author(s)

Timothy E. Sweeney, Winston A. Haynes

See Also

filterGenes

Examples

calculateScore(tinyMetaObject$filterResults[[1]], tinyMetaObject$originalData[[1]])

checkDataObject Check for errors in objects used for analysis

Description

Given an object to check, its objectType and the objectStage, the function checkDataObject looks
for errors within Meta, Dataset, MetaAnalyis, or MetaFilter objects. It returns TRUE if the object
passed error checking, FALSE otherwise, and it prints warning messages explaining failed checks.

Usage

checkDataObject(object, objectType, objectStage="")

8 checkDataObject

Arguments

object the object to be checked

objectType one type of "Meta", "Dataset", "MetaAnalysis", "MetaFilter"

objectStage if a metaObject, one of "Pre-Analysis", "Pre-Filter", or "Post-Filter". Other-
wise: ""

Details

For metaAnalysisObject and filterObject, it makes sure that each entry within the object is
1) not NULL and 2) the correct type. For datasetObjects, it makes sure that: 1) the entries are
not null (except $class, which is permitted to be NULL) 2) the entries are the correct type and 3)
the sample names (within $pheno, $expr, and $class) match 4) the probeIDs (within $expr and
$keys) match.

For metaObject, it recursively checks the Dataset, MetaAnalysis, and MetaFilter objects contained
within the metaObject.

The objectStage defines what entries a metaObject contains. Thus, "Pre-Analysis" metaObjects
only contain $originalData. "Pre-Filter" metaObjects contain $originalData, $metaAnalysis,
and $leaveOneOutAnalysis. "Post-Filter" metaObjects contain $originalData, $metaAnalysis,
$leaveOneOutAnalysis, and $filterResults.

Value

TRUE if passed error checking, FALSE otherwise Prints warning messages explaining the portion
of the error checking failed

Author(s)

Erika Bongen

Examples

check a datasetObject
checkDataObject(tinyMetaObject$originalData$Whole.Blood.Study.1, "Dataset")

check a metaObject before running the meta-analysis
checkDataObject(tinyMetaObject, "Meta", "Pre-Analysis")

check a metaObject after running the meta-analysis with runMetaAnalysis()
checkDataObject(tinyMetaObject, "Meta", "Pre-Filter")

check a metaObject after filtering the meta-analysis results with filterGenes()
checkDataObject(tinyMetaObject, "Meta", "Post-Filter")

check a metaAnalysisObject
checkDataObject(tinyMetaObject$metaAnalysis, "MetaAnalysis")

check a filterObject
checkDataObject(tinyMetaObject$filterResults[[1]], "MetaFilter")

classFunction 9

classFunction Helper function to build the class vector

Description

Helper function to build the class vector

Usage

classFunction(datasetObject, column, diseaseTerms)

Arguments

datasetObject the Dataset object to build a class vector for

column column from the $pheno slot to look for the disease terms

diseaseTerms a list of terms identifying the disease samples

Details

Based on a defined set of disease terms, builds a class vector.

Value

returns a Dataset object that has a class vector inserted

Author(s)

Winston A. Haynes

Examples

classObj <- classFunction(tinyMetaObject$originalData$Whole.Blood.Study.1,
column="group", diseaseTerms=c("Disease"))

cleanUpPheno Automatic preprocessing of $pheno dataframe

Description

Takes a Dataset object and:

Usage

cleanUpPheno(myDataset)

10 coconutMetaIntegrator

Arguments

myDataset a datasetObject that contains unprocessed $pheno

Value

myDataset a datasetObject that contains processed $pheno and original unprocessed $rawPheno

Author(s)

Erika Bongen

Examples

Not run:
Download and automatically preprocess pheno
gse53195 = getGEOData("GSE53195")
gse53195 = gse53195$originalData$GSE53195
View(gse53195$pheno) # Original $pheno
gse53195 = cleanUpPheno(gse53195)
View(gse53195$rawPheno) # Original $pheno
View(gse53195$pheno) # Preprocessed $Pheno

End(Not run)

coconutMetaIntegrator A wrapper function to run COCONUT on the MetaIntegrator objects.

Description

A wrapper function to run COCONUT on the MetaIntegrator objects.

Usage

coconutMetaIntegrator(metaObject, ...)

Arguments

metaObject a MetaIntegrator formatted Meta object.
... pass along arguments to COCONUT

Value

Results from COCONUT analysis on the MetaIntegrator object

Author(s)

Winston A. Haynes

ens_ensgID_table 11

ens_ensgID_table ENSEMBL gene id table cache

Description

Cached data to prevent cumbersome database connections.

ens_entrez_table ENSEMBL entrez table cache

Description

Cached data to prevent cumbersome database connections.

filterGenes Filter out significant genes from meta-analysis results

Description

After the Meta-Analysis results have been written to the metaObject, the results can be examined
using different gene filtering criteria. This function will use the given filterParameter to select
genes that fulfill the filter conditions. The function returns a modified version of the metaObject
with results stored in metaObject$filterResults

Usage

filterGenes(metaObject, isLeaveOneOut = TRUE, effectSizeThresh = 0,
FDRThresh = 0.05, numberStudiesThresh = 1,
heterogeneityPvalThresh = 0)

Arguments

metaObject a Meta object which must have the $originalData, $metaAnalysis populated

isLeaveOneOut Do leave-one-out analysis on discovery datasets (default: TRUE). Needs at least
2 datasets for discovery.

effectSizeThresh

a gene is selected, if the absolute value of its effect size is above this threshold
(default: 0)

FDRThresh FDR cutoff: a gene is selected, if it has a p-value less than or equal to the FDR
cutoff (default: 0.05)

numberStudiesThresh

number of studies in which a selected gene has to be significantly up/down reg-
ulated (default: 1)

12 forestPlot

heterogeneityPvalThresh

heterogeneity p-value cutoff (filter is off by default: heterogeneityPvalThresh
= 0). Genes with significant heterogeneity and, thus a significant (low) hetero-
geneity p-value, can be filtered out by using e.g.: heterogeneityPvalThresh
= 0.05 (removes all genes with heterogeneity p-value < 0.05)

Value

A modified version of the input metaObject with an additional filterObject stored within metaObject$filterResults

Note

Use checkDataObject(metaObject, "Meta", "Pre-Filter") to make sure your metaObject has
the right format for filtering after running the meta-analysis with runMetaAnalysis().

Author(s)

Francesco Vallania

See Also

checkDataObject

Examples

filter genes with default settings
#(false discovery rate cutoff of 5 percent and WITH leave-one-out analysis)
testMetaObject <- filterGenes(tinyMetaObject)
summarizeFilterResults(testMetaObject, getMostRecentFilter(testMetaObject))

filter genes with false discovery rate of 1 percent and WITHOUT leave-one-out analysis
testMetaObject <- filterGenes(testMetaObject, FDRThresh = 0.01, isLeaveOneOut = FALSE)
summarizeFilterResults(testMetaObject, getMostRecentFilter(testMetaObject))

forestPlot Compare effect sizes of a gene across all datasets in meta-analysis

Description

A forest plot can be used to compare the expression values of a gene across different datasets.
The size of the blue boxes is proportional to the number of samples in the study and light blue
lines indicate the standard error of the effect sizes for each study (95% confidence interval). The
summary effect size for all studies is indicated as yellow diamond below and the width of the
diamond indicates the summary standard error.

Usage

forestPlot(metaObject, geneName, boxColor = "blue", whiskerColor = "lightblue",
zeroLineColor = "black", summaryColor = "orange", textColor = "red")

forwardSearch 13

Arguments

metaObject a filtered metaObject, i.e. it needs to include a filterObject generated by the
function filterGenes()

geneName name of the gene for which the forest plot should be generated

boxColor desired color for the box (default: "blue")

whiskerColor desired color for the whiskers (default: "lightblue")

zeroLineColor desired color for the line indicating 0 (default: "black")

summaryColor desired color for the diamond representing the summary effect size (default:
"orange")

textColor desired color for the text of the dataset names (default: "red")

Value

Plot to compare effect sizes of a gene across datasets

Author(s)

Winston A. Haynes, Jiaying Toh

See Also

filterGenes, runMetaAnalysis, violinPlot

Examples

compare effect sizes of the Gene1 for all discovery datasets in tinyMetaObject
forestPlot(tinyMetaObject, geneName="Gene1")

forwardSearch Forward Search Function

Description

Forward search is useful for reducing the size of the gene set in your filterObject. In general, forward
search identifies a small set of genes with maximum ability to distinguish cases from controls.

forwardSearch is a method of optimizing a given set of significant genes to maximize discriminatory
power, as measured by area under the ROC curve (AUC). The function works by taking a given set
of genes (presumably a set that has been filtered for statistical significance), and iteratively adding
one gene at a time, until the stopping threshold is reached. At each round, the gene whose addition
contributes the greatest increase in weighted AUC is added. Weight AUC is defined as the sum of
the AUC of each dataset, times the number of samples in that dataset. The stopping threshold is in
units of weighted AUC.

14 forwardSearch

Usage

forwardSearch(metaObject, filterObject, yes.pos = NULL, yes.neg = NULL,
forwardThresh = 0)

Arguments

metaObject The metaObject from the main metaIntegrator function.

filterObject An object matching the specifications for Filter

yes.pos Optional- if passed, the forwardSearch will start with the genes in yes.pos and
yes.neg (instead of starting from zero genes).

yes.neg Optional- if passed, the forwardSearch will start with the genes in yes.pos and
yes.neg (instead of starting from zero genes).

forwardThresh Stopping threshold for the forward search. Default=0.

Details

The forwardSearch and backwardSearch functions are designed to assist in selection of gene sets
optimized for discriminatory power. The selection of an optimized set is a non-convex problem,
and hence both functions will yield gene sets that are only locally optimized (ie, they are not global
optima). Both the forwardSearch and backwardSearch functions follow a greedy algorithm, either
adding (or removing) genes that contribute the most (or the least) to the overall weighted AUC of
the discovery datasets from the metaObject.

Both search functions allow a user to set a stopping threshold; the fundamental tradeoff here will
be sparsity of the returned gene set vs. overall discriminatory power. The default threshold is 0,
such the functions will return the set of genes at which no gene could be added or removed for the
forward or backward functions, respectively, and increase the weighted AUC.

Note that the weighted AUC returned during the function run is dependent on sample size; this was
done (instead of a simple mean) so that the gene set discriminates the MOST SAMPLES, rather
than being optimized for any particular dataset.

Value

A Filter object which has results from forward search

Author(s)

Timothy E. Sweeney

References

Sweeney et al., Science Translational Medicine, 2015

See Also

backwardSearch

geneSymbolCorrection 15

Examples

#Run forward search to reduce the size of our filter results
forwardRes <- forwardSearch(tinyMetaObject,

tinyMetaObject$filterResults[[1]],
forwardThresh = 0)

#See the results
print(forwardRes$posGeneNames)
print(forwardRes$negGeneNames)

geneSymbolCorrection Correct/update gene symbols in a metaObject

Description

The gene symbols in gene expression data are sometimes outdated or incorrect, so this function
goes through your metaObject and updates the symbols based on the HGNChelper package, as well
as correcting some other known issues.

Usage

geneSymbolCorrection(metaObject)

Arguments

metaObject your metaObject

Value

A modified version of the input metaObject with updated gene symbols for each dataset in metaObject$originalData

Author(s)

Aditya M. Rao

Examples

tinyMetaObject = geneSymbolCorrection(tinyMetaObject)

16 getMostRecentFilter

getGEOData GEO download/processing through GEOquery

Description

Creates MetaIntegrator formatted objects by downloading and formatting data from GEO.

Usage

getGEOData(gseVector, formattedNames = gseVector, qNorm = FALSE, ...)

Arguments

gseVector a vector of GSE ids (each a string)

formattedNames a vector of formatted names corresponding to the GSE ids. Default: gseVector

qNorm perform quantile normalization of expression data within a dataset or not. De-
fault: FALSE

... will pass additional parameters to getGEO, including destdir, which specifies
download location

Details

Note: if you get the error "Error: Couldn’t find driver MySQL" then just library(RMySQL) and
then re-run getGEOData

Value

a Pre-Analysis MetaObject containing the datasets loaded in $originalData

Author(s)

Francesco Vallania, Andrew Tam, Ravi Shankar, Aditya M. Rao

getMostRecentFilter Get name of most recent filter

Description

Given a metaObject this function will look through $filterResults for the most recent filter used
and return the filter name.

Usage

getMostRecentFilter(metaObject)

getSampleLevelGeneData 17

Arguments

metaObject A meta object

Value

Name of the most recent filter

Author(s)

Francesco Vallania

Examples

getMostRecentFilter(tinyMetaObject)

getSampleLevelGeneData

Extract gene-level data from a given data object

Description

Given a datsetObject, and a set of target genes, this function will summarize probe-level data to
gene-level data for the target genes. Returns a data frame with only the genes of interest, for each
sample in the dataset.

Usage

getSampleLevelGeneData(datasetObject, geneNames)

Arguments

datasetObject a Dataset object that is used to extract sample level data (At least, must have a
$expr of probe-level data, and $keys of probe:gene mappings).

geneNames A vector of geneNames

Details

Summarizes probe-level data to gene-level data, using the mean of the probes, according to the
probe:gene mapping in the $keys item in the dataset object. This is done only for the genes in the
filter object.

Value

Returns a data frame with expression levels of only the genes of interest, for each sample in the
dataset. Mostly used internally, but has been exposed to the user to allow advanced functionality on
external datasets if desired.

18 ggForestPlot

Author(s)

Timothy E. Sweeney, Winston A. Haynes

Examples

sampleResults <- getSampleLevelGeneData(datasetObject=tinyMetaObject$originalData[[1]],
geneNames=c(tinyMetaObject$filterResults[[1]]$posGeneNames,

tinyMetaObject$filterResults[[1]]$negGeneNames))

ggForestPlot Compare effect sizes of a gene across all datasets in meta-analysis

Description

A forest plot can be used to compare the expression values of a gene across different datasets. The
area of the blue boxes is proportional to the number of samples in the study and black lines indicate
the standard error of the effect sizes for each study (by default the 95% confidence interval). The
summary effect size for all studies is indicated as an orange diamond below and the width of the
diamond indicates the summary standard error.

Usage

ggForestPlot(metaObject, genes, confLevel = 0.95, facetCols = NULL,
facetScales = "free_x", boxScales = c(6, 16))

Arguments

metaObject a filtered metaObject, i.e. it needs to include a filterObject generated by the
function filterGenes()

genes character vector containing the genes for which the forest plot should be gener-
ated

confLevel confidence level

facetCols integer that specifies how many columns are going to be used for the plot

facetScales same as ggplot’s facet_wrap: should Scales be fixed ("fixed", the default), free
("free"), or free in one dimension ("free_x", "free_y")

boxScales a numeric vector of length 2 providing scaling factors for the plot. Specifies
minimum and maximum size.

Value

ggplot2 Plot comparing effect sizes of a gene across datasets

Author(s)

Winston A. Haynes, Jiaying Toh, Michele Donato

heatmapPlot 19

See Also

filterGenes, runMetaAnalysis, violinPlot

Examples

compare effect sizes of the Gene1 for all discovery datasets in tinyMetaObject
ggForestPlot(tinyMetaObject, genes="Gene1")

heatmapPlot Generates a heatmap with effect sizes for all genes which pass a filter
in all measured diseases

Description

Generates a heatmap with effect sizes for all genes which pass a filter in all measured diseases

Usage

heatmapPlot(metaObject, filterObject, colorRange = c(-1, 1),
geneOrder = FALSE, datasetOrder = FALSE, displayPooled = TRUE,
useFormattedNames = TRUE)

Arguments

metaObject a Meta object which must have the $originalData, $metaAnalysis populated
filterObject a MetaFilter object containing the signature genes that will be used for the

heatmap
colorRange a vector of length two with the minimum and maximum values for the heatmap

colors. (default: c(-1,1))
geneOrder FALSE if the genes should be ordered by pooled effect size in this datasets.

Otherwise, the ordered names of the genes. (default: FALSE)
datasetOrder FALSE if the datasets should be ordered alphabetically. Otherwise, the ordered

names of the datasets (default: FALSE)
displayPooled TRUE if the pooled effect sizes should be displayed. (default: TRUE)
useFormattedNames

TRUE if the formatted datasetNames should be displayed. (default: TRUE)

Value

Generates a heatmap with effect sizes for all genes which pass a filter

Author(s)

Winston A. Haynes

Examples

heatmapPlot(tinyMetaObject, tinyMetaObject$filterResults[[1]])

20 immunoStatesGenePropCorr

immunoStatesDecov immunoStates deconvolution analysis on MetaIntegrator object(s)

Description

immunoStates deconvolution analysis on MetaIntegrator object(s)

Usage

immunoStatesDecov(metaObject)

Arguments

metaObject a MetaIntegrator formatted Meta object.

Value

Results from immunoStates on the MetaIntegrator object are stored in $immunoStates of the origi-
nal Meta object

Author(s)

Francesco Vallania

Examples

Not run:
Example won't work on tinyMetaObject because it requires real gene names
Download the needed datasets for processing.
sleData <- getGEOData(c("GSE11909","GSE50635", "GSE39088"))

Run immunoStates
immunoStatesEstimates <- immunoStateDecov(sleData)

End(Not run)

immunoStatesGenePropCorr

Correct gene expression using cell proportions from immunoStates

Description

Correct gene expression using cell proportions from immunoStates

Usage

immunoStatesGenePropCorr(metaObject)

immunoStatesMatrix 21

Arguments

metaObject a MetaIntegrator formatted Meta object.

Value

Results from immunoStates gene proportion correction on the MetaIntegrator object are stored in
$iScorrExp of the original Meta object

Author(s)

Francesco Vallania copyright by Francesco Vallania

Examples

Not run:
Example won't work on tinyMetaObject because it requires real gene names
Download the needed datasets for processing.
sleData <- getGEOData(c("GSE11909","GSE50635", "GSE39088"))

Run immunoStates
immunoStatesCorrected <- immunoStateGenePropCorr(sleData)

End(Not run)

immunoStatesMatrix immunoStates basis matrix

Description

immunoStates basis matrix

Usage

data("immunoStatesMatrix")

immunoStatesMeta immunoStates deconvolution analysis on MetaIntegrator object(s)

Description

Run immunoStates and load the results into $originalData for running meta-analysis on the cell
proportion estimates.

Usage

immunoStatesMeta(metaObject)

22 imputeSex

Arguments

metaObject a MetaIntegrator formatted Meta object.

Value

Results from immunoStates stored in $originalData

Author(s)

Francesco Vallania

Examples

Not run:
Example won't work on tinyMetaObject because it requires real gene names
Download the needed datasets for processing.
sleData <- getGEOData(c("GSE11909","GSE50635", "GSE39088"))

Run immunoStates
immunoStatesEstimates <- immunoStateMeta(sleData)

End(Not run)

imputeSex Imputes biological sex of each sample in a Dataset object

Description

Imputes biological sex of each sample in a Dataset object

Usage

imputeSex(myDataset, femGenes = NULL, malGenes = NULL)

Arguments

myDataset datasetObject

femGenes vector of gene symbols of genes higher expressed in females. Defaults to NULL
malGenes vector of gene symbols of genes higher expressed in males. Defaults to NULL

Details

Imputes the sex of each sample in a Dataset object by performing K means clustering. If genes
higher expressed in females (femGenes) and genes higher expressed in males (malGenes) are not
supplied, then clustering is performed on a default set of known X-escape genes (Tukiainen et
al. 2017 Nature) and Y-chromosome genes. Genes were chosen as a subset of the immune Sex
Expression Signature (iSEXS) (Bongen et al. In Prep.)

Known X-Escape genes: "XIST","RPS4X","CD40LG","ZRSR2","EFHC2","CA5B","ZFX","EIF1AX","CA5BP1","UBA1","SYAP1","DDX3X","FUNDC1","USP9X","SMC1A","NUP62CL","NAA10"

Y-Chromosome genes: "KDM5D","RPS4Y1","EIF1AY","USP9Y","DDX3Y","UTY","PRKY","ZFY","TMSB4Y"

lincsBaitCorr 23

Value

a vector indicating whether each sample is classified as "male" or "female"

Author(s)

Erika Bongen

Examples

Add sex labels to your dataset of choice
Not run:
myDatasets = getGEOData(c("GSE13485","GSE17156","GSE19442"))
myDatasets$originalData$GSE13485$pheno$sex = imputeSex(myDatasets$originalData$GSE13485)
myDatasets$originalData$GSE13485$pheno$sex

End(Not run)

lincsBaitCorr Run Shane’s LINCS bait-based correlation on MetaIntegrator

Description

LINCS Bait Corr finds perturbagens similar to a set of interest, called baits. It searches within
a defined sub space of relevant genes, usually a disease signature See below for an example that
recreates the work we did to find the antiviral drugs

Usage

lincsBaitCorr(metaObject, filterObject, dataset = "CP", baits,
just_clin = F, hit.number.hm = 20, hm_baits = T,
direction = "aggravate", bait_type = NULL)

Arguments

metaObject a Meta object which must have the $originalData populated

filterObject a MetaFilter object containing the signature genes that will be used for calculat-
ing the score

dataset The LINCS dataset to use. One of "CP" (drugs),"SH" (shRNA),"OE" (over-
expression), "LIG" (ligands),"MUT" (mutants) (default: CP)

baits vector containing names of the baits being used (relevant drugs, shRNAs, etc.).
See example.

just_clin only consider clinically relevant results (default: FALSE)

hit.number.hm How many hits to show in a heatmap (default: 20)

hm_baits whether or not to include the baits in the heatmap (default: FALSE)

direction one of "reverse", "aggravate", or "absolute" (default: "reverse") for whether you
want to reverse the signature, aggravate it, or just want the top absolute hits.

24 lincsCorrelate

bait_type The LINCS dataset where the baits come from. One of "CP" (drugs),"SH"
(shRNA),"OE" (over-expression), "LIG" (ligands),"MUT" (mutants), or NULL
(don’t specify) (default:NULL)

Value

The full list of correlations as well as the dataframe with the expression of the top hits. Also
generates the heatmap of the top hits.

Examples

Not run:
####### DATA SETUP ##########
Example won't work on tinyMetaObject because it requires real gene names
Download the needed datasets for processing.
sleData <- getGEOData(c("GSE11909","GSE50635", "GSE39088"))

#Label classes in the datasets
sleData$originalData$GSE50635 <- classFunction(sleData$originalData$GSE50635,

column = "subject type:ch1", diseaseTerms = c("Subject RBP +", "Subject RBP -"))
sleData$originalData$GSE11909_GPL96 <- classFunction(sleData$originalData$GSE11909_GPL96,

column = "Illness:ch1", diseaseTerms = c("SLE"))
sleData$originalData$GSE39088 <- classFunction(sleData$originalData$GSE39088,

column= "disease state:ch1", diseaseTerms=c("SLE"))
#Remove the GPL97 platform that was downloaded

sleData$originalData$GSE11909_GPL97 <- NULL

#Run Meta-Analysis
sleMetaAnalysis <- runMetaAnalysis(sleData, runLeaveOneOutAnalysis = F, maxCores = 1)

#Filter genes
sleMetaAnalysis <- filterGenes(sleMetaAnalysis, isLeaveOneOut = F,

effectSizeThresh = 1, FDRThresh = 0.05)
####### END DATA SETUP ##########

#Note: these are note relevant baits for SLE, just examples
lincsBaitCorr(metaObject = sleMetaAnalysis, filterObject = sleMetaAnalysis$filterResults[[1]],
dataset = "CP", baits = c("NICLOSAMIDE","TYRPHOSTINA9","DISULFIRAM","SU4312","RESERPINE"))

End(Not run)

lincsCorrelate Run Shane’s LINCS Correlate on MetaIntegrator

Description

Run Shane’s LINCS Correlate on MetaIntegrator

lincsCorrelate 25

Usage

lincsCorrelate(metaObject, filterObject, dataset = "CP",
hit.number.hm = 20, direction = "reverse", cor.method = "pearson",
drop.string = NULL, just_clin = F, show_clin = F, gene_ann = F)

Arguments

metaObject a Meta object which must have the $originalData populated

filterObject a MetaFilter object containing the signature genes that will be used for calculat-
ing the score

dataset The LINCS dataset to use. One of "CP" (drugs),"SH" (shRNA),"OE" (over-
expression), "LIG" (ligands),"MUT" (mutants) (default: CP)

hit.number.hm How many hits to show in a heatmap (default: 20)

direction one of "reverse", "aggravate", or "absolute" (default: "reverse") for whether you
want to reverse the signature, aggravate it, or just want the top absolute hits.

cor.method method to use for correlation (pearson or spearman) (default: "pearson")

drop.string lets you include a string to drop drugs that contain a regular expression. Useful
for getting rid of screening hits. One useful option is "^BRD", which gets rid of
all of the Broad screening hits that aren’t characterized. (default: NULL)

just_clin only consider clinically relevant results (default: FALSE)

show_clin Generate a list of clinically relevant results (default: FALSE)

gene_ann whether to annotate genes (default: FALSE)

Value

The full list of correlations as well as the dataframe with the expression of the top hits. Also
generates the heatmap of the top hits.

Examples

Not run:
####### DATA SETUP ##########
Example won't work on tinyMetaObject because it requires real gene names
Download the needed datasets for processing.
sleData <- getGEOData(c("GSE11909","GSE50635", "GSE39088"))

#Label classes in the datasets
sleData$originalData$GSE50635 <- classFunction(sleData$originalData$GSE50635,

column = "subject type:ch1", diseaseTerms = c("Subject RBP +", "Subject RBP -"))
sleData$originalData$GSE11909_GPL96 <- classFunction(sleData$originalData$GSE11909_GPL96,

column = "Illness:ch1", diseaseTerms = c("SLE"))
sleData$originalData$GSE39088 <- classFunction(sleData$originalData$GSE39088,

column= "disease state:ch1", diseaseTerms=c("SLE"))
#Remove the GPL97 platform that was downloaded

sleData$originalData$GSE11909_GPL97 <- NULL

#Run Meta-Analysis

26 lincsTools

sleMetaAnalysis <- runMetaAnalysis(sleData, runLeaveOneOutAnalysis = F, maxCores = 1)

#Filter genes
sleMetaAnalysis <- filterGenes(sleMetaAnalysis, isLeaveOneOut = F,

effectSizeThresh = 1, FDRThresh = 0.05)
####### END DATA SETUP ##########

lincsCorrelate(metaObject = sleMetaAnalysis, filterObject = sleMetaAnalysis$filterResults[[1]],
dataset = "CP", direction = "reverse")

End(Not run)

lincsTools Run Shane’s LINCS Tools on MetaIntegrator

Description

Run Shane’s LINCS Tools on MetaIntegrator

Usage

lincsTools(metaObject, filterObject, report.out.folder,
hit.number.hm = 10, hit.number.tbl = 10, resize = F,
reportTitle = "lincsReport")

Arguments

metaObject a Meta object which must have the $originalData populated

filterObject a MetaFilter object containing the signature genes that will be used for calculat-
ing the score

report.out.folder

Directory where a report with all figures and tables will be generated.

hit.number.hm How many hits to show in a heatmap (default:10)

hit.number.tbl How many hits to show in a displayed table (default:10)

resize Whether to resize tables in the way Purvesh prefers for figures (default: FALSE)

reportTitle file prefix for report outputs (default: "lincsReport")

Value

LINCS report for the data

manhattanPlot 27

Examples

Not run:
####### DATA SETUP ##########
Example won't work on tinyMetaObject because it requires real gene names
Download the needed datasets for processing.
sleData <- getGEOData(c("GSE11909","GSE50635", "GSE39088"))

#Label classes in the datasets
sleData$originalData$GSE50635 <- classFunction(sleData$originalData$GSE50635,

column = "subject type:ch1", diseaseTerms = c("Subject RBP +", "Subject RBP -"))
sleData$originalData$GSE11909_GPL96 <- classFunction(sleData$originalData$GSE11909_GPL96,

column = "Illness:ch1", diseaseTerms = c("SLE"))
sleData$originalData$GSE39088 <- classFunction(sleData$originalData$GSE39088,

column= "disease state:ch1", diseaseTerms=c("SLE"))
#Remove the GPL97 platform that was downloaded

sleData$originalData$GSE11909_GPL97 <- NULL

#Run Meta-Analysis
sleMetaAnalysis <- runMetaAnalysis(sleData, runLeaveOneOutAnalysis = F, maxCores = 1)

#Filter genes
sleMetaAnalysis <- filterGenes(sleMetaAnalysis, isLeaveOneOut = F,

effectSizeThresh = 1, FDRThresh = 0.05)
####### END DATA SETUP ##########

Run immunoStates
lincsTools(influenzaMeta, influenzaMeta$filterResults$FDR0.05_es0_nStudies4_looaTRUE_hetero0)

End(Not run)

manhattanPlot Generates a Manhattan plot with effect size FDR as y-axis

Description

Generates a Manhattan plot with effect size FDR as y-axis

Usage

manhattanPlot(metaObject)

Arguments

metaObject a Meta object which must have meta-analysis run

Value

Generates a Manhattan plot with effect size FDR as y-axis

28 MetaIntegrator

Author(s)

Winston A. Haynes

MetaIntegrator MetaIntegrator package for meta-analysis of gene expression data

Description

The package comprises several analysis and plot functions to perform integrated multi-cohort anal-
ysis of gene expression data (meta-analysis).

Package: metaIntegrator_public
Type: Package
Version: 1.0
Date: 2015-02-25
License: LGPL

For detailed documentation of functions and use cases read: vignette(MetaIntegrator).

Details

The advent of the gene expression microarray has allowed for a rapid increase in gene expression
studies. There is now a wealth of publicly available gene expression data available for re-analysis.
An obvious next step to increase statistical power in detecting changes in gene expression associated
with some condition is to aggregate data from multiple studies.

The MetaIntegrator package will perform a DerSimonian & Laird random-effects meta-analysis for
each gene (not probeset) between all target studies between cases and controls; it also performs
a Fischer’s sum-of-logs method on the same data, and requires that a gene is significant by both
methods. The resulting p-values are False discovery rate (FDR) corrected to q-values, and will
evaluate the hypothesis of whether each gene is differentially expressed between cases and controls
across all studies included in the analysis.

The resulting list of genes with significantly different expression between cases and controls can be
used for multiple purposes, such as (1) a new diagnostic or prognostic test for the disease of interest,
(2) a better understanding of the underlying biology, (3) identification of therapeutic targets, and
multiple other applications.

Our lab has already used these methods in a wide variety of diseases, including organ transplant
reject, lung cancer, neurodegenerative disease, and sepsis (Khatri et al., J Exp Med 2013; Chen et
al, Cancer Res 2014; Li et al., Acta Neur Comm 2014; Sweeney et al, Sci Trans Med 2015).

Author(s)

Winston A. Haynes, Francesco Vallania, Aurelie Tomczak, Timothy E. Sweeney, Erika Bongen,
Purvesh Khatri

Maintainer: Winston A. Haynes <hayneswa@stanford.edu>

multiplePRCPlot 29

References

Sweeney et al., Science Translational Medicine, 2015

Khatri P et al. J Exp. Med. 2013

See Also

vignette(MetaIntegrator)

Examples

Not run:
#Run a meta analysis.
maxCores is set to 1 for package guideline compliance.
For personal purposes, leave parameter un-set.
runMetaAnalysis(tinyMetaObject, maxCores=1)

a standard meta-analysis would follow this work flow:

make input metaObjects from individual GEO datasetObjects
metaObject = list()
metaObject$originalData <- tinyMetaObject$originalData
make test datasetObject
datasetObject1 <- tinyMetaObject$originalData$Whole.Blood.Study.1

run the meta-analysis
metaObject <- runMetaAnalysis(metaObject, maxCores=1)

select significant genes (default parameter)
metaObject <- filterGenes(metaObject)

print a meta-analysis result summary for selected genes
summarizeFilterResults(metaObject, getMostRecentFilter(metaObject))

use selected genes to generate a violin plot
violinPlot(metaObject$filterResults$FDR0.05_es0_nStudies1_looaTRUE_hetero0, datasetObject1,
labelColumn = 'group')

use selected genes to generate a ROC plot
rocPlot(metaObject$filterResults$FDR0.05_es0_nStudies1_looaTRUE_hetero0, datasetObject1)

generate a forest plot for a gene of interest with forestPlot(metaObject, geneName)
forestPlot(metaObject, "Gene27")

End(Not run)

multiplePRCPlot Generate a plot with multiple PRC curves

30 multiplePRCPlot

Description

for each dataset in the metaObject, prcPlot will return a ggplot of a Precision-Recall curve (and re-
turn the AUPRC) that describes how well a gene signature (as defined in a filterObject) classifies
groups in a dataset (in the form of a datasetObject).

Usage

multiplePRCPlot(metaObject, filterObject, title = NULL,
legend.names = NULL, curveColors = NULL, size = 22)

Arguments

metaObject a metaObject which must have metaObject$originalData populated with a
list of datasetObjects that will be used for discovery

filterObject a metaFilter object containing the signature genes that will be used for calculat-
ing the score

title title of the plot

legend.names the name listed for each dataset in the legend (default: the datasetObject$formattedName
for each dataset)

curveColors Graphical: vector of colors for the PRC curves

size use this to easily increase or decrease the size of all the text in the plot

Details

Each PRC plot evaluates the ability of a given gene set to separate two classes. As opposed to ROC
curves, PRC curves are more sensitive to class imbalances. The gene set is evaluated as a Z-score
of the difference in means between the positive genes and the negative genes (see calculateScore).

Value

Returns a ggplot PRC plot for all datasets

Author(s)

Aditya M. Rao, Andrew B. Liu

See Also

prcPlot, multipleROCPlot

Examples

multiplePRCPlot(tinyMetaObject, filterObject =
tinyMetaObject$filterResults$pValueFDR0.05_es0_nStudies1_looaTRUE_hetero0)

multipleROCPlot 31

multipleROCPlot Generate a plot with multiple ROC curves

Description

Generate a plot with multiple ROC curves

Usage

multipleROCPlot(metaObject, filterObject, title = "title", size = 16)

Arguments

metaObject a Meta object which must have the $originalData populated
filterObject a MetaFilter object containing the signature genes that will be used for calculat-

ing the score
title title of the plot
size use this to easily increase or decrease the size of all the text in the plot

Value

Generates an ROC plot for all datasets

Author(s)

Aditya M. Rao, Andrew B. Liu

Examples

multipleROCPlot(tinyMetaObject, filterObject =
tinyMetaObject$filterResults$pValueFDR0.05_es0_nStudies1_looaTRUE_hetero0)

pooledROCPlot Generate a plot with a pooled ROC curve

Description

Given a metaObject with $originalData populated, this function calculates and plots a "pooled"
ROC curve that represents the average of all the individual ROC curves. This version of the function
is for use with MetaIntegrator.

Usage

pooledROCPlot(metaObject, filterObject, points = 1000,
weighting = TRUE, title = NULL, size = 14, rounding = 3,
smoothed = FALSE, auc1.thresh = 0.99, bootReps = 1000,
minPoints = 5, numCores = 1, method = "random")

32 pooledROCPlot

Arguments

metaObject a metaObject which must have metaObject$originalData populated with a
list of datasetObjects that will be used for discovery

filterObject a metaFilter object containing the signature genes that will be used for calculat-
ing the score

points number of points to simulate for the approximated ROC curves during the linear
interpolation (default: 1000)

weighting when calculating the mean AUC, if weighting=TRUE then the weighted mean
AUC is calculated (default: TRUE)

title title of the plot

size size of the text/legend/etc (default: 14)

rounding how many digits to round the AUC and CI to (default: 3)

smoothed if TRUE, then a smoothed ROC curve is estimated using a modified version of
the Kester and Buntinx Method

auc1.thresh (if smoothed=TRUE) if the AUC of a dataset is above this threshold, then it is
treated as if the AUC were 1 (default: 0.99)

bootReps (if smoothed=TRUE) number of bootstrap iterations (default: 1000)

minPoints (if smoothed=TRUE) minimum number of points required for bootstrap to be
used (default: 5)

numCores (if smoothed=TRUE) number of CPUs to use if parallel computing is desired
(default: 1)

method (if smoothed=TRUE) method used to compute summary meta-statistics (de-
fault: "random")

Details

To make sure the input is correctly formatted, the input metaObject should be checked with
checkDataObject(metaObject, "Meta", "Pre-Analysis") before starting the meta-analysis.

By default, this average ROC curve is calculated by first using linear interpolation to create approx-
imated versions of each given ROC curve that all have the same set of FPR values. A pooled ROC
curve is then calculated by taking the weighted mean of the corresponding TPR values (weighting
corresponds to the number of samples in each dataset). This pooled curve is represented as a black
curve. In addition, the weighted standard deviation is calculated for each TPR, which is represented
by a grey area on the plot. The pooled AUC is calculated by using the trapezoid method on the
pooled ROC curve, and the 95% confidence interval of the pooled AUC is calculated using the
pooled standard error of the individual ROC curves.

If smoothed=TRUE, then a smoothed version of the pooled ROC curve will be plotted instead, with
the surrounding gray area representing the weighted standard deviation of the pooled ROC curve.
The statistics for this smoothed curve are based on the Kester and Buntinx Method, from (Kester
and Buntinx, Med Decis Making, 2000). Methods have been added by Tim Sweeney (2015) for
better estimates in cases with low numbers of tpr/fpr values. Methods have also been added by
Aditya Rao (2018) to predict the curve’s alpha parameter for a given beta parameter and AUC, as
well as to calculate the weighted standard deviation of the given ROC curves.

prcPlot 33

Value

Generates a plot with each individual ROC curve as well as the pooled ROC curve

Author(s)

Aditya M. Rao (with help from Hayley Warsinske and Francesco Vallania, original idea from
Madeleine Scott, and some code adapted from Tim Sweeney)

References

Kester and Buntinx, Med Decis Making, 2000

See Also

summaryROCPlot

Examples

pooledROCPlot(tinyMetaObject, filterObject =
tinyMetaObject$filterResults$pValueFDR0.05_es0_nStudies1_looaTRUE_hetero0)

prcPlot Plot the PRC Curve for a Dataset

Description

prcPlot will plot a Precision-Recall curve (and return the AUPRC) that describes how well a gene
signature (as defined in a filterObject) classifies groups in a dataset (in the form of a datasetObject).

Usage

prcPlot(filterObject, datasetObject, title = datasetObject$formattedName,
subtitle = NULL, textSize = NULL, rounding = 3,
curveColors = "red", legend = TRUE, PRC.lty = 1, PRC.lwd = 1,
backgroundColor = "gray93", grid.marks = 0.1, grid.color = "white",
grid.lty = 1, grid.lwd = 0.9, legend.lty = 0, cex.main = 1,
cex.subtitle = 0.9)

Arguments

filterObject a metaFilter object containing the signature genes that will be used for calculat-
ing the score

datasetObject a Dataset object for group comparison in the PRC plot. (At least, must have a
$expr of probe-level data, $keys of probe:gene mappings, and $class of two-
class labels.)

title title of the plot (default: datasetObject$formattedName)

subtitle subtitle of the figure

34 prcPlot

textSize use this to easily increase or decrease the size of all the text in the plot

rounding how many digits to round the AUPRC and CI to (default: 3)

curveColors Graphical: the color for the PRC curves (default: "red")

legend Graphical: if TRUE, a legend will be included

PRC.lty Graphical: PRC curve line type

PRC.lwd Graphical: PRC curve line width

backgroundColor

Graphical: background color of the plot

grid.marks Graphical: increment between grid lines

grid.color Graphical: grid line color

grid.lty Graphical: grid line type

grid.lwd Graphical: grid line width

legend.lty Graphical: legend style (0 is no box, 1 is boxed legend)

cex.main Graphical: title size

cex.subtitle Graphical: subtitle size

Details

Evaluates the ability of a given gene set to separate two classes. As opposed to ROC curves, PRC
curves are more sensitive to class imbalances. The gene set is evaluated as a Z-score of the differ-
ence in means between the positive genes and the negative genes (see calculateScore).

Value

Returns a standard PRC plot, plus AUPRC with 95% CI (calculated with the trapezoid method).

Author(s)

Aditya M. Rao, Jiaying Toh

See Also

multiplePRCPlot, rocPlot

Examples

prcPlot(tinyMetaObject$filterResults[[1]], tinyMetaObject$originalData[[1]])

predvalPlot 35

predvalPlot Plot positive and negative predictive values across different preva-
lences

Description

Positive and negative predictive values (PPV and NPV) are two diagnostic statistics that change de-
pending on the prevalence, so if you don’t have a discrete prevalence to work with this function can
create a plot that shows the positive and negative predictive values across all possible prevalences
(as long as you have already calculated the sensitivity and specificity).

Usage

predvalPlot(sens, spec, nsteps=1000, title=NULL, rounding=2)

Arguments

sens the sensitivity of the prediction

spec the specificity of the prediction

nsteps the number of steps between prevalence 0% and 100% (i.e. the number of steps
in the X-axis) (default: 1000)

title title of the plot (if left blank, it will just indicate the input sensitivity and speci-
ficity)

rounding number of significant digits for displaying the sensitivity, specificity, PPV, and
NPV (default: 2)

Value

Plotly plot of predictive values vs. prevalence

Author(s)

Lara Murphy, Aditya M. Rao

Examples

predvalPlot(sens = 0.9, spec = 0.8)

36 regressionPlot

regressionPlot Generate a plot which draws a regression line between the Meta Score
and a continuous variable phenotype.

Description

Generate a plot which draws a regression line between the Meta Score and a continuous variable
phenotype.

Usage

regressionPlot(filterObject, datasetObject,
continuousVariableColumn = "continuous",
formattedVariableName = "Continuous Variable", corMethod = "pearson",
correlationCorner = "bottomRight")

Arguments

filterObject a MetaFilter object containing the signature genes that will be used for the z-
score calculation

datasetObject a Dataset object (typically independent validation dataset) for comparison in a
regression plot

continuousVariableColumn

the label of the column in $pheno that specifies the continuous variable to com-
pare (default: ’continuousVariableColumn’)

formattedVariableName

label which will be used on the x-axis on the plot

corMethod method which will be passed to cor.test
correlationCorner

one of topLeft, topRight, bottomLeft, bottomRight (default: bottomRight)

Value

Returns a regression plot as ggplot2 plot object

Author(s)

Winston A. Haynes

Examples

regressionPlot(tinyMetaObject$filterResults[[1]],
tinyMetaObject$originalData$Whole.Blood.Study.1,
continuousVariableColumn="age",
formattedVariableName="Age")

rocPlot 37

rocPlot Plot ROC Curve for a Dataset

Description

rocPlot will plot an ROC curve (and return the AUC) that describes how well a gene signature (as
defined in a filterObject) classifies groups in a dataset (in the form of a datasetObject).

Usage

rocPlot(filterObject, datasetObject, title = datasetObject$formattedName)

Arguments

filterObject a MetaFilter object containing the signature genes that will be used for calcula-
tion of the ROC plot.

datasetObject a Dataset object for group comparison in the ROC plot. (At least, must have a
$expr of probe-level data, $keys of probe:gene mappings, and $class of two-
class labels.)

title Title for the ROC plot.

Details

Evaluates the ability of a given gene set to separate two classes. The gene set is evaluated as a
Z-score of the difference in means between the positive genes and the negative genes (see calcu-
lateScore). Returns a standard ROC plot, plus AUC with 95% CI (calculated according to Hanley
method).

Value

Returns a ggplot2 plot object

Author(s)

Timothy E. Sweeney

See Also

calculateScore, calculateROC

Examples

rocPlot(tinyMetaObject$filterResults[[1]], tinyMetaObject$originalData[[1]])

38 runMetaAnalysis

runMetaAnalysis Run the meta-analysis algorithm

Description

Given a metaObject with $originalData populated this function will run the meta-analysis algo-
rithm. It returns a modified version of the metaObject with the meta-analysis results written into
metaObject$metaAnalysis and the results of the leave-one-out analysis into metaObject$leaveOneOutAnalysis

Usage

runMetaAnalysis(metaObject, runLeaveOneOutAnalysis= TRUE, maxCores=Inf)

Arguments

metaObject a metaObject which must have metaObject$originalData populated with a
list of datasetObjects that will be used for discovery

runLeaveOneOutAnalysis

TRUE to run leave one out analysis, FALSE otherwise (default: TRUE)

maxCores maximum number of cores to use during analysis (default: Inf)

Details

To make sure the input is correctly formatted, the input metaObject should be checked with
checkDataObject(metaObject, "Meta", "Pre-Analysis") before starting the meta-analysis.

Value

modified version of the metaObject with $metaAnalysis and $leaveOneOutAnalysis populated

Author(s)

Francesco Vallania, Aditya M. Rao

See Also

checkDataObject

Examples

#Run a meta analysis.
maxCores is set to 1 for package guideline compliance.
For personal purposes, leave parameter un-set.
runMetaAnalysis(tinyMetaObject, maxCores=1)

subsetOriginalData 39

subsetOriginalData Subset samples for a particular dataset

Description

Subset samples for a particular dataset

Usage

subsetOriginalData(datasetObject, keepMe)

Arguments

datasetObject the Dataset object to subset

keepMe either a binary vector for whether each sample should be in the subset or a list
of names of samples to be in the subset

Details

Subsets all relevant slots within the Dataset object to include only the desired samples.

Value

returns a Dataset object that has been subsetted to the desired samples

Author(s)

Winston A. Haynes

Examples

subsetObject <- subsetOriginalData(tinyMetaObject$originalData$Whole.Blood.Study.1,
keepMe= c("Sample 1", "Sample 13", "Sample 43"))

summarizeFilterResults

Summarize the filtered analysis results

Description

Given a metaObject and the name of the filterObject of interest, this function will print a sum-
mary style message about genes that passed the filtering step using the function filterGenes()
and return a dataFrame that contains the $pooledResults information for each gene which passed
the filter.

40 summaryROCCalc

Usage

summarizeFilterResults(metaObject, metaFilterLabel)

Arguments

metaObject the metaObject that contains the filterObject of interest
metaFilterLabel

the name of a filterObject generated with the function filterGenes()

Value

Data frame, which contains $pooledResults information for each gene which passed the filter

Author(s)

Francesco Vallania

See Also

filterGenes

Examples

filter genes with default settings
false discovery rate cutoff of 5 percent and WITH leave-one-out analysis
testMetaObject <- filterGenes(tinyMetaObject)
summarizeFilterResults(testMetaObject, getMostRecentFilter(testMetaObject))

summaryROCCalc Calculate the summaryROC statistics

Description

Calculate the summaryROC statistics

Usage

summaryROCCalc(metaObject, filterObject, bootstrapReps = 500)

Arguments

metaObject a Meta object which must have the $originalData populated

filterObject a MetaFilter object containing the signature genes that will be used for calculat-
ing the score

bootstrapReps number of bootstrap simulations to run for confidence interval on summary ROC

summaryROCPlot 41

Value

Summary AUC statistics

Author(s)

Timothy E. Sweeney

Examples

Not run:
summaryROCCalc(tinyMetaObject, filterObject =

tinyMetaObject$filterResults$pValueFDR0.05_es0_nStudies1_looaTRUE_hetero0)

End(Not run)

summaryROCPlot Generate a plot with a summary ROC curve

Description

Generate a plot with a summary ROC curve

Usage

summaryROCPlot(metaObject, filterObject, bootstrapReps = 500,
orderByAUC = TRUE, alphaBetaPlots = TRUE)

Arguments

metaObject a Meta object which must have the $originalData populated

filterObject a MetaFilter object containing the signature genes that will be used for calculat-
ing the score

bootstrapReps number of bootstrap simulations to run for confidence interval on summary ROC

orderByAUC if TRUE, then order legend by summary AUC. Otherwise, use default ordering.

alphaBetaPlots if TRUE, then draw forest plots of alpha and beta. If false, suppress plotting.

Value

Generates a ROC plot for all datasets

Author(s)

Timothy E. Sweeney

42 ucsc_refseq_table

Examples

Not run:
summaryROCPlot(tinyMetaObject,filterObject =

tinyMetaObject$filterResults$pValueFDR0.05_es0_nStudies1_looaTRUE_hetero0)

End(Not run)

tinyMetaObject A Tiny MetaObject

Description

This is a minimal working example of a MetaObject. This object is primarily used for example
function calls and visualizations

Author(s)

Winston A. Haynes

ucsc_genbank_table UCSC genbank table cache

Description

Cached data to prevent cumbersome database connections.

ucsc_refseq_table UCSC refseq table cache

Description

Cached data to prevent cumbersome database connections.

violinPlot 43

violinPlot Compare groups within a single dataset in a violin plot

Description

Given a filterObject and a datasetObject this function will use the selected genes of the
filterObject to calculate and compare the z-scores of the groups (e.g. cases vs. controls) from
the datasetObject by generating a violin plot. A violin plot is similar to a box plot, except the
width of each violin is proportional to the density of points. violinPlot() is commonly used to
validate a gene signature in an independent dataset.

Usage

violinPlot(filterObject, datasetObject, labelColumn = "label",
comparisonMethod = "wilcox.test", pairwiseComparisons = TRUE,
autoLineBreak = TRUE)

Arguments

filterObject a MetaFilter object containing the signature genes that will be used for the z-
score calculation

datasetObject a Dataset object (typically independent validation dataset) for group comparison
in a violin plot

labelColumn the label of the column in $pheno that specifies the groups to compare, typically
case or control (default: ’label’)

comparisonMethod

statistical test that will be used (default="wilcox.test"). Other options include
"t.test".

pairwiseComparisons

if TRUE, perform pairwise statistical comparisons against the first factor level.
If FALSE, perform global statistical comparisons (default: TRUE).

autoLineBreak if TRUE, insert line breaks into labels on plots. If FALSE, don’t insert line
breaks (default: TRUE)

Details

The z-score is based off of the geometric mean of expression. As such, negative expression values
are not allowed. A dataset is thus always scaled by its minimum value + 1, such that the lowest
value = 1. Any individual NANs or NAs are also set to 1. If a dataset does not have any information
on a given gene, the entire gene is simply left out of the score.

Value

Returns a violin plot as ggplot2 plot object

44 violinPlot

Author(s)

Winston A. Haynes

See Also

filterGenes, runMetaAnalysis

Examples

violinPlot(tinyMetaObject$filterResults$pValueFDR0.05_es0_nStudies1_looaTRUE_hetero0,
tinyMetaObject$originalData$Whole.Blood.Study.1,

labelColumn="group")

Index

∗ MetaIntegrator
MetaIntegrator, 28

∗ attribute
getMostRecentFilter, 16

∗ classify
calculateROC, 5

∗ classif
filterGenes, 11

∗ debugging
checkDataObject, 7

∗ graphs
forestPlot, 12
ggForestPlot, 18
rocPlot, 37
violinPlot, 43

∗ graph
regressionPlot, 36

∗ hplot
forestPlot, 12
ggForestPlot, 18
violinPlot, 43

∗ methods
filterGenes, 11
runMetaAnalysis, 38
summarizeFilterResults, 39

∗ optimize
backwardSearch, 3
forwardSearch, 13

∗ utilities
checkDataObject, 7
getMostRecentFilter, 16
summarizeFilterResults, 39

backwardSearch, 3, 14

calcMetaPower, 4
calculateROC, 5, 37
calculateScore, 6, 6, 37
checkDataObject, 7, 12, 38
classFunction, 9

cleanUpPheno, 9
coconutMetaIntegrator, 10

ens_ensgID_table, 11
ens_entrez_table, 11

filterGenes, 7, 11, 13, 19, 40, 44
forestPlot, 12
forwardSearch, 4, 13

geneSymbolCorrection, 15
getGEOData, 16
getMostRecentFilter, 16
getSampleLevelGeneData, 17
ggForestPlot, 18

heatmapPlot, 19

immunoStatesDecov, 20
immunoStatesGenePropCorr, 20
immunoStatesMatrix, 21
immunoStatesMeta, 21
imputeSex, 22

lincsBaitCorr, 23
lincsCorrelate, 24
lincsTools, 26

manhattanPlot, 27
MetaIntegrator, 28
multiplePRCPlot, 29, 34
multipleROCPlot, 30, 31

pooledROCPlot, 31
prcPlot, 30, 33
predvalPlot, 35

regressionPlot, 36
rocPlot, 6, 34, 37
runMetaAnalysis, 13, 19, 38, 44

subsetOriginalData, 39

45

46 INDEX

summarizeFilterResults, 39
summaryROCCalc, 40
summaryROCPlot, 33, 41

tinyMetaObject, 42

ucsc_genbank_table, 42
ucsc_refseq_table, 42

violinPlot, 13, 19, 43

	backwardSearch
	calcMetaPower
	calculateROC
	calculateScore
	checkDataObject
	classFunction
	cleanUpPheno
	coconutMetaIntegrator
	ens_ensgID_table
	ens_entrez_table
	filterGenes
	forestPlot
	forwardSearch
	geneSymbolCorrection
	getGEOData
	getMostRecentFilter
	getSampleLevelGeneData
	ggForestPlot
	heatmapPlot
	immunoStatesDecov
	immunoStatesGenePropCorr
	immunoStatesMatrix
	immunoStatesMeta
	imputeSex
	lincsBaitCorr
	lincsCorrelate
	lincsTools
	manhattanPlot
	MetaIntegrator
	multiplePRCPlot
	multipleROCPlot
	pooledROCPlot
	prcPlot
	predvalPlot
	regressionPlot
	rocPlot
	runMetaAnalysis
	subsetOriginalData
	summarizeFilterResults
	summaryROCCalc
	summaryROCPlot
	tinyMetaObject
	ucsc_genbank_table
	ucsc_refseq_table
	violinPlot
	Index

