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Abstract

This vignette gives a brief overview of the functions developed in Bacon(2008) to
evaluate the performance and risk of portfolios that are included in PerformanceAn-
alytics and how to use them. There are some tables at the end which give a quick
overview of similar functions. The page number next to each function is the location
of the function in Bacon(2008)
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1 Risk Measure

1.1 Mean absolute deviation (p.62)

To calculate Mean absolute deviation we take the sum of the absolute value of the difference
between the returns and the mean of the returns and we divide it by the number of returns.

Sy | i =T

n

MeanAbsolute Deviation =

where ns the number of observations of the entire series, r;s the return in month i and
7s the mean return

> data(portfolio_bacon)
> print (MeanAbsoluteDeviation(portfolio_bacon[,1])) #expected 0.0310

[1] 0.03108333

1.2 Frequency (p.64)

Gives the period of the return distribution (ie 12 if monthly return, 4 if quarterly return)

> data(portfolio_bacon)
> print (Frequency(portfolio_bacon[,1])) #expected 12

[1] 12



1.3 Sharpe Ratio (p.64)

The Sharpe ratio is simply the return per unit of risk (represented by variability). In the
classic case, the unit of risk is the standard deviation of the returns.

(R, — Ry)
O(Ra—Ry)

> data(managers)
> SharpeRatio(managers/[,1,drop=FALSE], Rf=.035/12, FUN="StdDev")

HAM1
StdDev Sharpe (Rf=0.3%, p=95%): 0.3201889

1.4 Risk-adjusted return: MSquared (p.67)

M?s a risk adjusted return useful to judge the size of relative performance between differ-
ents portfolios. With it you can compare portfolios with different levels of risk.

o
M2:TP+SR*(O'M—O'P):(TP_T'F)*iM_'_TF
op
where rp is the portfolio return annualized, o, is the market risk and ops the portfolio
risk

> data(portfolio_bacon)
> print (MSquared (portfolio_bacon[,1], portfolio_bacon[,2])) #expected 0.1068

benchmark.return....
benchmark.return. ... 0.10062

1.5 MSquared Excess (p.68)

M?xcess is the quantity above the standard M. There is a geometric excess return which
is better for Bacon and an arithmetic excess return
1+ M?

1+0

M?excess(geometric) =
M?excess(arithmetic) = M* — b
where M? is MSquared and b is the benchmark annualised return.

> data(portfolio_bacon)
> print (MSquaredExcess (portfolio_bacon[,1], portfolio_bacon[,2])) #expected -0.00¢
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benchmark.return.. ..
benchmark.return. ... -0.01553103

> print (MSquaredExcess (portfolio_bacon[,1], portfolio_bacon[,2], Method="arithmeti
benchmark.return.. ..

benchmark.return. ... -0.01736344

2 Regression analysis

2.1 Regression equation (p.71)

re=a+Bxb+e¢

2.2 Regression alpha (p.71)

"Alpha” purports to be a measure of a manager’s skill by measuring the portion of the
managers returns that are not attributable to "Beta”, or the portion of performance at-
tributable to a benchmark.

> data(managers)
> print (CAPM.alpha(managers/[,1,drop=FALSE], managers[,8,drop=FALSE], Rf=.035/12))

[1] 0.005960609

2.3 Regression beta (p.71)

CAPM Beta is the beta of an asset to the variance and covariance of an initial portfolio.
Used to determine diversification potential.

> data(managers)
> CAPM.beta(managers[, "HAM2", drop=FALSE], managers[, "SP500 TR", drop=FALSE], R1

[1] 0.3383942



2.4 Regression epsilon (p.71)

The regression epsilon is an error term measuring the vertical distance between the return
predicted by the equation and the real result.

€ =Tp—Qp — B %b

where a,s the regression alpha, s the regression beta, r,s the portfolio return and b
is the benchmark return

> data(managers)
> print (CAPM.epsilon(portfolio_bacon[,1], portfolio_bacon[,2])) #expected -0.013

[1] -0.01313932

2.5 Jensen’s alpha (p.72)

The Jensen’s alpha is the intercept of the regression equation in the Capital Asset Pricing
Model and is in effect the exess return adjusted for systematic risk.

a=r,—1r—Lpx(b—1))

where 7 is the risk free rate, 3, is the regression beta, r, is the portfolio return and b
is the benchmark return

> data(portfolio_bacon)
> print (CAPM. jensenAlpha(portfolio_bacon[,1], portfolio_bacon[,2])) #expected -0.(

[1] -0.01416944

2.6 Systematic Risk (p.75)

Systematic risk as defined by Bacon(2008) is the product of beta by market risk. Be
careful | It’s not the same definition as the one given by Michael Jensen. Market risk is
the standard deviation of the benchmark. The systematic risk is annualized

Os = 5 *Om
where o, is the systematic risk, [ is the regression beta, and o,,s the market risk

> data(portfolio_bacon)
> print (SystematicRisk(portfolio_bacon[,1], portfolio_bacon[,2])) #expected 0.013

[1] 0.132806



2.7 Specific Risk (p.75)

Specific risk is the standard deviation of the error term in the regression equation.

> data(portfolio_bacon)
> print (SpecificRisk(portfolio_bacon[,1], portfolio_bacon[,2])) #expected 0.0329

[1] 0.03293109

2.8 Total Risk (p.75)

The square of total risk is the sum of the square of systematic risk and the square of
specific risk. Specific risk is the standard deviation of the error term in the regression
equation. Both terms are annualized to calculate total risk.

Total Risk = \/SystematicRisk2 + Speci ficRisk?

> data(portfolio_bacon)
> print(TotalRisk(portfolio_bacon[,1], portfolio_bacon[,2])) #expected 0.0134

[1] 0.136828

2.9 Treynor ratio (p.75)

The Treynor ratio is similar to the Sharpe Ratio, except it uses beta as the volatility
measure (to divide the investment’s excess return over the beta).

(Ra - Rf)
ﬁa,b

TreynorRatio =
> data(managers)
> print(round(TreynorRatio (managers/[,1,drop=FALSE], managers/[,8,drop=FALSE], Rf=.(

[1] 0.2528

2.10 Modified Treynor ratio (p.77)

To calculate modified Treynor ratio, we divide the numerator by the systematic risk instead
of the beta.

> data(portfolio_bacon)
> print(TreynorRatio(portfolio_bacon[,1], portfolio_bacon[,2], modified = TRUE)) f#

[1] 0.7806747



2.11 Appraisal ratio (or Treynor-Black ratio) (p.77)

Appraisal ratio is the Jensen’s alpha adjusted for specific risk. The numerator is divided
by specific risk instead of total risk.

!
Appraisalratio = —
Oe

where alpha is the Jensen’s alpha, ocpsiion is the specific risk

> data(portfolio_bacon)
> print (AppraisalRatio(portfolio_bacon[,1], portfolio_bacon[,2], method="appraisal

[1] -0.4302756

2.12 Modified Jensen (p.77)
Modified Jensen’s alpha is Jensen’s alpha divided by beta.

Modi fiedJensen'salpha = g
where alpha is the Jensen’s alpha

> data(portfolio_bacon)
> print (AppraisalRatio(portfolio_bacon[,1], portfolio_bacon[,2], method="modified'

[1] -0.01418576

2.13 Fama decomposition (p.77)

Fama beta is a beta used to calculate the loss of diversification. It is made so that the
systematic risk is equivalent to the total portfolio risk.

op
Br=—
OMm

where op is the portfolio standard deviation and o, is the market risk

> data(portfolio_bacon)
> print (FamaBeta(portfolio_bacon[,1], portfolio_bacon[,2])) #expected 1.03

portfolio.monthly.return....
portfolio.monthly.return.... 1.030395



2.14 Selectivity (p.78)

Selectivity is the same as Jensen’s alpha
Selectivity =r, —ry — Bpx (b—1y)

where 7 is the risk free rate, 3, is the regression beta, r, is the portfolio return and b
is the benchmark return

> data(portfolio_bacon)
> print(Selectivity(portfolio_bacon[,1], portfolio_bacon[,2])) #expected -0.0141

[1] -0.01416944

2.15 Net selectivity (p.78)

Net selectivity is the remaining selectivity after deducting the amount of return require to
justify not being fully diversified

If net selectivity is negative the portfolio manager has not justified the loss of diversi-
fication

Netselectivity = a — d
where « is the selectivity and d is the diversification

> data(portfolio_bacon)
> print(NetSelectivity(portfolio_bacon[,1], portfolio_bacon[,2])) #expected -0.011

portfolio.monthly.return....
portfolio.monthly.return.... -0.0178912

3 Relative Risk

3.1 Tracking error (p.78)

A measure of the unexplained portion of performance relative to a benchmark.

Tracking error is calculated by taking the square root of the average of the squared
deviations between the investment’s returns and the benchmark’s returns, then multiplying
the result by the square root of the scale of the returns.

(Ra - Rb)2
len(R,)V scale

TrackingError = \IZ

> data(managers)
> TrackingError (managers[,1,drop=FALSE], managers[,8,drop=FALSE])

[1] 0.1131667



3.2 Information ratio (p.80)

The Active Premium divided by the Tracking Error.

InformationRatio = ActivePremium/TrackingError

This relates the degree to which an investment has beaten the benchmark to the con-
sistency with which the investment has beaten the benchmark.

> data(managers)
> InformationRatio(managers/[,"HAM1",drop=FALSE], managers[, "SP500 TR", drop=FALSI

[1] 0.3604125

4 Return Distribution

4.1 Skewness (p.83)

measures the deformation from a normal deformation

Ti—Tg

1 n
Skewness = — %y (
n ; op
where n is the number of return, 7 is the mean of the return distribution, op is its

standard deviation and og,s its sample standard deviation

> data(managers)
> skewness (managers)

HAM1 HAM2 HAM3 HAM4 HAMS HAM6

Skewness -0.6588445 1.45804 0.7908285 -0.4310631 0.07380869 -0.2799993
EDHEC LS EQ SP500 TR US 10Y TR US 3m TR
Skewness 0.01773013 -0.5531032 -0.4048722 -0.328171

4.2 Sample skewness (p.84)
n DT — T g
(n—l)*(n—2)*. (O'SP

=1

SampleSkewness =

where n is the number of return, 7 is the mean of the return distribution, op is its
standard deviation and og, is its sample standard deviation

> data(portfolio_bacon)
> print (skewness (portfolio_bacon[,1], method="sample")) #expected -0.09

[1] -0.09398414
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4.3 Kurtosis (p.84)

Kurtosis measures the weight or returns in the tails of the distribution relative to standard
deviation.

ri

1 & -
Kurtosis(moment) = - * Z( o T)4
i=1

where n is the number of return, 7 is the mean of the return distribution, op is its
standard deviation and og, is its sample standard deviation

> data(portfolio_bacon)
> print(kurtosis(portfolio_bacon[,1], method="moment")) #expected 2.43

[1] 2.432454

4.4 Excess kurtosis (p.85)

1 T
ExcessKurtosis = — % Z(r T)4 -3

S

where n is the number of return, 7 is the mean of the return distribution, op is its
standard deviation and og, is its sample standard deviation

> data(portfolio_bacon)
> print (kurtosis(portfolio_bacon[,1], method="excess")) #expected -0.57

[1] -0.5675462
4.5 Sample kurtosis (p.85)

nx*(n+1) § (rl-—?4
m—1)*x(n—2)x(n—3) = os,

=1

Samplekurtosis =

where n is the number of return, 7 is the mean of the return distribution, op is its
standard deviation and og, is its sample standard deviation

> data(portfolio_bacon)
> print(kurtosis(portfolio_bacon[,1], method="sample")) #expected 3.03

[1] 3.027405
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4.6 Sample excess kurtosis (p.85)

nx*(n+1) *" i =Ty 3x(n—1)>2
(n—1)*%(n—2)%(n—3) 2. 05P> (n—2)x(n—3)

=1

Sampleexcesskurtosis =

where n is the number of return, 7 is the mean of the return distribution, op is its
standard deviation and og, is its sample standard deviation

> data(portfolio_bacon)
> print (kurtosis(portfolio_bacon[,1], method="sample_excess")) #expected -0.41

[1] -0.4076603

5 Drawdown

5.1 Pain index (p.89)

The pain index is the mean value of the drawdowns over the entire analysis period. The
measure is similar to the Ulcer index except that the drawdowns are not squared. Also,
it’s different than the average drawdown, in that the numerator is the total number of
observations rather than the number of drawdowns. Visually, the pain index is the area
of the region that is enclosed by the horizontal line at zero percent and the drawdown line
in the Drawdown chart.
Painindex = Z —
=1 "

where n is the number of observations of the entire series, D. is the drawdown since

previous peak in period i

> data(portfolio_bacon)
> print (PainIndex(portfolio_bacon[,1])) #expected 0.04

portfolio.monthly.return....
Pain Index 0.0390113

5.2 Calmar ratio (p.89)

Calmar ratio is another method of creating a risk-adjusted measure for ranking investments
similar to the Sharpe ratio.

> data(managers)
> CalmarRatio(managers/[,1,drop=FALSE])

HAM1
Calmar Ratio 0.9061697

12



5.3 Sterling ratio (p.89)

Sterling ratio is another method of creating a risk-adjusted measure for ranking investments
similar to the Sharpe ratio.

> data(managers)
> SterlingRatio(managers[,1,drop=FALSE])

HAM1
Sterling Ratio (Excess = 10%) 0.5462542

5.4 Burke ratio (p.90)

To calculate Burke ratio we take the difference between the portfolio return and the risk
free rate and we divide it by the square root of the sum of the square of the drawdowns.

rp —TF
d 2
V2t Dy

where d is number of drawdowns, rps the portfolio return, 7z is the risk free rate and
D, the t*"rawdown.

BurkeRatio =

> data(portfolio_bacon)
> print (BurkeRatio(portfolio_bacon[,1])) #expected 0.74

[1] 0.7447309

5.5 Modified Burke ratio (p.91)

To calculate the modified Burke ratio we just multiply the Burke ratio by the square root
of the number of datas.

Tp —TFp
Zd D2
t=1 n

where n is the number of observations of the entire series, ds number of drawdowns,
rp is the portfolio return, 75 is the risk free rate and D, the t** drawdown.

Modi fied Burke Ratio =

> data(portfolio_bacon)
> print (BurkeRatio(portfolio_bacon[,1], modified = TRUE)) #expected 3.65

[1] 3.648421

13



5.6 Martin ratio (p.91)

To calculate Martin ratio we divide the difference of the portfolio return and the risk free
rate by the Ulcer index

. . rp —TF
Martinratio = ————
n D

where rp is the annualized portfolio return, r is the risk free rate, n is the number of
observations of the entire series, D} is the drawdown since previous peak in period i

> data(portfolio_bacon)
> print (MartinRatio(portfolio_bacon[,1])) #expected 1.70

portfolio.monthly.return....
Ulcer Index 1.70772

5.7 Pain ratio (p.91)

To calculate Pain ratio we divide the difference of the portfolio return and the risk free
rate by the Pain index

. . rp —TF
Painratio = —
i=1

where rp is the annualized portfolio return, r is the risk free rate, n is the number of
observations of the entire series, D} is the drawdown since previous peak in period i

> data(portfolio_bacon)
> print(PainRatio(portfolio_bacon[,1])) #expected 2.66

portfolio.monthly.return....
Pain Index 2.657647

6 Downside risk

6.1 Downside risk (p.92)

Downside deviation, similar to semi deviation, eliminates positive returns when calculating
risk. Instead of using the mean return or zero, it uses the Minimum Acceptable Return as
proposed by Sharpe (which may be the mean historical return or zero). It measures the

14



variability of underperformance below a minimum targer rate. The downside variance is
the square of the downside potential.

n in[(Ry — MAR), (]2
DownsideDeviation(R, MAR) = dyrag = \JZ min| (1 )0

t=1 n
- — MAR),0)?
DownsideV ariance(R, MAR) = Z min|( ),0]
t=1 n
- — MA
DownsidePotential(R, MAR) = Z man/( R), 0]
n

t=1

where n is either the number of observations of the entire series or the number of
observations in the subset of the series falling below the MAR.

> data(portfolio_bacon)

> MAR = 0.5
> DownsideDeviation(portfolio_bacon[,1], MAR) #expected 0.493
(,1]

[1,] 0.492524
> DownsidePotential (portfolio_bacon[,1], MAR) #expected 0.491

[,1]
[1,] 0.491

6.2 UpsideRisk (p.92)

Upside Risk is the similar of semideviation taking the return above the Minimum Accept-
able Return instead of using the mean return or zero.

- —MA 2
UpsideRisk(R, MAR) = \J Z maz|( R),0]
t=1 n
- - MA 2
UpsideV ariance(R, MAR) = Z maz(( R),0]
t=1 n
- — MA
UpsidePotential(R, MAR) = Z maz|( R),0]
t=1 n

where n is either the number of observations of the entire series or the number of
observations in the subset of the series falling below the MAR.

15



> data(portfolio_bacon)
> MAR = 0.005
> print (UpsideRisk(portfolio_bacon[,1], MAR, stat="risk")) #expected 0.02937

[1] 0.02937332

> print (UpsideRisk(portfolio_bacon[,1], MAR, stat="variance")) #expected 0.08628
[1] 0.0008627917

> print (UpsideRisk(portfolio_bacon[,1], MAR, stat="potential")) #expected 0.01771

[1] 0.01770833

6.3 Downside frequency (p.94)

To calculate Downside Frequency, we take the subset of returns that are less than the
target (or Minimum Acceptable Returns (MAR)) returns and divide the length of this
subset by the total number of returns.

" — MAR),0
DownsideFrequency(R, MAR) = Z man|( R )0
N

t=1

where n is the number of observations of the entire series

> data(portfolio_bacon)
> MAR = 0.005
> print (DownsideFrequency (portfolio_bacon[,1], MAR)) #expected 0.458

[1] 0.4583333

6.4 Bernardo and Ledoit ratio (p.95)

To calculate Bernardo and Ledoit ratio we take the sum of the subset of returns that are
above 0 and we divide it by the opposite of the sum of the subset of returns that are below
0

% S max(Ry, 0)
% Sy max(—Ry, 0)

BernardoLedoit Ratio( R) =

where n is the number of observations of the entire series

> data(portfolio_bacon)
> print (BernardoLedoitRatio(portfolio_bacon[,1])) #expected 1.78

[1] 1.779783
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6.5 d ratio (p.95)

The d ratio is similar to the Bernado Ledoit ratio but inverted and taking into account
the frequency of positive and negative returns.

It has values between zero and infinity. It can be used to rank the performance of
portfolios. The lower the d ratio the better the performance, a value of zero indicating
there are no returns less than zero and a value of infinity indicating there are no returns
greater than zero.

, ng * > p_y max(—Ry, 0)
DRat =
Ratio(R) Ny * > op_y max(Ry, 0)

where n is the number of observations of the entire series, ng is the number of obser-
vations less than zero, n, is the number of observations greater than zero

> data(portfolio_bacon)
> print (DRatio(portfolio_bacon[,1])) #expected 0.401

[1] 0.4013329

6.6 Omega-Sharpe ratio (p.95)

The Omega-Sharpe ratio is a conversion of the omega ratio to a ranking statistic in familiar
form to the Sharpe ratio.

To calculate the Omega-Sharpe ration we subtract the target (or Minimum Acceptable
Returns (MAR)) return from the portfolio return and we divide it by the opposite of the
Downside Deviation.

OmegaSharpeRatio(R, MAR) = — r;;(:f_r. 0)
t=1" n

where n is the number of observations of the entire series

> data(portfolio_bacon)
> MAR = 0.005
> print (OmegaSharpeRatio(portfolio_bacon[,1], MAR)) #expected 0.29

[,1]
[1,] 0.2917933
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6.7 Sortino ratio (p.96)

Sortino proposed an improvement on the Sharpe Ratio to better account for skill and
excess performance by using only downside semivariance as the measure of risk.

(R, — MAR)

SortinoRatio =
OMAR

where 94k is the DownsideDeviation.

> data(managers)
> round (SortinoRatio(managers/[, 1]),4)

HAM1
Sortino Ratio (MAR = 0%) 0.7649

6.8 Kappa (p.96)

Introduced by Kaplan and Knowles (2004), Kappa is a generalized downside risk-adjusted
performance measure.

To calculate it, we take the difference of the mean of the distribution to the target
and we divide it by the l-root of the lth lower partial moment. To calculate the Ith lower
partial moment we take the subset of returns below the target and we sum the differences
of the target to these returns. We then return return this sum divided by the length of
the whole distribution.

rp, — MAR

Kappa(R, MAR,I) =
\7% x Y mar(MAR — Ry, 0)!

> data(portfolio_bacon)

> MAR = 0.005

>1 =2

> print (Kappa(portfolio_bacon[,1], MAR, 1)) #expected 0.157

[1] 0.1566371

6.9 Upside potential ratio (p.97)

Sortino proposed an improvement on the Sharpe Ratio to better account for skill and excess
performance by using only downside semivariance as the measure of risk. That measure
is the Sortinon ratio. This function, Upside Potential Ratio, was a further improvement,
extending the measurement of only upside on the numerator, and only downside of the
denominator of the ratio equation.

18



Y (R — MAR)

OMAR

UPR =

where 9y 4R is the DownsideDeviation.

> data(edhec)
> UpsidePotentialRatio(edhec[, 6], MAR=.05/12) #5 percent/yr MAR

Event Driven
Upside Potential (MAR = 0.4%) 0.5840163

6.10 Volatility skewness (p.97)
Volatility skewness is a similar measure to omega but using the second partial moment.
It’s the ratio of the upside variance compared to the downside variance.

2

VolatilitySkewness(R, MAR) = U—g

oDb
where oy is the Upside risk and op is the Downside Risk
> data(portfolio_bacon)

> MAR = 0.005
> print(VolatilitySkewness (portfolio_bacon[,1], MAR, stat="volatility")) #expectec

(,1]
[1,] 1.323046

6.11 Variability skewness (p.98)

Variability skewness is the ratio of the upside risk compared to the downside risk.

o
VariabilitySkewness(R, MAR) = =2
0D
where oy is the Upside risk and op is the Downside Risk

> data(portfolio_bacon)

> MAR = 0.005

> print(VolatilitySkewness (portfolio_bacon[,1], MAR, stat="variability")) #expecte

[,1]
[1,] 1.150238
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6.12 Adjusted Sharpe ratio (p.99)

Adjusted Sharpe ratio was introduced by Pezier and White (2006) to adjusts for skewness
and kurtosis by incorporating a penalty factor for negative skewness and excess kurtosis.

K -3

AdjustedSharpeRatio = SR * [1 + (g) x SR — ( ) * SR

where SR is the sharpe ratio with data annualized, S is the skewness and Ks the
kurtosis

> data(portfolio_bacon)
> print (AdjustedSharpeRatio(portfolio_bacon[,1])) #expected 0.81

portfolio.monthly.return....
Annualized Sharpe Ratio (Rf=0%) 0.7591435

6.13 Skewness-kurtosis ratio (p.99)

Skewness-Kurtosis ratio is the division of Skewness by Kurtosis.” It is used in conjunction
with the Sharpe ratio to rank portfolios. The higher the rate the better.

SkewnessKurtosisRatio(R, MAR) = [5;

where S is the skewness and K is the Kurtosis

> data(portfolio_bacon)
> print (SkewnessKurtosisRatio(portfolio_bacon[,1])) #expected -0.034

[1] -0.03394204

6.14 Prospect ratio (p.100)
Prospect ratio is a ratio used to penalise loss since most people feel loss greater than gain
L3 (Max(r;,0) 4 2.25 % Min(r;,0) — MAR)

0D

Prospect Ratio(R) =
where n is the number of observations of the entire series, MAR is the minimum

acceptable return and ops the downside risk

> data(portfolio_bacon)
> MAR = 0.05
> print (ProspectRatio(portfolio_bacon[,1], MAR)) #expected -0.134

[,1]
[1,] -0.1347065
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7 Return adjusted for downside risk

7.1 M Squared for Sortino (p.102)

M squared for Sortino is a M2alculated for Downside risk instead of Total Risk
Mg = rp + Sortinoratio * (cpy — 0p)

where M2 is MSquared for Sortino, rp is the annualised portfolio return, opy, is the
benchmark annualised downside risk and D is the portfolio annualised downside risk

> data(portfolio_bacon)
> MAR = 0.005
> print (M2Sortino (portfolio_bacon[,1], portfolio_bacon[,2], MAR)) #expected 0.103¢

portfolio.monthly.return....
Sortino Ratio (MAR = 0.5%) 0.1034799

7.2 Omega excess return (p.103)

Omega excess return is another form of downside risk-adjusted return. It is calculated by
multiplying the downside variance of the style benchmark by 3 times the style beta.

w=r1p—3%Bs*0yp

where w is omega excess return, s is style beta, op is the portfolio annualised downside
risk and o,sp is the benchmark annualised downside risk.

> data(portfolio_bacon)
> MAR = 0.005
> print (OmegaExcessReturn(portfolio_bacon[,1], portfolio_bacon[,2], MAR)) #expecte

[,1]
[1,] 0.08053795

8 Tables

8.1 Variability risk

Table of Mean absolute difference, Monthly standard deviation and annualised standard
deviation
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> data(managers)
> table.Variability(managers/[,1:8])

HAM1  HAM2 HAM3 HAM4 HAM5 HAM6 EDHEC LS EQ

Mean Absolute deviation 0.0182 0.0268 0.0268 0.0410 0.0329 0.0187 0.0159

monthly Std Dev 0.0256 0.0367 0.0365 0.0532 0.0457 0.0238 0.0205

Annualized Std Dev 0.0888 0.1272 0.1265 0.1843 0.1584 0.0825 0.0708
SP500 TR

Mean Absolute deviation 0.0333

monthly Std Dev 0.0433

Annualized Std Dev 0.1500

8.2 Specific risk

Table of specific risk, systematic risk and total risk

> data(managers)
> table.SpecificRisk(managers[,1:8], managers[,8])

HAM1  HAM2 HAM3 HAM4 HAMS  HAM6 EDHEC LS EQ SP500 TR

Specific Risk  0.0664 NA 0.0946 0.1521 NA NA NA 0.00
Systematic Risk 0.0586 0.0515 0.0836 0.1032 0.0477 0.0486 0.0503 0.15
Total Risk 0.0886 NA 0.1262 0.1838 NA NA NA 0.15

8.3 Information risk

Table of Tracking error, Annualised tracking error and Information ratio

> data(managers)
> table.InformationRatio (managers[,1:8], managers[,8])

HAM1  HAM2 HAM3 HAM4 HAM5 HAM6 EDHEC LS EQ

Tracking Error 0.0327 0.0443 0.0334 0.0461 0.0520 0.0326 0.0326

Annualised Tracking Error 0.1132 0.1534 0.1159 0.1597 0.1800 0.1128 0.1130

Information Ratio 0.3604 0.5060 0.4701 0.1549 0.1212 0.6723 0.2985
SP500 TR

Tracking Error 0

Annualised Tracking Error 0

Information Ratio NaN
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8.4 Distributions

Table of Monthly standard deviation, Skewness, Sample standard deviation, Kurtosis,

Excess kurtosis, Sample Skweness and Sample excess kurtosis

> data(managers)

> table.Distributions (managers[,1:8])

monthly Std Dev
Skewness

Kurtosis

Excess kurtosis

Sample skewness

Sample excess kurtosis

monthly Std Dev
Skewness

Kurtosis

Excess kurtosis

Sample skewness

Sample excess kurtosis

8.5 Drawdowns

HAM1
0.0256
-0.6588
5.3616
2.3616
-0.6741
2.5004

HAM2
.0367
.4580
.3794
.3794
.4937
.5270

N = N O = O

SP500 TR

0.0433
-0.5531
3.5598
0.5598
-0.5659
0.6285

HAM3
.0365
. 7908
.6829
.6829
.8091
.8343

N O N o1 O O

HAM4  HAMS
0.0532 0.0457
-0.4311 0.0738
3.8632 5.3143
0.8632 2.3143
-0.4410 0.0768
0.9437 2.5541

HAM6 EDHEC LS EQ
.0238
.2800
.6511
. 3489
.2936
L2778

.0205
.0177
.9105
.9105
.0182
.0013

= O O W O O

Table of Calmar ratio, Sterling ratio, Burke ratio, Pain index, Ulcer index, Pain ratio and

Martin ratio

> data(managers)

> table.DrawdownsRatio (managers[,1:8])

HAM1
Sterling ratio 0.5463
Calmar ratio 0.9062
Burke ratio 0.6593
Pain index 0.0157
Ulcer index 0.0362
Pain ratio 8.7789

3

Martin ratio . 7992

= N O O O O O

HAM2
.5139
. 7281
.8970
.0642
.1000
.7187
.T473

= N O O O O O

.3884
.5226
.6079
.0674
L1114
.2438
.3572

HAM3

B P, O OO OO
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.3136
.4227
.1998
.0739
.1125
.6443
.0798

HAM4

O O O O O O O

HAMbS

.0847
.1096
.1008
.1452
.1828
.2570
.2042

P NN O O -, B~k O

HAM6 EDHEC LS EQ SP500 TR

.7678
. 7425
.0788
.0183
.0299
.4837
.5928

W o O O O+ O

.5688
.0982
.8452
.0178
.0325
.6466
.6345

0.
.2163
.2191
.1226
.1893
. 7891
.5112

O O O O O O
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8.6 Downside risk

Table of Monthly downside risk, Annualised downside risk, Downside potential, Omega,
Sortino ratio, Upside potential, Upside potential ratio and Omega-Sharpe ratio

> data(managers)

> table.DownsideRiskRatio(managers/[,1:8])

monthly downside risk
Annualised downside risk
Downside potential

Omega

Sortino ratio

Upside potential

Upside potential ratio
Omega-sharpe ratio

monthly downside risk
Annualised downside risk
Downside potential

Omega

Sortino ratio

Upside potential

Upside potential ratio
Omega-sharpe ratio

8.7 Sharpe ratio

Table of Annualized Return, Annualized Std Dev, and Annualized Sharpe

> data(managers)

S

0
0
0
3.
0
0
0
2

HAM1
.0145
.0504
.0051
1907
. 7649
.0162
.7503
.1907
P500 TR
0.0283
0.0980
0.0132
1.6581
0.3064
0
0
0

NNO -, WO OO

.0218
.7153
.6581

HAM2

.0116
.0401
.0061
.3041
.2220
.0203
.2078
.3041

= = O ON OO O

HAM3

.0174
.0601
.0079
.5803
L7172
.0203
.0852
.5803

> table.AnnualizedReturns (managers/[,1:8])

Annualized Return
Annualized Std Dev

Annualized Return
Annualized Std Dev

Annualized Sharpe (Rf=0%)

HAM1

HAM2
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HAM3

O OO O OO O

HAM4

.0341
.1180
.0159
.6920
.3234
.0269
.8009
.6920

HAM4
0.1375 0.1747 0.1512 0.1215 0.0373 0.1373
0.0888 0.1272 0.1265 0.1843 0.1584 0.0825
Annualized Sharpe (Rf=07%) 1.5491 1.3732 1.1955 0.6592 0.2356 1.6642
SP500 TR

0.0967

0.1500

0.6449

O O OO+ OO O

HAMS5

.0304
.1054
.0145
.2816
.1343
.0186
. 7557
.2816

HAMS

N OO WO oo

HAM6 EDHEC LS EQ

.0121
.0421
.0054
.0436
.9102
.0165
.0003
.0436

N~ OO WO oo

.0098
.0341
.0041
.3186
.9691
.0137
.1136
.3186

HAM6 EDHEC LS EQ

0.1180
0.0708
1.6657



