
Package OceanView - a short manual.

Karline Soetaert

NIOZ-Yerseke
The Netherlands

Abstract

The R (R Development Core Team 2013) package OceanView (Soetaert 2021a) is
a compagnon to the packages plot3D (Soetaert 2021b) and plot3Drgl (Soetaert 2021c).
These packages contain functions for visualising multidimensional data in base R graphics
(plot3D) or in openGL (plot3Drgl).

OceanView has functions specifically designed for visualising complex oceanographic
data.

In this vignette it is shown how to visualise flows, how to create movie sequences for
depicting particle tracks in 2-D and 3-D, how to increase the resolution of multidimensional
data or how to quickly produce plots of all columns in a data-frame or matrix.

Other examples of functions to visualise multi-dimensional data can be found in the
help files or vignettes of the packages plot3D and plot3Drgl.

In another vignette in OceanView, (vignette("Northsea")) OceanView is used for
plotting the output of a 3-D hydrodynamic model.

A graphical gallery using one of plot3D, plot3Drgl or OceanView is in http://www.

rforscience.com/rpackages/visualisation/oceanview/.

Keywords: marine science, 3-D data, 4-D data, quiver, image2D, R .

1. Converting large data sets from long to cross-table format

This function was made to convert data from monitoring campaigns into a format suitable
for creating images. Typically monitoring campaigns extend over a couple of sampling days,
but when making images, these different sampling days should be treated as one campaign.

The long-term monitoring data from the NIOZ (Soetaert, Middelburg, Heip, Meire, Damme,
and Maris 2006) for instance, in dataset WSnioz, contain a selection of the water quality data
from the monthly sampling in the Westerschelde.

head (WSnioz, n = 2)

SamplingDateTime SamplingDateTimeREAL Station Latitude Longitude

3798 1996-02-12 11:19:00 35107.47 1 51.41265 3.56628

3808 1996-02-12 11:19:00 35107.47 1 51.41265 3.56628

VariableName VariableDesc VariableUnits

3798 SPMCHLA Chlorophyll-a in SPM (HPLC-FLU/DAD) microg Chla/l

3808 WCSALIN Salinity measured with CTD PSU

DataValue

http://www.rforscience.com/rpackages/visualisation/oceanview/
http://www.rforscience.com/rpackages/visualisation/oceanview/

2 Package OceanView - a short manual.

Figure 1: An image of spatio-temporal data

3798 2.30216

3808 31.70000

The data are in the format as extracted from the NIOZ database. To visualise its contents,
it is easiest to put these data in cross-table format; here it is assumed that samplings that
took place within 5 consecutive days belong to the same campaign (df.row).

NO3 <- db2cross(WSnioz, row = "SamplingDateTimeREAL",

col = "Station", val = "DataValue",

subset = (VariableName == "WNO3"), df.row = 5)

To create the image plot, the resolution is increased (resfac):

image2D(NO3, resfac = 3)

Karline Soetaert 3

2. Quickly analysing and plotting several columns from a matrix

Oceanographers often have their data in a spreadsheet, where columns are different variables.
The data set WSnioz.table contains the long-term monitoring data from the NIOZ in such
a tabular format.

Function Msummary and Mdescribe create suitable summaries of the columns of tabular data
sets.

head(WSnioz.table, n = 2)

SamplingDateTimeREAL Station SPMCHLA WCSALIN WCTEMP WNH4

[1,] 34822.02 11 4.163144 4.3 13.83 61.07143

[2,] 34822.47 9 10.078139 9.6 12.88 28.21429

WNO2 WNO3 WO2 WPO4 WSi

[1,] 14.28571 0.42857143 NA 4.516129 181.1032

[2,] 8.50000 0.07142857 NA 3.709677 122.2064

Msummary(WSnioz.table)

variable factor_or_char Min. X1st.Qu. Median

1 SamplingDateTimeREAL FALSE 34822.02 35878.461806 36757.497569

2 Station FALSE 1.00 5.000000 9.000000

3 SPMCHLA FALSE 0.00 2.544327 4.938900

4 WCSALIN FALSE 0.05 2.600000 13.100000

5 WCTEMP FALSE 0.88 8.097500 12.566440

6 WNH4 FALSE 0.00 3.297500 6.975000

7 WNO2 FALSE 0.00 2.050000 3.870000

8 WNO3 FALSE 0.00 132.207500 230.530000

9 WO2 FALSE 0.28 4.422500 7.361092

10 WPO4 FALSE 0.30 3.610000 4.785000

11 WSi FALSE 0.00 36.377500 86.030000

Mean X3rd.Qu. Max.

1 36690.189719 37544.468594 38330.5729

2 9.139367 13.000000 17.0000

3 13.366919 12.215364 264.7097

4 13.266638 22.058010 33.1000

5 12.863026 17.720875 25.0500

6 47.090164 56.907500 798.6400

7 6.940766 8.385000 92.5500

8 225.648381 315.415000 600.9100

9 6.605326 9.148576 13.3800

10 5.208439 6.385000 25.0100

11 102.494002 165.737500 346.5200

Function Mplot is a quick way to visualise the contents of tabular data, while Msplit splits
the data according to a factor. 1

1Of course, there are many other functions in other packages that do similar things

4 Package OceanView - a short manual.

Figure 2: A quick plot of a (selection) of a tabular data set

As a first example, plot the contents of the tabular NIOZ monitoring data for station 1 and
for two variables.

Mplot(WSnioz.table, subset = Station == 1,

select = c("WNO3", "WNO2"), xlab = "Daynr")

We now plot the contents of the tabular NIOZ monitoring data for the stations 1 and 13. We
first split the data set according to the station number, selecting these two stations (Msplit),
then plot the timeseries for four variables.

Mplot(Msplit(WSnioz.table, "Station", subset = Station %in% c(1, 13)) ,

select = c("WNO3", "WNO2", "WNH4", "WO2"), lty = 1, lwd = 2,

xlab = "Daynr", log = c("y", "y", "y", ""),

legend = list(x = "left", title = "Station"))

Karline Soetaert 5

Figure 3: A quick plot of a (selection) of two data sets

6 Package OceanView - a short manual.

3. Resolution and mapping to sigma coordinates

Sometimes, we may want to have data in higher or lower resolution. Package OceanView con-
tains a quick-and-dirty, linear, interpolation method to increase (or decrease) the resolution.
As it is written in R-code, it is not very fast.

Here we convert the dataset volcano, to very low resolution. (decreasing resolution is handy
if you want to quickly visualise a very large dataset).

changeres(var = volcano, x = 1:nrow(volcano), y = 1:ncol(volcano), resfac = 0.1)

$var

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 100 101 101 108 108 107 103

[2,] 109 112 141 162 149 119 106

[3,] 122 140 179 184 187 149 106

[4,] 113 136 165 163 173 153 110

[5,] 110 125 154 161 138 120 107

[6,] 113 129 154 150 139 111 104

[7,] 115 131 150 134 126 103 100

[8,] 102 109 110 116 100 96 96

[9,] 97 100 100 100 96 94 94

$x

[1] 1 11 22 33 44 54 65 76 87

$y

[1] 1 11 21 31 41 51 61

The function remap is more flexible:

remap(var = volcano, x = 1:nrow(volcano), y = 1:ncol(volcano),

xto = c(1, 20, 40), yto = c(2, 5))

$var

[,1] [,2]

[1,] 100 101

[2,] 124 129

[3,] 108 113

$x

[1] 1 20 40

$y

[1] 2 5

The function extract interpolates to pairs of points

Karline Soetaert 7

extract(volcano, x = 1:nrow(volcano), y = 1:ncol(volcano),

xyto = cbind(c(2, 5), c(5, 10)))

$var

[1] 102 103

$xy

x y

[1,] 2 5

[2,] 5 10

The mapping to sigma-coordinates is exemplified in the vignette ("Northsea").

8 Package OceanView - a short manual.

4. Plotting two-dimensional velocity data

Three functions were created to plot 2D velocity data: quiver2D, flowpath and vectorplot.

par(mfrow = c(2, 2))

x <- seq(-1, 1, by = 0.2)

y <- seq(-1, 1, by = 0.2)

dx <- outer(x, y , function(x, y) -y)

dy <- outer(x, y , function(x, y) x)

velocity plot, different color for up/downward pointing arrows

F <- quiver2D(u = dx, v = dy, x = x, y = y, colvar = dx > 0,

col = c("red", "blue"), colkey = FALSE, arr.max = 0.3, arr.min = 0.1)

legend("topright", bg = "white",

legend = paste("max = ", format(F$speed.max, digits = 2)))

names(F)

[1] "x0" "y0" "x1" "y1" "col" "length"

[7] "speed.max"

quiver2D(u = dx, v = dy, x = x, y = y, colvar = sqrt(dx^2 + dy^2),

arr.max = 0.1, arr.min = 0.1, clab = "speed")

flow paths

flowpath(u = dx, v = dy, x = x, y = y, numarr = 3,

startx = 0.1, starty = 0.1)

flowpath(u = dx, v = dy, x = x, y = y, col = "red", numarr = 2,

startx = c(0.9, -0.9), starty = c(0.0, 0.0), add = TRUE)

vectorplots

u <- rnorm(10)

v <- rnorm(10)

x <- y <- 1 : 10

vectorplot(u = u, v = v, x = x, y = y, clim = c(0, 3),

colvar = sqrt(u^2 + v^2), arr = TRUE)

points(x, y)

Karline Soetaert 9

[1] "x0" "y0" "x1" "y1" "col" "length"

[7] "speed.max"

Figure 4: Several ways to visualise flows

10 Package OceanView - a short manual.

5. Plotting temporally variable particle distributions

OceanView incorporates a number of functions to display the result of a particle transport
(Lagrangian) model in two and three dimensions. It also comprises a data set with output
from the Lagrangian Transport model (Ltrans) from Chesapeake Bay (Schlag and North
2012).

5.1. A quick view of particle distributions

Ltrans is an array of dimension (608 x 4 x 108) that contains for each of the 608 particles
tracked, and at each of the 108 output steps the longitude, latitude, water depth and source
region; the latter takes the values of 1 or 2.

dim(Ltrans)

[1] 608 4 108

We produce a quick view of the particle geographical position and water depth of all particles,
on a bathymetric map of the area. We start by plotting the bathymetry, using grey scales.
The color key is not drawn, but space for it is reserved (plot = FALSE). Then we add the
particle positions using depth as the color variable.

image2D(Chesapeake$lon, Chesapeake$lat, z = Chesapeake$depth,

col = grey(seq(1, 0., length.out = 100)), main = "Ltrans",

colkey = list(plot = FALSE))

scatter2D(x = Ltrans[,1,], y = Ltrans[,2,], colvar = Ltrans[,3,],

pch = ".", cex = 2, add = TRUE, clab = "depth, m")

5.2. Particle distributions in 2D

We can plot the temporal evolution of the particles in more detail, either using the traditional
device (slow), or using open GL (fast).

We start by plotting the geographical position at selected time points, ignoring the depth
(2-D output) using traditional graphics; the colors green and orange represent the source
area of the particles. Note that we specify the bathymetric map of the area through the image

argument of the function.

lon <- Chesapeake$lon

lat <- Chesapeake$lat

depth <- Chesapeake$depth

par(mfrow = c(2, 2))

for (i in seq(10, 106, length.out = 4))

tracers2D(Ltrans[, 1, i], Ltrans[, 2, i],

colvar = Ltrans[,4, i], col = c("green", "orange"),

pch = 16, cex = 0.5,

image = list(x = lon, y = lat, z = depth), colkey = FALSE,

main = paste("time ", i))

Karline Soetaert 11

Figure 5: Distribution of particles in Chesapeake (all time instances)

In open GL, it works slightly different: first we create a 2D bathymetric map, on which we
add the tracer positions. The output of this code is not shown, but the particles move very
fast (on my computer), so you will probably want to slow it down. When using openGL, you
can zoom in into specific regions of the plot, or cut slices (cutrgl).

image2Drgl (x = lon, y = lat, z = depth)

for (i in seq(1, 108, by = 3)) {

tracers2Drgl(Ltrans[, 1, i], Ltrans[, 2, i],

colvar = Ltrans[,4, i], col = c("green", "orange"))

remove # to slow down

Sys.sleep(0.1)

}

5.3. Particle distributions in 3D

In a similar way, we can plot the temporal evolution of the 3-D positions (including depth)
of particles using traditional or open GL graphics.

We start by plotting the geographical position and the depth, i.e. 3-D output and using
traditional graphics. Note that we specify the drawing of the bathymetry of the area through
the surf argument of the function (see e.g. ?persp3D for its arguments).

lon <- Chesapeake$lon

lat <- Chesapeake$lat

12 Package OceanView - a short manual.

Figure 6: 2D distribution of particles in Chesapeake at selected time points using traditional
graphics

Karline Soetaert 13

depth <- Chesapeake$depth

par(mfrow = c(1, 2), mar = c(0, 0, 2, 0))

for (i in c(20, 100))

tracers3D(Ltrans[, 1, i], Ltrans[, 2, i], Ltrans[, 3, i],

colvar = Ltrans[,4, i], col = c("green", "orange"),

pch = 16, cex = 0.5,

surf = list(x = lon, y = lat, z = -depth, scale = FALSE,

expand = 0.02, colkey = FALSE, shade = 0.3, colvar = depth),

colkey = FALSE, main = paste("time ", i))

Figure 7: 3D distribution of particles in Chesapeake at two time points, traditional graphics

To do the same in open GL, we can use function tracers3Drgl (see help file of Ltrans), or
use function moviepoints3D; the former requires to loop over the time points that we want
to display, the latter requires input of the times, which should have the same length as x, y,
z.

persp3Drgl(x = lon, y = lat, z = -depth, colvar = depth, scale = FALSE,

expand = 0.02, main = "particle distribution",

lighting = TRUE, smooth = TRUE)

nt <- dim(Ltrans)[3] # number of time points

np <- dim(Ltrans)[1] # number of particles

14 Package OceanView - a short manual.

times <- rep(1:nt, each = np)

moviepoints3D(x = Ltrans[, 1,], y = Ltrans[, 2,], z = Ltrans[, 3,],

t = times, colvar = Ltrans[,4,], col = c("green", "orange"),

cex = 5, ask = TRUE)

}

The figure shows only one time point, after I have rotated the bathymetry a bit:

Figure 8: Screen capture of the 3D distribution of particles in Chesapeake in openGL

Note: a comparable function movieslice3D creates a sequence of 2-D slices along an axis of
a full 3-D data set. See example(movieslice3D).

6. Finally

This vignette was made with Sweave (Leisch 2002).

Karline Soetaert 15

References

Leisch F (2002). “Sweave: Dynamic Generation of Statistical Reports Using Literate Data
Analysis.” In W Härdle, B Rönz (eds.), Compstat 2002 - Proceedings in Computational
Statistics, pp. 575–580. Physica Verlag, Heidelberg. ISBN 3-7908-1517-9, URL http://

www.stat.uni-muenchen.de/~leisch/Sweave.

R Development Core Team (2013). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.R-project.org.

Schlag ZR, North EW (2012). Lagrangian TRANSport model (LTRANS v.2) Users Guide.
Cambridge, MD.

Soetaert K (2021a). OceanView: Visualisation of Oceanographic Data and Model Output. R
package version 1.0.6, URL http://CRAN.R-project.org/package=OceanView.

Soetaert K (2021b). plot3D: Plotting multi-dimensional data. R package version 1.4, URL
http://CRAN.R-project.org/package=plot3D.

Soetaert K (2021c). plot3Drgl: Plotting multi-dimensional data - using rgl. R package version
1.0.2, URL http://CRAN.R-project.org/package=plot3Drgl.

Soetaert K, Middelburg J, Heip C, Meire P, Damme SV, Maris T (2006). “Long-term change
in dissolved inorganic nutrients in the heterotrophic Scheldt estuary (Belgium, the Nether-
lands).” Limnology and Oceanography, 51. DOI: 10.4319/lo.2006.51.1_part_2.0409, URL
http://aslo.org/lo/toc/vol_51/issue_1_part_2/0409.pdf.

Affiliation:

Karline Soetaert
Royal Netherlands Institute of Sea Research (NIOZ)
4401 NT Yerseke, Netherlands
E-mail: karline.soetaert@nioz.nl

URL: http://www.nioz.nl/staff-detail?id=784400

http://www.stat.uni-muenchen.de/~leisch/Sweave
http://www.stat.uni-muenchen.de/~leisch/Sweave
http://www.R-project.org
http://www.R-project.org
http://CRAN.R-project.org/package=OceanView
http://CRAN.R-project.org/package=plot3D
http://CRAN.R-project.org/package=plot3Drgl
http://aslo.org/lo/toc/vol_51/issue_1_part_2/0409.pdf
mailto:karline.soetaert@nioz.nl
http://www.nioz.nl/staff-detail?id=784400

	Converting large data sets from long to cross-table format
	Quickly analysing and plotting several columns from a matrix
	Resolution and mapping to sigma coordinates
	Plotting two-dimensional velocity data
	Plotting temporally variable particle distributions
	A quick view of particle distributions
	Particle distributions in 2D
	Particle distributions in 3D

	Finally

