Performance Attribution from Bacon #### Matthieu Lestel ### February 5, 2020 #### Abstract This vignette gives a brief overview of the functions developed in Bacon(2008) to evaluate the performance and risk of portfolios that are included in **PerformanceAnalytics** and how to use them. There are some tables at the end which give a quick overview of similar functions. The page number next to each function is the location of the function in Bacon(2008) ## Contents | 1 | Risk | x Measure | |---|-----------------------|---| | | 1.1 | Mean absolute deviation (p.62) | | | 1.2 | Frequency (p.64) | | | 1.3 | Sharpe Ratio (p.64) | | | 1.4 | Risk-adjusted return: MSquared (p.67) | | | 1.5 | MSquared Excess (p.68) | | 2 | Reg | ression analysis | | | 2.1 | Regression equation (p.71) | | | 2.2 | Regression alpha (p.71) | | | 2.3 | Regression beta (p.71) | | | 2.4 | Regression epsilon (p.71) | | | 2.5 | Jensen's alpha (p.72) | | | 2.6 | Systematic Risk (p.75) | | | 2.7 | Specific Risk (p.75) | | | 2.8 | Total Risk (p.75) | | | 2.9 | Treynor ratio (p.75) | | | 2.10 | Modified Treynor ratio (p.77) | | | | Appraisal ratio (or Treynor-Black ratio) (p.77) | | | | Modified Jensen (p.77) | | | 2.14 | Fama decomposition (p.77) | 8
9
9 | |---|--------------------|-------------------------------|--------------| | 3 | Rela
3.1
3.2 | Tracking error (p.78) | 9
9
10 | | 4 | Ret | urn Distribution | 10 | | | 4.1 | Skewness (p.83) | 10 | | | 4.2 | | 10 | | | 4.3 | Kurtosis (p.84) | 11 | | | 4.4 | Excess kurtosis (p.85) | 11 | | | 4.5 | | 11 | | | 4.6 | Sample excess kurtosis (p.85) | 12 | | 5 | Dra | wdown | 12 | | | 5.1 | Pain index (p.89) | 12 | | | 5.2 | Calmar ratio (p.89) | 12 | | | 5.3 | Sterling ratio (p.89) | 13 | | | 5.4 | Burke ratio (p.90) | 13 | | | 5.5 | Modified Burke ratio (p.91) | 13 | | | 5.6 | Martin ratio (p.91) | 14 | | | 5.7 | Pain ratio (p.91) | 14 | | 6 | Dow | vnside risk | 14 | | | 6.1 | Downside risk (p.92) | 14 | | | 6.2 | UpsideRisk (p.92) | 15 | | | 6.3 | Downside frequency (p.94) | 16 | | | 6.4 | (1) | 16 | | | 6.5 | (1) | 17 | | | 6.6 | Omega-Sharpe ratio (p.95) | 17 | | | 6.7 | (1 / | 18 | | | 6.8 | | 18 | | | 6.9 | 1 1 (1) | 18 | | | | v (1 / | 19 | | | | v (1 / | 19 | | | | J 1 (1) | 20 | | | | \1 / | 20 | | | 6.14 | Prospect ratio (p.100) | 20 | | 7 | Ret | urn adjusted for downside risk | 21 | |---|----------------------|--------------------------------|----| | | 7.1 | M Squared for Sortino (p.102) | 21 | | | 7.2 | Omega excess return (p.103) | 21 | | 8 | Tab | les | 21 | | | | Variability risk | | | | 8.2 | Specific risk | 22 | | | 8.3 | Information risk | 22 | | | 8.4 | Distributions | 23 | | | 8.5 | Drawdowns | 23 | | | 8.6 | Downside risk | 24 | | | 8.7 | Sharpe ratio | 24 | #### 1 Risk Measure ### 1.1 Mean absolute deviation (p.62) To calculate Mean absolute deviation we take the sum of the absolute value of the difference between the returns and the mean of the returns and we divide it by the number of returns. $$MeanAbsoluteDeviation = \frac{\sum_{i=1}^{n} |r_i - \overline{r}|}{n}$$ where ns the number of observations of the entire series, r_i s the return in month i and \bar{r} s the mean return - > data(portfolio_bacon) - > print(MeanAbsoluteDeviation(portfolio_bacon[,1])) #expected 0.0310 [1] 0.03108333 ### 1.2 Frequency (p.64) Gives the period of the return distribution (ie 12 if monthly return, 4 if quarterly return) - > data(portfolio_bacon) - > print(Frequency(portfolio_bacon[,1])) #expected 12 [1] 12 #### 1.3 Sharpe Ratio (p.64) The Sharpe ratio is simply the return per unit of risk (represented by variability). In the classic case, the unit of risk is the standard deviation of the returns. $$\frac{\overline{(R_a - R_f)}}{\sqrt{\sigma_{(R_a - R_f)}}}$$ - > data(managers) - > SharpeRatio(managers[,1,drop=FALSE], Rf=.035/12, FUN="StdDev") HAM1 StdDev Sharpe (Rf=0.3%, p=95%): 0.3201889 ### 1.4 Risk-adjusted return: MSquared (p.67) M^2 s a risk adjusted return useful to judge the size of relative performance between differents portfolios. With it you can compare portfolios with different levels of risk. $$M^2 = r_P + SR * (\sigma_M - \sigma_P) = (r_P - r_F) * \frac{\sigma_M}{\sigma_P} + r_F$$ where r_P is the portfolio return annualized, σ_M is the market risk and σ_P s the portfolio risk - > data(portfolio_bacon) - > print(MSquared(portfolio_bacon[,1], portfolio_bacon[,2])) #expected 0.1068 benchmark.return... benchmark.return... 0.10062 ### 1.5 MSquared Excess (p.68) M^2 xcess is the quantity above the standard M. There is a geometric excess return which is better for Bacon and an arithmetic excess return $$M^2 excess(geometric) = \frac{1+M^2}{1+b} - 1$$ $$M^2 excess(arithmetic) = M^2 - b$$ where M^2 is MS quared and b is the benchmark annualised return. - > data(portfolio_bacon) - > print(MSquaredExcess(portfolio_bacon[,1], portfolio_bacon[,2])) #expected -0.009 benchmark.return.... benchmark.return.... -0.01553103 > print(MSquaredExcess(portfolio_bacon[,1], portfolio_bacon[,2], Method="arithmetical") benchmark.return.... -0.01736344 benchmark.return... ### 2 Regression analysis ### 2.1 Regression equation (p.71) $$r_P = \alpha + \beta * b + \epsilon$$ ### 2.2 Regression alpha (p.71) "Alpha" purports to be a measure of a manager's skill by measuring the portion of the managers returns that are not attributable to "Beta", or the portion of performance attributable to a benchmark. - > data(managers) - > print(CAPM.alpha(managers[,1,drop=FALSE], managers[,8,drop=FALSE], Rf=.035/12)) [1] 0.005960609 ### 2.3 Regression beta (p.71) CAPM Beta is the beta of an asset to the variance and covariance of an initial portfolio. Used to determine diversification potential. - > data(managers) - > CAPM.beta(managers[, "HAM2", drop=FALSE], managers[, "SP500 TR", drop=FALSE], Ri - [1] 0.3383942 #### 2.4 Regression epsilon (p.71) The regression epsilon is an error term measuring the vertical distance between the return predicted by the equation and the real result. $$\epsilon_r = r_p - \alpha_r - \beta_r * b$$ where α_r s the regression alpha, β_r s the regression beta, r_p s the portfolio return and b is the benchmark return - > data(managers) - > print(CAPM.epsilon(portfolio_bacon[,1], portfolio_bacon[,2])) #expected -0.013 [1] -0.01313932 #### 2.5 Jensen's alpha (p.72) The Jensen's alpha is the intercept of the regression equation in the Capital Asset Pricing Model and is in effect the exess return adjusted for systematic risk. $$\alpha = r_p - r_f - \beta_p * (b - r_f)$$ where r_f is the risk free rate, β_r is the regression beta, r_p is the portfolio return and b is the benchmark return - > data(portfolio_bacon) - > print(CAPM.jensenAlpha(portfolio_bacon[,1], portfolio_bacon[,2])) #expected -0.0 [1] -0.01416944 ### 2.6 Systematic Risk (p.75) Systematic risk as defined by Bacon(2008) is the product of beta by market risk. Be careful! It's not the same definition as the one given by Michael Jensen. Market risk is the standard deviation of the benchmark. The systematic risk is annualized $$\sigma_s = \beta * \sigma_m$$ where σ_s is the systematic risk, β is the regression beta, and σ_m s the market risk - > data(portfolio_bacon) - > print(SystematicRisk(portfolio_bacon[,1], portfolio_bacon[,2])) #expected 0.013 [1] 0.132806 #### 2.7 Specific Risk (p.75) Specific risk is the standard deviation of the error term in the regression equation. - > data(portfolio_bacon) - > print(SpecificRisk(portfolio_bacon[,1], portfolio_bacon[,2])) #expected 0.0329 [1] 0.03293109 ### 2.8 Total Risk (p.75) The square of total risk is the sum of the square of systematic risk and the square of specific risk. Specific risk is the standard deviation of the error term in the regression equation. Both terms are annualized to calculate total risk. $$TotalRisk = \sqrt{SystematicRisk^2 + SpecificRisk^2}$$ - > data(portfolio_bacon) - > print(TotalRisk(portfolio_bacon[,1], portfolio_bacon[,2])) #expected 0.0134 [1] 0.136828 ## 2.9 Treynor ratio (p.75) The Treynor ratio is similar to the Sharpe Ratio, except it uses beta as the volatility measure (to divide the investment's excess return over the beta). $$TreynorRatio = \frac{\overline{(R_a - R_f)}}{\beta_{a,b}}$$ - > data(managers) - > print(round(TreynorRatio(managers[,1,drop=FALSE], managers[,8,drop=FALSE], Rf=.0 [1] 0.2528 ### 2.10 Modified Treynor ratio (p.77) To calculate modified Treynor ratio, we divide the numerator by the systematic risk instead of the beta. - > data(portfolio_bacon) - > print(TreynorRatio(portfolio_bacon[,1], portfolio_bacon[,2], modified = TRUE)) # - [1] 0.7806747 ### 2.11 Appraisal ratio (or Treynor-Black ratio) (p.77) Appraisal ratio is the Jensen's alpha adjusted for specific risk. The numerator is divided by specific risk instead of total risk. $$Appraisal ratio = \frac{\alpha}{\sigma_{\epsilon}}$$ where alpha is the Jensen's alpha, $\sigma_{epsilon}$ is the specific risk - > data(portfolio_bacon) - > print(AppraisalRatio(portfolio_bacon[,1], portfolio_bacon[,2], method="appraisal [1] -0.4302756 ### 2.12 Modified Jensen (p.77) Modified Jensen's alpha is Jensen's alpha divided by beta. $$ModifiedJensen's alpha = \frac{\alpha}{\beta}$$ where alpha is the Jensen's alpha - > data(portfolio_bacon) - > print(AppraisalRatio(portfolio_bacon[,1], portfolio_bacon[,2], method="modified" [1] -0.01418576 ### 2.13 Fama decomposition (p.77) Fama beta is a beta used to calculate the loss of diversification. It is made so that the systematic risk is equivalent to the total portfolio risk. $$\beta_F = \frac{\sigma_P}{\sigma_M}$$ where σ_P is the portfolio standard deviation and σ_M is the market risk - > data(portfolio_bacon) - > print(FamaBeta(portfolio_bacon[,1], portfolio_bacon[,2])) #expected 1.03 portfolio.monthly.return.... 1.030395 #### 2.14 Selectivity (p.78) Selectivity is the same as Jensen's alpha $$Selectivity = r_p - r_f - \beta_p * (b - r_f)$$ where r_f is the risk free rate, β_r is the regression beta, r_p is the portfolio return and b is the benchmark return - > data(portfolio_bacon) - > print(Selectivity(portfolio_bacon[,1], portfolio_bacon[,2])) #expected -0.0141 [1] -0.01416944 #### 2.15 Net selectivity (p.78) Net selectivity is the remaining selectivity after deducting the amount of return require to justify not being fully diversified If net selectivity is negative the portfolio manager has not justified the loss of diversification $$Netselectivity = \alpha - d$$ where α is the selectivity and d is the diversification - > data(portfolio_bacon) - > print(NetSelectivity(portfolio_bacon[,1], portfolio_bacon[,2])) #expected -0.017 portfolio.monthly.return.... portfolio.monthly.return.... -0.0178912 #### 3 Relative Risk ### 3.1 Tracking error (p.78) A measure of the unexplained portion of performance relative to a benchmark. Tracking error is calculated by taking the square root of the average of the squared deviations between the investment's returns and the benchmark's returns, then multiplying the result by the square root of the scale of the returns. $$TrackingError = \sqrt{\sum \frac{(R_a - R_b)^2}{len(R_a)\sqrt{scale}}}$$ - > data(managers) - > TrackingError(managers[,1,drop=FALSE], managers[,8,drop=FALSE]) [1] 0.1131667 #### 3.2 Information ratio (p.80) The Active Premium divided by the Tracking Error. InformationRatio = ActivePremium/TrackingError This relates the degree to which an investment has beaten the benchmark to the consistency with which the investment has beaten the benchmark. - > data(managers) - > InformationRatio(managers[,"HAM1",drop=FALSE], managers[, "SP500 TR", drop=FALSE [1] 0.3604125 #### 4 Return Distribution ### 4.1 Skewness (p.83) measures the deformation from a normal deformation $$Skewness = \frac{1}{n} * \sum_{i=1}^{n} \left(\frac{r_i - \overline{r}}{\sigma_P}\right)^3$$ where n is the number of return, \overline{r} is the mean of the return distribution, σ_P is its standard deviation and σ_{S_P} s its sample standard deviation - > data(managers) - > skewness(managers) HAM1 HAM2 HAM3 HAM4 HAM5 HAM6 Skewness -0.6588445 1.45804 0.7908285 -0.4310631 0.07380869 -0.2799993 EDHEC LS EQ SP500 TR US 10Y TR US 3m TR Skewness 0.01773013 -0.5531032 -0.4048722 -0.328171 ### 4.2 Sample skewness (p.84) $$SampleSkewness = \frac{n}{(n-1)*(n-2)} * \sum_{i=1}^{n} (\frac{r_i - \overline{r}}{\sigma_{S_P}})^3$$ where n is the number of return, \overline{r} is the mean of the return distribution, σ_P is its standard deviation and σ_{S_P} is its sample standard deviation - > data(portfolio_bacon) - > print(skewness(portfolio_bacon[,1], method="sample")) #expected -0.09 - [1] -0.09398414 ### 4.3 Kurtosis (p.84) Kurtosis measures the weight or returns in the tails of the distribution relative to standard deviation. $$Kurtosis(moment) = \frac{1}{n} * \sum_{i=1}^{n} (\frac{r_i - \overline{r}}{\sigma_P})^4$$ where n is the number of return, \overline{r} is the mean of the return distribution, σ_P is its standard deviation and σ_{S_P} is its sample standard deviation - > data(portfolio_bacon) - > print(kurtosis(portfolio_bacon[,1], method="moment")) #expected 2.43 [1] 2.432454 #### 4.4 Excess kurtosis (p.85) $$ExcessKurtosis = \frac{1}{n} * \sum_{i=1}^{n} (\frac{r_i - \overline{r}}{\sigma_P})^4 - 3$$ where n is the number of return, \overline{r} is the mean of the return distribution, σ_P is its standard deviation and σ_{S_P} is its sample standard deviation - > data(portfolio_bacon) - > print(kurtosis(portfolio_bacon[,1], method="excess")) #expected -0.57 [1] -0.5675462 ### 4.5 Sample kurtosis (p.85) $$Samplekurtosis = \frac{n * (n+1)}{(n-1) * (n-2) * (n-3)} * \sum_{i=1}^{n} (\frac{r_i - \overline{r}}{\sigma_{S_P}})^4$$ where n is the number of return, \overline{r} is the mean of the return distribution, σ_P is its standard deviation and σ_{S_P} is its sample standard deviation - > data(portfolio_bacon) - > print(kurtosis(portfolio_bacon[,1], method="sample")) #expected 3.03 [1] 3.027405 #### 4.6 Sample excess kurtosis (p.85) $$Sample excess kurtos is = \frac{n*(n+1)}{(n-1)*(n-2)*(n-3)}*\sum_{i=1}^{n}(\frac{r_i-\overline{r}}{\sigma_{S_P}})^4 - \frac{3*(n-1)^2}{(n-2)*(n-3)}$$ where n is the number of return, \overline{r} is the mean of the return distribution, σ_P is its standard deviation and σ_{S_P} is its sample standard deviation - > data(portfolio_bacon) - > print(kurtosis(portfolio_bacon[,1], method="sample_excess")) #expected -0.41 [1] -0.4076603 #### 5 Drawdown ### 5.1 Pain index (p.89) The pain index is the mean value of the drawdowns over the entire analysis period. The measure is similar to the Ulcer index except that the drawdowns are not squared. Also, it's different than the average drawdown, in that the numerator is the total number of observations rather than the number of drawdowns. Visually, the pain index is the area of the region that is enclosed by the horizontal line at zero percent and the drawdown line in the Drawdown chart. $$Painindex = \sum_{i=1}^{n} \frac{|D'_i|}{n}$$ where n is the number of observations of the entire series, D'_i is the drawdown since previous peak in period i - > data(portfolio_bacon) - > print(PainIndex(portfolio_bacon[,1])) #expected 0.04 portfolio.monthly.return.... Pain Index 0.0390113 ### 5.2 Calmar ratio (p.89) Calmar ratio is another method of creating a risk-adjusted measure for ranking investments similar to the Sharpe ratio. - > data(managers) - > CalmarRatio(managers[,1,drop=FALSE]) HAM1 Calmar Ratio 0.9061697 #### 5.3 Sterling ratio (p.89) Sterling ratio is another method of creating a risk-adjusted measure for ranking investments similar to the Sharpe ratio. - > data(managers) - > SterlingRatio(managers[,1,drop=FALSE]) HAM1 Sterling Ratio (Excess = 10%) 0.5462542 #### 5.4 Burke ratio (p.90) To calculate Burke ratio we take the difference between the portfolio return and the risk free rate and we divide it by the square root of the sum of the square of the drawdowns. $$BurkeRatio = \frac{r_P - r_F}{\sqrt{\sum_{t=1}^d {D_t}^2}}$$ where d is number of drawdowns, r_P s the portfolio return, r_F is the risk free rate and D_t the t^{th} rawdown. - > data(portfolio_bacon) - > print(BurkeRatio(portfolio_bacon[,1])) #expected 0.74 [1] 0.7447309 ### 5.5 Modified Burke ratio (p.91) To calculate the modified Burke ratio we just multiply the Burke ratio by the square root of the number of datas. $$ModifiedBurkeRatio = \frac{r_P - r_F}{\sqrt{\sum_{t=1}^d \frac{D_t^2}{n}}}$$ where n is the number of observations of the entire series, ds number of drawdowns, r_P is the portfolio return, r_F is the risk free rate and D_t the t^{th} drawdown. - > data(portfolio_bacon) - > print(BurkeRatio(portfolio_bacon[,1], modified = TRUE)) #expected 3.65 [1] 3.648421 #### 5.6 Martin ratio (p.91) To calculate Martin ratio we divide the difference of the portfolio return and the risk free rate by the Ulcer index $$Martin ratio = \frac{r_P - r_F}{\sqrt{\sum_{i=1}^n \frac{{D_i'}^2}{n}}}$$ where r_P is the annualized portfolio return, r_F is the risk free rate, n is the number of observations of the entire series, D'_i is the drawdown since previous peak in period i - > data(portfolio_bacon) - > print(MartinRatio(portfolio_bacon[,1])) #expected 1.70 portfolio.monthly.return.... Ulcer Index 1.70772 ### 5.7 Pain ratio (p.91) To calculate Pain ratio we divide the difference of the portfolio return and the risk free rate by the Pain index $$Painratio = \frac{r_P - r_F}{\sum_{i=1}^n \frac{|D_i'|}{n}}$$ where r_P is the annualized portfolio return, r_F is the risk free rate, n is the number of observations of the entire series, D'_i is the drawdown since previous peak in period i - > data(portfolio_bacon) - > print(PainRatio(portfolio_bacon[,1])) #expected 2.66 portfolio.monthly.return.... Pain Index 2.657647 ### 6 Downside risk ### 6.1 Downside risk (p.92) Downside deviation, similar to semi deviation, eliminates positive returns when calculating risk. Instead of using the mean return or zero, it uses the Minimum Acceptable Return as proposed by Sharpe (which may be the mean historical return or zero). It measures the variability of underperformance below a minimum targer rate. The downside variance is the square of the downside potential. $$DownsideDeviation(R, MAR) = \delta_{MAR} = \sqrt{\sum_{t=1}^{n} \frac{min[(R_t - MAR), 0]^2}{n}}$$ $$DownsideVariance(R, MAR) = \sum_{t=1}^{n} \frac{min[(R_t - MAR), 0]^2}{n}$$ $$DownsidePotential(R, MAR) = \sum_{t=1}^{n} \frac{min[(R_t - MAR), 0]}{n}$$ where n is either the number of observations of the entire series or the number of observations in the subset of the series falling below the MAR. - > data(portfolio_bacon) - > MAR = 0.5 - > DownsideDeviation(portfolio_bacon[,1], MAR) #expected 0.493 [1,] 0.492524 > DownsidePotential(portfolio_bacon[,1], MAR) #expected 0.491 [,1] [1,] 0.491 ### 6.2 UpsideRisk (p.92) Upside Risk is the similar of semideviation taking the return above the Minimum Acceptable Return instead of using the mean return or zero. $$UpsideRisk(R, MAR) = \sqrt{\sum_{t=1}^{n} \frac{max[(R_t - MAR), 0]^2}{n}}$$ $$UpsideVariance(R, MAR) = \sum_{t=1}^{n} \frac{max[(R_t - MAR), 0]^2}{n}$$ $$UpsidePotential(R, MAR) = \sum_{t=1}^{n} \frac{max[(R_t - MAR), 0]}{n}$$ where n is either the number of observations of the entire series or the number of observations in the subset of the series falling below the MAR. ``` > data(portfolio_bacon) ``` - > MAR = 0.005 - > print(UpsideRisk(portfolio_bacon[,1], MAR, stat="risk")) #expected 0.02937 - [1] 0.02937332 - > print(UpsideRisk(portfolio_bacon[,1], MAR, stat="variance")) #expected 0.08628 - [1] 0.0008627917 - > print(UpsideRisk(portfolio_bacon[,1], MAR, stat="potential")) #expected 0.01771 - [1] 0.01770833 ### 6.3 Downside frequency (p.94) To calculate Downside Frequency, we take the subset of returns that are less than the target (or Minimum Acceptable Returns (MAR)) returns and divide the length of this subset by the total number of returns. $$DownsideFrequency(R, MAR) = \sum_{t=1}^{n} \frac{min[(R_t - MAR), 0]}{R_t * n}$$ where n is the number of observations of the entire series - > data(portfolio_bacon) - > MAR = 0.005 - > print(DownsideFrequency(portfolio_bacon[,1], MAR)) #expected 0.458 [1] 0.4583333 ### 6.4 Bernardo and Ledoit ratio (p.95) To calculate Bernardo and Ledoit ratio we take the sum of the subset of returns that are above 0 and we divide it by the opposite of the sum of the subset of returns that are below 0 $$BernardoLedoitRatio(R) = \frac{\frac{1}{n} \sum_{t=1}^{n} max(R_t, 0)}{\frac{1}{n} \sum_{t=1}^{n} max(-R_t, 0)}$$ where n is the number of observations of the entire series - > data(portfolio_bacon) - > print(BernardoLedoitRatio(portfolio_bacon[,1])) #expected 1.78 [1] 1.779783 ### 6.5 d ratio (p.95) The d ratio is similar to the Bernado Ledoit ratio but inverted and taking into account the frequency of positive and negative returns. It has values between zero and infinity. It can be used to rank the performance of portfolios. The lower the d ratio the better the performance, a value of zero indicating there are no returns less than zero and a value of infinity indicating there are no returns greater than zero. $$DRatio(R) = \frac{n_d * \sum_{t=1}^{n} max(-R_t, 0)}{n_u * \sum_{t=1}^{n} max(R_t, 0)}$$ where n is the number of observations of the entire series, n_d is the number of observations less than zero, n_u is the number of observations greater than zero - > data(portfolio_bacon) - > print(DRatio(portfolio_bacon[,1])) #expected 0.401 [1] 0.4013329 ### 6.6 Omega-Sharpe ratio (p.95) The Omega-Sharpe ratio is a conversion of the omega ratio to a ranking statistic in familiar form to the Sharpe ratio. To calculate the Omega-Sharpe ration we subtract the target (or Minimum Acceptable Returns (MAR)) return from the portfolio return and we divide it by the opposite of the Downside Deviation. $$OmegaSharpeRatio(R, MAR) = \frac{r_p - r_t}{\sum_{t=1}^{n} \frac{max(r_t - r_t, 0)}{n}}$$ where n is the number of observations of the entire series - > data(portfolio_bacon) - > MAR = 0.005 - > print(OmegaSharpeRatio(portfolio_bacon[,1], MAR)) #expected 0.29 [,1] [1,] 0.2917933 ### 6.7 Sortino ratio (p.96) Sortino proposed an improvement on the Sharpe Ratio to better account for skill and excess performance by using only downside semivariance as the measure of risk. $$SortinoRatio = \frac{(\overline{R_a - MAR})}{\delta_{MAR}}$$ where δ_{MAR} is the DownsideDeviation. - > data(managers) - > round(SortinoRatio(managers[, 1]),4) HAM1 Sortino Ratio (MAR = 0%) 0.7649 #### 6.8 Kappa (p.96) Introduced by Kaplan and Knowles (2004), Kappa is a generalized downside risk-adjusted performance measure. To calculate it, we take the difference of the mean of the distribution to the target and we divide it by the l-root of the lth lower partial moment. To calculate the lth lower partial moment we take the subset of returns below the target and we sum the differences of the target to these returns. We then return return this sum divided by the length of the whole distribution. $$Kappa(R, MAR, l) = \frac{r_p - MAR}{\sqrt[l]{\frac{1}{n} * \sum_{t=1}^{n} max(MAR - R_t, 0)^{l}}}$$ - > data(portfolio_bacon) - > MAR = 0.005 - > 1 = 2 - > print(Kappa(portfolio_bacon[,1], MAR, 1)) #expected 0.157 [1] 0.1566371 ### 6.9 Upside potential ratio (p.97) Sortino proposed an improvement on the Sharpe Ratio to better account for skill and excess performance by using only downside semivariance as the measure of risk. That measure is the Sortinon ratio. This function, Upside Potential Ratio, was a further improvement, extending the measurement of only upside on the numerator, and only downside of the denominator of the ratio equation. $$UPR = \frac{\sum_{t=1}^{n} (R_t - MAR)}{\delta_{MAR}}$$ where δ_{MAR} is the DownsideDeviation. - > data(edhec) - > UpsidePotentialRatio(edhec[, 6], MAR=.05/12) #5 percent/yr MAR Event Driven Upside Potential (MAR = 0.4%) 0.5840163 #### 6.10 Volatility skewness (p.97) Volatility skewness is a similar measure to omega but using the second partial moment. It's the ratio of the upside variance compared to the downside variance. $$VolatilitySkewness(R, MAR) = \frac{\sigma_U^2}{\sigma_D^2}$$ where σ_U is the Upside risk and σ_D is the Downside Risk - > data(portfolio_bacon) - > MAR = 0.005 - > print(VolatilitySkewness(portfolio_bacon[,1], MAR, stat="volatility")) #expected [,1] [1,] 1.323046 ### 6.11 Variability skewness (p.98) Variability skewness is the ratio of the upside risk compared to the downside risk. $$VariabilitySkewness(R, MAR) = \frac{\sigma_U}{\sigma_D}$$ where σ_U is the Upside risk and σ_D is the Downside Risk - > data(portfolio_bacon) - > MAR = 0.005 - > print(VolatilitySkewness(portfolio_bacon[,1], MAR, stat="variability")) #expected [,1] [1,] 1.150238 ### 6.12 Adjusted Sharpe ratio (p.99) Adjusted Sharpe ratio was introduced by Pezier and White (2006) to adjusts for skewness and kurtosis by incorporating a penalty factor for negative skewness and excess kurtosis. $$Adjusted Sharpe Ratio = SR*[1+(\frac{S}{6})*SR-(\frac{K-3}{24})*SR^2]$$ where SR is the sharpe ratio with data annualized, S is the skewness and Ks the kurtosis - > data(portfolio_bacon) - > print(AdjustedSharpeRatio(portfolio_bacon[,1])) #expected 0.81 portfolio.monthly.return.... Annualized Sharpe Ratio (Rf=0%) 0.7591435 ### 6.13 Skewness-kurtosis ratio (p.99) Skewness-Kurtosis ratio is the division of Skewness by Kurtosis.' It is used in conjunction with the Sharpe ratio to rank portfolios. The higher the rate the better. $$SkewnessKurtosisRatio(R,MAR) = \frac{S}{K}$$ where S is the skewness and K is the Kurtosis - > data(portfolio_bacon) - > print(SkewnessKurtosisRatio(portfolio_bacon[,1])) #expected -0.034 [1] -0.03394204 ### 6.14 Prospect ratio (p.100) Prospect ratio is a ratio used to penalise loss since most people feel loss greater than gain $$ProspectRatio(R) = \frac{\frac{1}{n} * \sum_{i=1}^{n} (Max(r_i, 0) + 2.25 * Min(r_i, 0) - MAR)}{\sigma_D}$$ where n is the number of observations of the entire series, MAR is the minimum acceptable return and σ_D s the downside risk - > data(portfolio_bacon) - > MAR = 0.05 - > print(ProspectRatio(portfolio_bacon[,1], MAR)) #expected -0.134 [.1] [1,] -0.1347065 ### 7 Return adjusted for downside risk #### 7.1 M Squared for Sortino (p.102) M squared for Sortino is a M^2 alculated for Downside risk instead of Total Risk $$M_S^2 = r_P + Sortinoratio * (\sigma_{DM} - \sigma_D)$$ where M_S^2 is MSquared for Sortino, r_P is the annualised portfolio return, σ_{DM} is the benchmark annualised downside risk and D is the portfolio annualised downside risk - > data(portfolio_bacon) - > MAR = 0.005 - > print(M2Sortino(portfolio_bacon[,1], portfolio_bacon[,2], MAR)) #expected 0.1038 portfolio.monthly.return.... Sortino Ratio (MAR = 0.5%) 0.1034799 ### 7.2 Omega excess return (p.103) Omega excess return is another form of downside risk-adjusted return. It is calculated by multiplying the downside variance of the style benchmark by 3 times the style beta. $$\omega = r_P - 3 * \beta_S * \sigma_{MD}^2$$ where ω is omega excess return, β_S is style beta, σ_D is the portfolio annualised downside risk and σ_{MD} is the benchmark annualised downside risk. - > data(portfolio_bacon) - > MAR = 0.005 - > print(OmegaExcessReturn(portfolio_bacon[,1], portfolio_bacon[,2], MAR)) #expected [,1] [1,] 0.08053795 #### 8 Tables ### 8.1 Variability risk Table of Mean absolute difference, Monthly standard deviation and annualised standard deviation - > data(managers) - > table.Variability(managers[,1:8]) | | HAM1 | HAM2 | HAM3 | HAM4 | HAM5 | HAM6 | EDHEC LS EQ | |-------------------------|---------|--------|--------|--------|--------|--------|-------------| | Mean Absolute deviation | 0.0182 | 0.0268 | 0.0268 | 0.0410 | 0.0329 | 0.0187 | 0.0159 | | monthly Std Dev | 0.0256 | 0.0367 | 0.0365 | 0.0532 | 0.0457 | 0.0238 | 0.0205 | | Annualized Std Dev | 0.0888 | 0.1272 | 0.1265 | 0.1843 | 0.1584 | 0.0825 | 0.0708 | | | SP500 7 | ΓR | | | | | | | Mean Absolute deviation | 0.033 | 33 | | | | | | | monthly Std Dev | 0.043 | 33 | | | | | | | Annualized Std Dev | 0.150 | 00 | | | | | | ### 8.2 Specific risk Table of specific risk, systematic risk and total risk - > data(managers) - > table.SpecificRisk(managers[,1:8], managers[,8]) | | HAM1 | HAM2 | EMAH | HAM4 | HAM5 | HAM6 | EDHEC LS EQ | SP500 TR | |-----------------|--------|--------|--------|--------|--------|--------|-------------|----------| | Specific Risk | 0.0664 | NA | 0.0946 | 0.1521 | NA | NA | NA | 0.00 | | Systematic Risk | 0.0586 | 0.0515 | 0.0836 | 0.1032 | 0.0477 | 0.0486 | 0.0503 | 0.15 | | Total Risk | 0.0886 | NA | 0.1262 | 0.1838 | NA | NA | NA | 0.15 | #### 8.3 Information risk Table of Tracking error, Annualised tracking error and Information ratio - > data(managers) - > table.InformationRatio(managers[,1:8], managers[,8]) | | HAM1 | HAM2 | EMAH | HAM4 | HAM5 | HAM6 | EDHEC LS EQ | |---------------------------|---------|--------|-------------|--------|--------|--------|-------------| | Tracking Error | 0.0327 | 0.0443 | 0.0334 | 0.0461 | 0.0520 | 0.0326 | 0.0326 | | Annualised Tracking Error | 0.1132 | 0.1534 | 0.1159 | 0.1597 | 0.1800 | 0.1128 | 0.1130 | | Information Ratio | 0.3604 | 0.5060 | 0.4701 | 0.1549 | 0.1212 | 0.6723 | 0.2985 | | | SP500 1 | TR. | | | | | | | Tracking Error | | 0 | | | | | | | Annualised Tracking Error | | 0 | | | | | | | Information Ratio | Na | aN | | | | | | #### 8.4 Distributions Table of Monthly standard deviation, Skewness, Sample standard deviation, Kurtosis, Excess kurtosis, Sample Skweness and Sample excess kurtosis - > data(managers) - > table.Distributions(managers[,1:8]) | | HAM1 HAM | 12 HAM3 | HAM4 | HAM5 | HAM6 | EDHEC LS EQ | |------------------------|---------------|-----------|---------|--------|---------|-------------| | monthly Std Dev | 0.0256 0.036 | 0.0365 | 0.0532 | 0.0457 | 0.0238 | 0.0205 | | Skewness | -0.6588 1.458 | 30 0.7908 | -0.4311 | 0.0738 | -0.2800 | 0.0177 | | Kurtosis | 5.3616 5.379 | 94 5.6829 | 3.8632 | 5.3143 | 2.6511 | 3.9105 | | Excess kurtosis | 2.3616 2.379 | 94 2.6829 | 0.8632 | 2.3143 | -0.3489 | 0.9105 | | Sample skewness | -0.6741 1.493 | 37 0.8091 | -0.4410 | 0.0768 | -0.2936 | 0.0182 | | Sample excess kurtosis | 2.5004 2.527 | 0 2.8343 | 0.9437 | 2.5541 | -0.2778 | 1.0013 | | | SP500 TR | | | | | | | monthly Std Dev | 0.0433 | | | | | | | Skewness | -0.5531 | | | | | | | Kurtosis | 3.5598 | | | | | | | Excess kurtosis | 0.5598 | | | | | | | Sample skewness | -0.5659 | | | | | | | Sample excess kurtosis | 0.6285 | | | | | | #### 8.5 Drawdowns Table of Calmar ratio, Sterling ratio, Burke ratio, Pain index, Ulcer index, Pain ratio and Martin ratio - > data(managers) - > table.DrawdownsRatio(managers[,1:8]) | | HAM1 | HAM2 | HAM3 | HAM4 | HAM5 | HAM6 | EDHEC LS EQ | SP500 TR | |----------------|--------|--------|--------|--------|--------|--------|-------------|----------| | Sterling ratio | 0.5463 | 0.5139 | 0.3884 | 0.3136 | 0.0847 | 0.7678 | 0.5688 | 0.1768 | | Calmar ratio | 0.9062 | 0.7281 | 0.5226 | 0.4227 | 0.1096 | 1.7425 | 1.0982 | 0.2163 | | Burke ratio | 0.6593 | 0.8970 | 0.6079 | 0.1998 | 0.1008 | 1.0788 | 0.8452 | 0.2191 | | Pain index | 0.0157 | 0.0642 | 0.0674 | 0.0739 | 0.1452 | 0.0183 | 0.0178 | 0.1226 | | Ulcer index | 0.0362 | 0.1000 | 0.1114 | 0.1125 | 0.1828 | 0.0299 | 0.0325 | 0.1893 | | Pain ratio | 8.7789 | 2.7187 | 2.2438 | 1.6443 | 0.2570 | 7.4837 | 6.6466 | 0.7891 | | Martin ratio | 3.7992 | 1.7473 | 1.3572 | 1.0798 | 0.2042 | 4.5928 | 3.6345 | 0.5112 | #### 8.6 Downside risk Table of Monthly downside risk, Annualised downside risk, Downside potential, Omega, Sortino ratio, Upside potential, Upside potential ratio and Omega-Sharpe ratio - > data(managers) - > table.DownsideRiskRatio(managers[,1:8]) | | HAM1 | HAM2 | EMAH | HAM4 | HAM5 | HAM6 | EDHEC LS EQ | |--------------------------|---------|--------|-------------|--------|--------|--------|-------------| | monthly downside risk | 0.0145 | 0.0116 | 0.0174 | 0.0341 | 0.0304 | 0.0121 | 0.0098 | | Annualised downside risk | 0.0504 | 0.0401 | 0.0601 | 0.1180 | 0.1054 | 0.0421 | 0.0341 | | Downside potential | 0.0051 | 0.0061 | 0.0079 | 0.0159 | 0.0145 | 0.0054 | 0.0041 | | Omega | 3.1907 | 3.3041 | 2.5803 | 1.6920 | 1.2816 | 3.0436 | 3.3186 | | Sortino ratio | 0.7649 | 1.2220 | 0.7172 | 0.3234 | 0.1343 | 0.9102 | 0.9691 | | Upside potential | 0.0162 | 0.0203 | 0.0203 | 0.0269 | 0.0186 | 0.0165 | 0.0137 | | Upside potential ratio | 0.7503 | 2.2078 | 1.0852 | 0.8009 | 0.7557 | 1.0003 | 1.1136 | | Omega-sharpe ratio | 2.1907 | 2.3041 | 1.5803 | 0.6920 | 0.2816 | 2.0436 | 2.3186 | | - | SP500 7 | ΓR | | | | | | | monthly downside risk | 0.028 | 33 | | | | | | | Annualised downside risk | 0.098 | 30 | | | | | | | Downside potential | 0.013 | 32 | | | | | | | Omega | 1.658 | 31 | | | | | | | Sortino ratio | 0.306 | 64 | | | | | | | Upside potential | 0.02 | 18 | | | | | | | Upside potential ratio | 0.7153 | | | | | | | | Omega-sharpe ratio | 0.6581 | | | | | | | ## 8.7 Sharpe ratio Table of Annualized Return, Annualized Std Dev, and Annualized Sharpe - > data(managers) - > table.AnnualizedReturns(managers[,1:8]) | | HAM1 HAM2 | EMAH | HAM4 | HAM5 | HAM6 | EDHEC LS EQ | |---------------------------|---------------|--------|--------|--------|--------|-------------| | Annualized Return | 0.1375 0.1747 | 0.1512 | 0.1215 | 0.0373 | 0.1373 | 0.1180 | | Annualized Std Dev | 0.0888 0.1272 | 0.1265 | 0.1843 | 0.1584 | 0.0825 | 0.0708 | | Annualized Sharpe (Rf=0%) | 1.5491 1.3732 | 1.1955 | 0.6592 | 0.2356 | 1.6642 | 1.6657 | | | SP500 TR | | | | | | | Annualized Return | 0.0967 | | | | | | | Annualized Std Dev | 0.1500 | | | | | | | Annualized Sharpe (Rf=0%) | 0.6449 | | | | | |