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Abstract

An important task in astroparticle physics is the detection of periodicities in irregularly
sampled time series, called light curves. The classic Fourier periodogram cannot deal with
irregular sampling and with the measurement accuracies that are typically given for each
observation of a light curve. Hence, methods to fit periodic functions using weighted
regression were developed in the past to calculate periodograms.

We present the R package RobPer which allows to combine different periodic functions
and regression techniques to calculate periodograms. Possible regression techniques are
least squares, least absolute deviations, least trimmed squares, M-, S- and τ -regression.
Measurement accuracies can be taken into account including weights. Our periodogram
function covers most of the approaches that have been tried earlier and provides new
model-regression-combinations that have not been used before.

To detect valid periods, RobPer applies an outlier search on the periodogram instead
of using fixed critical values that are theoretically only justified in case of least squares
regression, independent periodogram bars and a null hypothesis allowing only normal
white noise. Finally, the package also includes a generator to generate artificial light
curves.

Keywords: periodogram, light curves, period detection, irregular sampling, robust regression,
outlier detection, Cramér-von-Mises distance minimization, time series analysis, beta distri-
bution, measurement accuracies, astroparticle physics, weighted regression, regression model.

1. Introduction

We introduce the R (R Core Team 2015) package RobPer (Thieler, Rathjens, and Fried
2015), which can be used to calculate periodograms and detect periodicities in irregularly
sampled time series. Our special objective are light curves, which occur in astroparticle
physics and are irregularly sampled times series (ti, yi, si)i=1,...,n consisting of unequally spaced
observation times t1, . . . , tn, observed values y1, . . . , yn and measurement accuracies s1, . . . , sn.
The measurement accuracies si give information about how precise the yi were measured.
They can be interpreted as estimates for the standard deviations of the observed values. The
observed values possibly contain a periodic fluctuation yf with fluctuation period pf and the
irregularly spaced observation times ti are realizations of random variables with a periodically
shaped density.

Such periodicity in the pattern of the observation times is a typical phenomenon, as the
sampling of astroparticle physics’ time series is influenced among others by astronomical
constellations. For example, plotting a histogram of the observation times for the gamma
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Figure 1: Light curve with gamma particle emissions for the very high energy gamma particle
source Mrk 421 (see Tluczykont et al. 2010, and references therein). Panel 1a shows the light
curve, vertical lines at each point show the reported measurement accuracies. Panel 1b depicts
a histogram of the observation times ti modulo the period ps = 27.31. A sine represents the
shape rather well.

particle source Mrk 421 modulo the period ps = 27.31 shows an unequal distribution over a
cycle of this length (see Figure 1). This is due to the fact that observations cannot be sampled
during full moon and the moon period is similar to ps.

So we assume the following model for the observations indexed by i = 1, . . . , n:

Ti = T ?
(i), T ?

1 , . . . , T ?
n ∼ D(ps) i.i.d., (1)

Yi = Yf ;i + Yw;i, (2)

Yf ;i = f

(
Ti

pf

)
, f(ξ) = f(ξ + 1) ∀ξ ∈ R (3)

Yw;i ∼ N (0, σ2
i ), (4)

si : given estimate for σi independent from Y1, . . . , Yn,

where T ?
(i) denotes the ith ordered observation time in T ?

1 , . . . , T ?
n and D(ps) is a periodic

sampling density with period ps. The observation times t1, . . . , tn and the observed values
y1, . . . , yn are realizations of T1, . . . , Tn and Y1, . . . , Yn, respectively. We assume the observa-
tion times to be measured without error. Yf ;i is the systematic periodic component in the
observations, corresponding to an unknown periodic function f and the period pf we are
searching for. Yw;i is additive noise.

To detect a periodic fluctuation with period pf in the observed values yi, it is not possible
to use the standard periodogram of Fourier analysis. This method can only be applied to
time series with equidistant observation times, while light curves are typically irregularly
sampled. A setting-adapted procedure, the Deeming periodogram (Deeming 1975), is not
recommendable either in this case, because it is known to react to a periodicity ps in the
sampling (see Hall and Li 2006).

In order to determine periodicity in light curves, other methods than the classical Fourier
periodogram or the Deeming periodogram should be used. Popular periodogram methods
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in astroparticle physics are for example the Lomb-Scargle periodogram (Scargle 1982) or
the phase dispersion minimization periodogram (Stellingwerf 1978). These and many other
approaches can be generalized to fitting periodic functions to the light curve using least
squares regression and calculating periodogram bars based on SE and SY, where SE is the
remaining variance in the residuals of the fit and SY is the overall variance in the observed
values yi. An even broader class of periodogram methods additionally allows application
of robust regression instead of least squares regression and weighted regression to take the
measurement accuracies si into account.

The function RobPer in our homonymous R package calculates a periodogram of a light
curve based on fitting periodic functions to (ti, yi)i=1,...,n using least squares or a robust
regression technique, optionally taking measurement accuracies si into account using weighted
regression. The coefficient of determination corresponding to the objective function of the
regression technique is used as periodogram bar. This proceeding incorporates analogues
to most of the existing periodograms and introduces several new techniques. Preliminary
implementations of most of these periodogram methods have been compared by Thieler,
Backes, Fried, and Rhode (2013). Here, we explain the usage of the R package RobPer,
which makes improved and extended methods for period detection publicly available.

This article is organized as follows: In Section 2, the usage and the structure of the function
RobPer are explained. Especially, the different periodic functions and regression techniques
are discussed and related to the existing periodogram methods. Diagrams which show how this
R function is implemented in detail are displayed in Appendix A. Section 3 is devoted to the
question how to find valid periods using a periodogram. Thieler et al. (2013) propose robust
fitting of a beta distribution combined with outlier detection. The function betaCvMfit in
the package RobPer performs this. In Section 4, the function tsgen is presented which allows
to generate artificial light curves. Some examples for how to use the package are given in
Section 5. Section 6 concludes with a summary.

The RobPer software package is available from the Comprehensive R Archive Network (CRAN)
at https://CRAN.R-project.org/package=RobPer. Other R packages implementing peri-
odograms of irregularly sampled time series are the packages lomb (Ruf 1999, function lsp),
cts (Wang 2013, function spec.ls) and nlts (Bjornstad 2013, function spec.lomb). They
calculate the Lomb-Scargle periodogram, which is based on the least squares fit of a sine
function. Furthermore, the package GeneCycle (Ahdesmäki, Fokianos, and Strimmer 2012,
function robust.spectrum) fits sine functions using robust M-regression to calculate a peri-
odogram based on the square of the estimated amplitude. None of these functions permits
taking measurement accuracies using weighted regression into account and most of them
(apart from the function spec.lomb) have restrictions concerning the trial periods fitted.

2. Calculate periodograms with RobPer

The R function RobPer calculates a periodogram of a given light curve (ti, yi, si)i=1,...,n. This
is done by fitting a periodic function g to the data (ti, yi)i=1,...,n. The function g has m

parameters entering g linearly. It has a period of 1 and is transformed by g
(

t
pj

)
for each

given trial period (pj)
j=1,...,q

. A simple example is g(t) = sin(2πt)β1 + cos(2πt)β2. The
periodogram bars for the different trial periods are defined as the coefficients of determination
of the respective fits. Using weighted regression with weights 1/si makes it possible to take

https://CRAN.R-project.org/package=RobPer
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Argument Comment

ts ∈ R
n×3 or R

n×2 Light curve (ti, yi, si) or (ti, yi), i = 1, . . . , n ;
If weighting = FALSE the measurement accuracies si column may be omitted.

weighting ∈ {T, F} If TRUE, weighted regression is performed to take into account the si.

periods ∈ R
q
>0 Trial periods p1, . . . , pq.

regression Regression technique (see Section 2.2), possible choices:
"L2", "L1", "LTS", "S", "huber", "bisquare", "tau".

model Periodic fluctuation to be fitted (see Section 2.1), possible choices:
"step", "2step", "sine", "fourier(2)", "fourier(3)", "splines".

steps ∈ N Number of steps per cycle for periodic step functions.
Default: 10

var1 ∈ {T, F} TRUE sets variance estimate to one for weighted M-regression.
Default: weighting

tol ∈ R>0 Precision for convergence criteria.
Used in case of M-regression and in case of LTS regression if LTSopt = TRUE.
Default: 10−3

genoudcontrol ∈ N
3 Settings for genoud (see paragraph about LTS regression in Section 2.2):

max.generations, wait.generations, pop.size

Used if regression = "bisquare" or LTSopt = TRUE & regression = "LTS".
Default: {50, 5, 50}

LTSopt ∈ {T, F} Determines whether the regression result of ltsReg should be optimized.
Default: TRUE if regression = "LTS"

taucontrol ∈ N
4
× {T, F} Settings for τ -regression:

N, kk, tt, rr, approximate.
Used if regression = "tau", rr only necessary for approximate = TRUE.
Default: {100, 2, 5, 2, FALSE}

Scontrol ∈ N
3
×R

2
>0 ×N Settings for S-regression:

N, kk, tt, b, cc, seed.
Used in case of regression = "S".
seed can be fixed in order to get reproducible results or can be left empty.
Default: {N, 2, 5, 0.5, 1.547, NULL}
with N = 50 if weighting = FALSE and N = 200 if weighting = TRUE.

Return value

periodogram ∈ R
q Vector of periodogram bars belonging to the trial periods.

Possibly warnings

Table 1: Arguments and return values of the function RobPer. {T, F} means {TRUE, FALSE}.

the measurement accuracies into account. As the shape of the true fluctuation f in Equation 3
is usually unknown, we will typically have g 6= f .

Table 1 gives an overview over all arguments of RobPer. The possible shapes of the function
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g that may be fitted by RobPer are presented in Section 2.1. Fitting them using least squares
regression is in many cases equivalent to already existing periodogram methods (see Table 2
or Thieler et al. 2013 for a more detailed discussion).

In addition to least squares regression, RobPer offers a selection of robust regression techniques

to fit g

(
t
p j

)
, see Section 2.2. All regression techniques implemented in RobPer are based on

minimizing an objective value

SE = ζ (y − Xβ) (5)

with respect to the unknown parameter value β ∈ R
m, where X ∈ R

n×m is the design

matrix containing the known components of g
(

t
p

)
at the measurement times t1, . . . , tn with

p being a trial period and y the vector of observations y1, . . . , yn. In the simple example
mentioned above, the ith row of X has the elements sin(2πti/p) and cos(2πti/p). The function
ζ : Rn → [0, ∞[ is chosen according to the regression method, e.g., ζ(r) =

∑n
i=1 r2

i for least
squares regression. Using the same regression technique, the location µ of the observations
y1, . . . , yn can be estimated minimizing

SY = ζ (y − iµ) (6)

with i = 1n being an n-variate vector of ones in case of unweighted regression. The peri-
odogram bar can then be calculated as R2 = 1 − SE

SY . This definition for the coefficient of
determination does not only apply for least squares regression, but also for least absolute
deviation- (L1) and M-regression in general (see Maronna, Martin, and Yohai 2006, p. 171)
as well as for S-, least trimmed squares- (LTS) and τ -regression (see Croux and Dehon 2003).

If it is intended to take given measurement accuracies s1, . . . , sn into account, weighted re-
gression can be performed. In this case, the terms y, X and i in the two fitted models

y = Xβ + ε (full model), (7)

y = iµ + ε (location model), (8)

with ε ∈ R
n, εi ∼

i.i.d
N (0, σ2), (9)

are replaced by ỹi = yi/si, X̃ij = Xij/si and ĩi = ii/si = 1n/si, respectively. In the following,
we will focus on the case of unweighted regression and only point out the handling of weighted
regression, when both procedures differ.

Table 2 displays periodogram methods following the principle of fitting periodic functions. Up
to now, weighted regression or robust regression in affiliation with periodic step functions has
only been performed by Thieler et al. (2013), though the unweighted least squares versions
belong to the most popular periodogram methods in this area of research. S- or τ -regression,
which are also available in RobPer, have not been investigated up to now in this context.

2.1. Periodic function fitted: Argument model

For each trial period pi, i ∈ {1, . . . , q} (given by the argument periods, see Table 1), a
periodic function (defined by model) is fitted to the light curve (using regression technique
regression). Implemented periodic functions include step functions, sine functions, Fourier
series and spline functions.
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Model Regression technique Publication
(Name of the method)

step L2 Leahy et al. (1983)
(epoch folding)

L2 Schwarzenberg-Czerny (1989)
(analysis of variance)

L2, L1, huber, bisquare Thieler et al. (2013)

2step L2 Stellingwerf (1978)
(phase dispersion minimization)

L2, L1, huber, bisquare Thieler et al. (2013)

sine L2 Scargle (1982)
(Lomb-Scargle)

L2 Zechmeister and Kürster (2009)
(generalized Lomb-Scargle)

L2 Cumming et al. (1999)
(floating mean)

L2 Ferraz-Mello (1981)
(date compensated Fourier transform*)

L2 Reegen (2007)
(SigSpec*)

L1 Li (2009)*, Li (2010)*
LTS Ahdesmäki et al. (2007)*
bisquare Ahdesmäki et al. (2007)*
huber Zhang and Chan (2005)*
L2, L1, huber, bisquare Thieler et al. (2013)

fourier(2), L2 Hall et al. (2000)
fourier(3) L2 Palmer (2009)

(Fast-χ2)

L2, L1, huber, bisquare Thieler et al. (2013)

splines L2 Akerlof et al. (1994)
L2 Hall et al. (2000)
L2 Oh et al. (2004)

(generalized cross validation)
huber Oh et al. (2004)

(robust cross validation)
L2, L1, huber, bisquare Thieler et al. (2013)

Table 2: Published periodogram methods that rely on fitting a periodic model g to a light
curve using a regression technique. Models (see Section 2.1): periodic step functions and
pairwise overlapping step functions (step and 2step), the sine function (sine), Fourier se-
ries of second and third degree and periodic spline functions (fourier(2), fourier(3) and
splines). Regression techniques: See Table 3 for labels. The underlined methods can take
into account measurement accuracies using weighted regression. The periodogram bars of
methods marked by * do not base on SE or SY, but on the parameter vector of the function
fitted (e.g., squared amplitude).

Step functions
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Many periodogram methods from astroparticle physics such as the epoch folding periodogram
(Leahy et al. 1983) or the analysis of variance periodogram (Schwarzenberg-Czerny 1989) can
be interpreted as fitting a step function to a light curve (see Schwarzenberg-Czerny 1998 or
Thieler et al. 2013). They use periodogram bars related to R2, n and the numbers of steps
per cycle.

Another typical periodogram method in astroparticle physics is the phase dispersion mini-
mization periodogram (PDM, Stellingwerf 1978). Depending on the particular setting the
periodogram bar in many cases equals the mean of the coefficients of determination of two
fits with different step functions with staggered jumps (see Thieler et al. 2013 or Thieler 2013
for more details).

RobPer provides two options to fit periodic step functions. The number of steps per cycle is
controlled by the argument steps. Using model = "step", a single periodic step function
with steps of equal width is fitted for each trial period. Performing regression = "L2",
model = "step" is equivalent to calculating an epoch folding- or analysis of variance peri-
odogram. Using model = "2step", two different step functions with opposed jump times
and steps of equal width are fitted separately and the periodogram bar is the mean of both
coefficients of determination. This is the only option where two periodic functions are fitted
for one trial period. It is included to provide the PDM periodogram with overlapping bins.

Sine functions

Sine functions are periodic and quite popular for investigating periodicity. The classic peri-
odogram of Fourier analysis for equally sampled time series represents the explained variance
SE of a least squares fit of a sine model to the zero-centered time series. The Lomb-Scargle
periodogram (Scargle 1982) works equivalently for unequally sampled time series.

As the mean of an irregularly sampled time series is not identical to the least squares fit
of an intercept in a sine model, more recent methods use the uncentered data and fit a
model with intercept, e.g., the floating mean periodogram by Cumming et al. (1999) and
the generalized Lomb-Scargle periodogram by Zechmeister and Kürster (2009). Performing
regression = "L2", model = "sine" is equivalent to calculating those periodograms and in
case of equidistant observation times also equivalent to the Fourier periodogram.

Some other methods as the Date Compensated Fourier Transform by Ferraz-Mello (1981),
the SigSpec periodogram by Reegen (2007) or robust approaches by Ahdesmäki et al. (2007)
and Zhang and Chan (2005) apply the same regression step as the floating mean- and the
generalized Lomb-Scargle periodogram, but use the squared amplitude of the fitted sinusoid
as the periodogram bar. In case of regular sampling, this is another representation of the
classical periodogram of Fourier analysis. As the amplitude is a concept closely related to
trigonometric functions, RobPer uses the coefficient of determination only, to obtain a general
method independent of the periodic function chosen.

Further periodic functions

Recently, fitting more complex periodic functions has been proposed for periodograms. Fourier
series (see Hall et al. 2000 and Palmer 2009) and periodic splines (see Akerlof et al. 1994,
Hall et al. 2000 and Oh et al. 2004) may provide better adaptivity compared to sine functions,
but still present a continuous function, unlike the step function. RobPer offers the possibility
to fit Fourier series of second (model = "fourier(2)") or third (model = "fourier(3)")
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Regression technique regression R function (package)
Least squares "L2" lm (stats, R Core Team 2014)
Least absolute deviations "L1" rq (quantreg, Koenker 2015)
Least trimmed squares "LTS" ltsReg (robustbase, Rousseeuw et al. 2015)
M-regression
. . . with Huber function "huber" Own implementation.
. . . with Bisquare function "bisquare" lmrob..M..fit (robustbase, Rousseeuw et al. 2015)
S-regression "S" Slightly modified code from Salibian-Barrera and Yohai

(2006).
τ -regression "tau" Slightly modified code from Salibian-Barrera et al.

(2008).

Table 3: Regression techniques implemented in RobPer and R functions used to perform the
regression technique. For more details see Section 2.2.

degree or a periodic spline function with four knots per cycle (model = "splines"). For the
latter option, B-splines are generated using the function spline.des from the package splines

(Bates and Venables 2016).

2.2. Regression techniques: Argument regression

Instead of fitting the models mentioned above by the popular least squares regression (see
Table 2), RobPer also allows application of six robust regression techniques, see Table 3.
Robust regression techniques like least absolute deviations, least trimmed squares (Rousseeuw
and Yohai 1984) and M-regression (Huber and Ronchetti 1981) have already been used to
fit sines (evaluating the squared amplitude) by Zhang and Chan (2005), Ahdesmäki et al.
(2007), Li (2009) and Li (2010). M-regression with the Huber function was applied to fit
periodic splines by Oh et al. (2004). Thieler et al. (2013) use least absolute deviations and
M-regression and all models described in this article to calculate periodograms based on the
coefficient of determination.

To the best of our knowledge, S- (Rousseeuw and Yohai 1984) and τ -regression (Yohai and
Zamar 1988) have not been used before in periodogram calculation. For the latter, RobPer

uses the algorithms Fast-S from Salibian-Barrera and Yohai (2006) and Fast-τ from Salibian-
Barrera, Willems, and Zamar (2008) and slightly modified versions of the code distributed
with the respective publication (see the respective paragraphs entitled in Section 2.2). The
following paragraphs outline the algorithms used by RobPer for calculating the different re-
gression estimators. For the basic definitions of these regression techniques we refer to the
literature mentioned above and the book by Maronna et al. (2006).

LTS regression

The R function ltsReg from package robustbase (Rousseeuw et al. 2015) is used to perform
LTS regression in RobPer. In preliminary studies we observed that the function can have
problems finding a good solution for some of the candidate periods. This results in coeffi-
cients of determination which are too small or sometimes even negative. By setting LTSopt

= TRUE, it is possible to let RobPer further optimize the solution of ltsReg by using the
R function genoud from package rgenoud (Mebane, Jr. and Sekhon 2011). This function
uses an evolutionary approach to improve the given solution, locally optimizing the tem-
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porarily best solutions in a gradient descent algorithm. Further arguments pop.size (size of
one generation), max.generations (maximum of generations before stopping the algorithm)
and wait.generations (maximum number of generations to wait for an improvement of the
optimization criterion) control the behavior of the algorithm and can be set in RobPer by
the argument genoudcontrol (see Table 1). The argument tol controls the precision for
convergence criteria.

A further problem we observed is that ltsReg sometimes aborts the fit. However, it is
typically able to perform the fit if it is run again. In case of a crash, RobPer calls ltsReg

up to three times. After the third failed attempt, the respective periodogram bar is set to
NA, or a least absolute deviation regression is performed. The latter is done, if the ltsReg

regression result should be further processed, using the genoud algorithm or using the LTS
result as initial estimate for an M-regression fit (see next paragraph).

M-regression

In case of M-regression, a periodogram bar, i.e., the coefficient of determination R2 = 1 − SE
SY

is calculated from the values

SE = min
β

n∑

i=1

ρ

(
yi − x>

i β

σ̂

)
(10)

and

SY = min
µ

n∑

i=1

ρ

(
yi − iiµ

σ̂

)
, (11)

where σ̂ is an estimate of the error scale σ in the regression model. As explained above,
Equations 10 and 11 represent the minimization criteria of the fits of the chosen periodic
fluctuation (SE in Equation 5) and of a location estimate (SY in Equation 6), respectively. The
function ρ is a distance measure. The vector i consists of ones in case of unweighted regression.
As mentioned before, in case of weighted regression, yi, ii and the rows xi of the design matrix
are standardized by the measurement accuracy si (see Figure 12 in Appendix A).

The value σ̂ is obtained in an initial estimation of the periodic fluctuation, calculating a scale
estimate of the fitted residuals. In principle, one could use a different estimate of σ calculated
from fitting only an intercept in Equation 11, but Maronna et al. (2006, p. 171) recommend
using the scale estimate from the (larger) regression model. In our context this means that
SY depends on the trial period and cannot be calculated globally. On the other hand this
ensures that the regression model Y = Xβ+ε, ε ∼ N (0, σ2) is a generalization of the intercept
model Y = iµ + ε, ε ∼ N (0, σ2) and thus SE ≤ SY and R2 ≥ 0.

So for this regression technique, an implementation is needed where the scale estimate can be
fixed in advance. For M-regression using the biweight function, the function lmrob..M..fit

from package robustbase by Rousseeuw et al. (2015) is used. This R function includes Huber
M-regression only as a limiting case of Hampel M-regression with all but one of its tuning
constants set to very large values. In other R functions known to us for M-regression (rlm

from package MASS byVenables and Ripley 2002, iwlsm from package RSiena by Ripley,
Boitmanis, and Snijders 2013 and robustregBS and robustRegH from package robustreg by
Johnson 2015), the scale estimate cannot be fixed in advance. Hence M-regression using the
Huber function is newly implemented for RobPer. Like the functions specified before, this
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implementation is based on an iteratively reweighted least squares (IRWLS) approach (see
Maronna et al. 2006, pp. 104–105), and meets our special requirements. For M-regression
using the biweight function, the implementation makes also use of the function genoud from
package rgenoud (see previous paragraph) to overcome possible problems with local optima.

As noted above, weighted regression scales observed values and design matrices by the mea-
surement accuracies. The variance of the error is expected to be about one then. Hence it
can be reasonable to set σ̂ to one. This can be done in RobPer setting the argument var1 to
TRUE, as is recommendable in our experience in case of weighted M-regression.

To calculate a periodogram bar using M-regression with IRWLS, three initial estimates are
needed: A scale estimate σ̂ (if not set to one) and initial location estimates β̂(0) and µ̂(0)

for β and µ. The initial estimates should be obtained using robust techniques. As proposed
by Maronna et al. (2006, p. 105) we use the median (weighted if the si shall be taken into
account) to initially estimate µ. For β, LTS regression (see previous paragraph) is used. It has
a high breakdown point and is appropriate in situations with many observations not agreeing
with the best fit. This situation will often occur in periodogram calculation, as many trial
periods and thus many wrong models are fitted to the light curve. The scale estimate σ̂ is
calculated as the (weighted) median of the residuals of the LTS fit.

S-regression

In case of regression = "S", RobPer uses the Fast-S algorithm by Salibian-Barrera and
Yohai (2006) to perform S-regression for fitting the periodic function efficiently. The algorithm
starts with a set of N parameter candidates, locally optimizes them using kk iterations, then
optimizes the tt best of these candidates until convergence and finally chooses the best
parameter candidate.

The R function FastS used in RobPer is a slightly modified version of the function fast.s

published by Salibian-Barrera and Yohai (2006). It was changed in order to work more
efficiently in the context given here, especially when fitting step functions, and to specify one
parameter candidate in advance. This candidate is set to

β̂µ =

{
(µ̂, . . . , µ̂)> ∈ R

m model ∈ {"step", "2step", "splines"}
(µ̂, 0, . . . , 0)> ∈ R

m model ∈ {"sine", "fourier(2)", "fourier(3)"}
(12)

where m denotes the dimension of the linear model of the periodic function and µ̂ denotes the
location estimate. β̂µ arises from plugging in the fit obtained from the location model into
the parametrization of the full model. This ensures that fitting the full periodic function will
not give a worse fit than fitting only a location parameter. Otherwise it could happen that
SY < SE and the coefficient of determination (which has to be in [0, 1]) would be negative.

Further changes in FastS are:

1. The arguments k and best.r are renamed to kk and tt to unify notation as in FastTau.
The arguments int, N, kk, tt, b, cc and seed are merged to a list Scontrol, which is
also an argument of RobPer (except for int, which is fixed in RobPer).

2. If an intercept column is added to the design matrix (using Scontrol$int = TRUE),
this is done before the dimension of the design matrix is determined (instead of doing
this first and redoing it in case of Scontrol$int = TRUE).
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3. To find a subsample in general position, regressors x>
i? are sampled from the set of rows

of the design matrix X ignoring the frequency of occurrence in X. For each regressor
x>

i? , one value yi is then sampled from the entries of y belonging to this regressor. In
case of a step function to be fitted, one observation per step is drawn to get a subsample.

4. If no subsample can be found in 100 trials, FastS returns NA. RobPer then releases a
warning, but can calculate further periodogram bars for other trial periods.

5. The internal functions loss.S, re.s, f.w, scale1, our.solve and rho are now defined
outside FastS. Otherwise R would have to redefine them for each periodogram bar.

6. The subfunction norm is replaced by the function norm(..., "2") from the package
base (R Core Team 2016).

7. The labels of the return values are changed for better interpretation.

τ -regression

In case of regression = "tau", τ -regression is used to fit the periodic function. RobPer

uses the Fast-τ algorithm of Salibian-Barrera et al. (2008) which works according to the same
optimizing principle as FastS for S-regression (see previous paragraph), i.e., optimizing N

candidates in kk iterations and further optimizing the tt best of these until convergence.
Since computation of the objective value is expensive, it is possible to approximate it with
rr iteration steps when choosing approximate = TRUE. For more details see Salibian-Barrera
et al. (2008).

The R function FastTau used in RobPer is a slightly modified version of the R code published
in Salibian-Barrera et al. (2008) with similar changes as in FastS compared to fast.s (see
previous paragraph). The changes are:

1. A candidate for βµ, see Equation 12, is allowed.

2. Arguments N, kk, tt, rr and approximate are combined to a list taucontrol, which is
also an argument for RobPer.

3. Subsamples in general position are found as in FastS (change 3 in the previous para-
graph).

4. If no subsample can be found, FastTau returns NA instead of a break using the stop func-
tion. This allows RobPer to release a warning, while calculating further periodogram
bars for other trial periods.

5. A block of code used several times to check new regression parameter candidates for
providing the best optimization value so far has been modularized into the subfunction
checkbest.

6. Due to rounding errors, it may happen in the IRWLS algorithm that negative values
close to zero occur, although they have to be non-negative by theory. This is avoided
by setting such values to zero.

7. The subfunction randomset is replaced by the R function sample from the base package
as both functions fulfill the same task and sample is faster.



12 RobPer: Calculating Periodograms Based on Robust Regression in R

8. The labels of the return values are changed for better interpretation.

3. Fit beta distributions with betaCvMfit

In this section we present the function betaCvMfit, which robustly fits a beta distribution
to a sample using Cramér-von-Mises (CvM) distance minimization. The function is adapted
from R code by Brenton R. Clarke for fitting a gamma distribution (see Clarke, McKinnon,
and Riley 2012) using CvM distance minimization. Section 3.1 motivates the application of
this function, while its usage is explained in more detail in Section 3.2.

3.1. Motivation

After a periodogram is calculated, one might be interested in the automatic detection of
significant periods. A period shall be called significant, if the respective periodogram bar is
atypical from the distribution of the applied criterion under the null hypothesis of no periodic
fluctuation. To determine significance, this distribution needs to be known or estimated.
Let Qα be the α-quantile of this distribution. Assuming independent identically distributed
periodogram bars Per(p1), . . . , Per(pq) we get

P
(

max
(

Per(p1), . . . , Per(pq)
) ≥ Q q

√
1−α

)
= α. (13)

A single periodogram bar calculated as described in Section 2 using unweighted least squares
regression is B(m−1

2 , n−m
2 )-distributed, where B denotes the beta distribution and m is the

dimension of the model. This result can be found in Schwarzenberg-Czerny (1998) or easily
be deduced from Seber and Lee (2003, p. 110) and Gupta and Nadarajah (2004, p. 51).
Already small violations of the assumptions made about the method or the light curve disturb
this proceeding. In this work, we consider weighted and robust regression in addition to
ordinary least squares. Besides, we have to take into account small deviations from our
model assumptions like bad estimates si. An example is shown in Figure 2. Panel 2a shows
the weighted least squares periodogram (using a sine model) of a light curve only consisting
of white noise. The observed values were generated as

yi = yw;i + c · yr;i, i = 1, . . . , n (14)

with yw;i and yr;i being realizations from

Yw;i ∼ N (0, s2
i ), (15)

Yr;i ∼ N (0, 1). (16)

The value of si is given for all i, and c is chosen to fulfill

var(c · yr)

var(yw) + var(c · yr)
= 0.2, (17)

where var() denotes the empirical variance. This means, there is roughly an extra 20 percent
noise which is not explained by the measurement accuracies. Evidently, no periodogram bar
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Figure 2: Example illustrating that a predefined B
(

m−1
2 , n−m

2

)
distribution is sometimes not

flexible enough if the model restrictions are slightly violated (see text for details). Panel 2a
shows the periodogram of a light curve not completely following the assumed data model with
the q

√
0.95 quantile of a B(m−1

2 , n−m
2 ) distribution (dashed line). Panel 2b shows a histogram

of the periodogram bars, with the density of the B(m−1
2 , n−m

2 ) (dashed) and the CvM-fitted
beta distribution with parameters 0.8 < 1 = m−1

2 and 40.18 < 248.5 = n−m
2 (solid).

is outstanding, but using the q
√

0.95 quantile of a B(m−1
2 , n−m

2 ) distribution (dashed line),
several periods are found automatically.

To circumvent these problems, Thieler et al. (2013) propose to relax the assumption of a

predefined B
(

m−1
2 , n−m

2

)
-distribution and only assume that the periodogram values can be

approximated by any beta distribution. As peculiar periods are expected to show up as
outliers, robustly fitting a B(θ1, θ2)-distribution to Per(p1), . . . , Per(pq) is proposed. The
authors use CvM distance minimization for this, which has been recommended by Clarke
et al. (2012) for fitting gamma distributions in the presence of outliers. The CvM is defined
as

∫ ∞

0
(Fn(u) − Fθ(u))2 dFθ(u) =

1

n

n∑

i=1

(
Fθ(u(i)) − i − 0.5

n

)2

+
1

12n2
, (18)

where u(1), . . . , u(n) is the ordered sample, Fn is the empirical distribution function and Fθ is
the distribution function of B(θ1, θ2).

Panel 2b shows the predefined (solid) and the CvM-fitted (dashed) beta density for a peri-
odogram calculated from the only-noise-data described above. While the q

√
0.95 quantile of

the predefined distribution is about 0.03, the related quantile of the fitted distribution is 0.16
and no period is detected automatically.

The above approach falls within the framework of outlier detection described by Davies and
Gather (1993) and is successfully used by Thieler et al. (2013) in the context discussed here.
However, it assumes independent periodogram bars. This may cause problems when the
periodogram peaks are broad (because the assumption of independency of the periodogram
bars is violated): Then it can be hard for the automatism to find any outlying periodogram
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value, as there are many high values. One might try to ease this problem choosing a selection
of trial periods with large distances or considering only the periods referring to local maxima
in the periodogram as (roughly) independent trial periods (modifying and expanding an
approach of Zechmeister and Kürster 2009) and fit the beta distribution to them using a
CvM fit.

Simulations indicate that the beta distribution describes the distribution under the null hy-
pothesis rather well for the different periodograms. Nevertheless, in the following we will call
detected periods “valid” and not “significant” to stress that our approach to detect periods
lacks a theoretical justification.

3.2. The R function betaCvMfit

The function betaCvMfit fits a B(θ1, θ2)-distribution with mean θ1/(θ1 + θ2) to a sample
vector data using CvM distance minimization and has been applied in Thieler et al. (2013)
for fitting beta distributions to periodograms to detect valid periods.

As it may happen that the periodogram bars become negative due to fitting problems, the
function sets all negative entries of data to zero. If the logical argument CvM is set to TRUE,
a CvM fit is calculated. As initial values for the optimization, the moment estimates of the
beta distribution

θ̂1 = − x̄ · (−x̄ + x̄2 + ŝ2)

ŝ2
, θ̂2 =

θ̂1 − θ̂1 · x̄

x̄
(19)

are used. If the argument rob is set to TRUE, the median and the median absolute deviation
from the median (MAD) are used instead of the arithmetic mean for x̄ and the standard
deviation for ŝ, respectively. In case of a very small estimate ŝ (which happens particularly
if ŝ is the MAD), the function stops as it is not possible to calculate the estimates θ̂1 and θ̂2

shown above. The parameters of a beta distribution are strictly positive. Since it can happen
that θ̂1 or θ̂2 are negative, the initial estimates are clipped to be at least 0.00001. If CvM is set
to FALSE, the CvM distance is not optimized, and the initial estimates θ̂1 and θ̂2 are returned.

Figure 3 shows the different fits varying the arguments CvM and rob for 50 B(4, 15)-distributed
observations containing 10 percent outliers between 0.8 and 1.

4. Generate light curves with tsgen

To investigate our periodogram methods in simulations, we implemented the R function tsgen

to generate artificial light curves. A preliminary version of this function is used in Thieler
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Figure 3: Gray-scale-version of the example for betaCvMfit given in the RobPer manual:
Histogram of 45 B(4, 15)-distributed observations and 5 outliers uniformly distributed between
0.8 and 1. The black solid line shows the B(4, 15)-distribution, the other curves show different
fits using betaCvMfit (in case of CvM = TRUE, the different settings for rob lead to the same
result).

et al. (2013). The light curves (ti, yi, si)i=1,...,n are generated as realizations of the model

Ti = T ?
(i), T ?

1 , . . . , T ?
n ∼ D(ps), (20)

Yi =

{
Yf ;i + Yw;i + Yr;i, Yi “behaves regularly”

Y ?
i , Yi is an outlier

, (21)

Yf ;i = f

(
Ti

pf

)
, f(ξ) = f(ξ + 1) ∀ξ ∈ R (22)

Yw;i ∼ N (0, σ2
i ), (23)

si =

{
given estimate for σi independent from Y1, . . . , Yn, si “behaves regularly”

s?
i , si is an outlier

, (24)

where T ?
(i) denotes the ith ordered observation time in T ?

1 , . . . , T ?
n and D(ps) is a periodic

sampling density with period ps. The noise component Yr is a power law noise (see Timmer
and König 1995) with power exponent α and is white noise in case of α = 0. Inserting
another noise component and two types of outliers, this extended model allows to generate
data violating the model introduced in Section 1.

The function calls several autonomous subfunctions one by one which perform individual
simulation steps. These are:

1. Generate a sampling t1, . . . , tn (using sampler, see Section 4.1).

2. Generate a periodic signal yf ;1, . . . , yf ;n (using signalgen, see Section 4.2).

3. Add noise yw;1, . . . , yw;n with related measurement accuracies s1, . . . , sn and a noise
component yr;1, . . . , yr;n unrelated to the si (using lc_noise, see Section 4.3).
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4. Disturb the light curve replacing measurement accuracies si by outliers, or replacing
observations yi = yf ;i+yw;i+yri

by aperiodic features (using disturber, see Section 4.4).

Table 4 lists all arguments for the subfunctions. The gray-shaded arguments are also argu-
ments for tsgen, which passes them to the respective subfunction.

4.1. Generate sampling using sampler

The R function sampler is used to sample observation times t1, . . . , tn in the interval [0, ns ·ps]
with a possibly periodic sampling of period ps. The sampling pattern depends on the argument
ttype (see Table 4). If a periodic pattern is chosen, the observed time interval covers ns cycles
of it.

In case of ttype = "equi", the observation times are equidistantly sampled with ti = ips·ns

n
.

For ttype = "unif", the observation times are drawn independently from a uniform distri-
bution on [0, ns · ps]. Both these sampling schemes are aperiodic, the sampling period ps only
influences the duration tn − t1 of the sampling.

For ttype = "sine" and ttype = "trian", the observation times are sampled from a peri-
odic density with sampling period ps. First, observation cycles z?

i are drawn from a discrete
uniform distribution on {1, . . . , ns} to determine the cycle the ith observation is part of.
Second, observation phases ϕ?

i are sampled with density

dsine(x) = sin(2πx) + 1 (for ttype = "sine") (25)

or dtrian(x) =

{
3x, 0 ≤ x ≤ 2

3 ,

6 − 6x, 2
3 < x ≤ 1

(for ttype = "trian"). (26)

To sample from dsine, the function BBsolve from package BB (Varadhan and Gilbert 2009),
is used. The unsorted observation times t?

i are then generated using

t?
i = ϕ?

i + (z?
i − 1)ps. (27)

The sine-shaped density is motivated by sampling patterns observed in real data, see Panel 1b.
The triangular shaped density offers an alternative periodic sampling design. Separately
sampling observation cycle and phase was proposed by Hall and Yin (2003).

As the result, sampler returns the ordered observation times t1, . . . , tn.

4.2. Generate periodic signal using signalgen

To generate the periodic component in the observed values, the R function signalgen is
used. The values yf ;1, . . . , yf ;n with fluctuation period pf at observation times t1, . . . , tn are
generated using

yf ;i = f

(
ti

pf

)
, i = 1, . . . , n. (28)

The observation times, the fluctuation period and the shape of f are arguments of signalgen

(see Table 4). In case of ytype = "const", f is defined as

f(t) = 0, (29)
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Argument Subfunction Comment

ps ∈ R>0 sampler,
disturber

Sampling period ps. Default 1.

ncycles ∈ N sampler Number ns of sampling cycles.

npoints ∈ N sampler Sample size n.

ttype sampler Distribution D(ps) of the unsorted ob-
servation times. Options are: "equi"

(equidistant sampling), "unif" (uniform
sampling), "sine" (sine-shaped density,
see Section 4.1) and "trian" (triangular
density, see Section 4.1).

tt ∈ R
n signalgen,

lc_noise,
disturber

Observation times t1, . . . , tn, e.g., return
value from sampler.

pf ∈ R>0 signalgen Fluctuation period pf . Default 1.

ytype signalgen Type of periodic fluctuation f . Op-
tions: "const" (constant), "sine" (sine),
"trian" (triangular function) and "peak"

(peak function).
sig ∈ R

n lc_noise Values yf ;1, . . . , yf ;n of the periodic fluctu-
ation, e.g., return value from signalgen.

SNR ∈ R>0 lc_noise Relation var(yf )/ var(yw + yr).

redpart ∈ [0, 1] lc_noise Fraction var(yr)/(var(yw) + var(yr)) of
noise not related to measurement accura-
cies.

alpha lc_noise Power law coefficient of the noise compo-
nent yr. Set to zero for yr;1, . . . , yr;n ∼

i.i.d.

N (0, σ2).
y ∈ R

n disturber Observed values y1, . . . , yn, e.g., return
value from lc_noise.

s ∈ R
n
>0 disturber Measurement accuracies s1, . . . , sn, e.g.,

return value from lc_noise.

s.outlier.fraction ∈ [0, 1] disturber Fraction of measurement accuracies to be
replaced by outliers.

interval ∈ {TRUE, FALSE} disturber If TRUE, the yi belonging to a random time
interval are disturbed.

Table 4: Arguments for the subfunctions of tsgen. See the respective section for more details.
Gray-shaded values are also arguments for tsgen, which passes the values to the respective
subfunction. “var” denotes the empirical variance.

so there is no (periodic) fluctuation. This setting can be used to investigate the false alarm
probability of a period detection method. In case of ytype = "sine", f is defined as

f(t) = sin

(
2πt

pf

)
. (30)
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This is a typical assumption in the literature. For ytype = "trian",

f(t) =

{
3ϕ1(t), 0 ≤ ϕ1(t) ≤ 2

3

6 − 6ϕ1(t), 2
3 < ϕ1(t) ≤ 1

(31)

with ϕ1(t) = t mod 1 = (t − btc) is used. This triangular shaped function was originally
implemented in order to be able to choose between different periodic shapes. The light curve
observed for CoRoT ID 0105288363 (Chadid et al. 2011) shows that functions with a similar
shape are quite realistic. When choosing ytype = "peak", yf is generated using

f(t) =





9 exp

(
−3p2

f

(
ϕ1(t) − 2

3

)2
)

, 0 ≤ ϕ1(t) ≤ 2
3

9 exp

(
−12p2

f

(
ϕ1(t) − 2

3

)2
)

, 2
3 < ϕ1(t) ≤ 1

. (32)

This function mostly shows values close to zero and large values for only one time unit per
cycle. This “peak” occurring in each cycle has an asymmetric shape.

As the result, signalgen returns the periodic component yf ;1, . . . , yf ;n of the observed values.

4.3. Add noise and measurement accuracies using lc_noise

The R function lc_noise is used to generate measurement accuracies s1, . . . , sn and add
noise to a periodic fluctuation (see Table 4). The measurement accuracies are sampled from
a gamma(3, 10) distribution. This choice is motivated by real data from Tluczykont et al.
(2010). As shown in Equation 4, the noise component yw = (yw;1, . . . , yw;n)> is a realization
of Yw with Yw;i ∼ N (0, s2

i ).

A second noise component yr does not depend on the si. It is generated as red noise, i.e.,
following a power law with power law index α. For α = 0 we get white noise. Flicker noise
(pink noise) is generated using α = 1 and brown noise using α = 2. The power law noise is
generated using subfunctions TK95_uneq and TK95. The latter generates an equidistant time
series of power law noise according to Timmer and König (1995). For irregular observation
times, a noise series resulting from TK95 is used and an unequally sampled noise series is
generated following Uttley, McHardy, and Papadakis (2002).

The noise components are scaled so that the variance of the yr;i has approximately the pro-
portion redpart in the overall noise variance and that SNR is the ratio var(yf )/ var(yw + yr),
where var(x) is the empirical variance of vector x. Note that the white noise components’
variances are exactly s2

i , so that the si are not estimates but true values. In this sense,
the measurement accuracies of a generated light curve are more informative for our artificial
data than for real light curves, where the measurement accuracies are estimates. Allowing
for a second noise component makes it possible to lower the information of the measurement
accuracies with respect to the overall noise in the observed values.

The function lc_noise returns the observed values yi = yf ;i + yw;i + yr;i, i = 1, . . . , n.

4.4. Disturb light curve using disturber

The last subfunction applied in tsgen is disturber, which can be used to disturb a given light
curve (see Table 4). It replaces a given fraction of measurement accuracies by the smaller value
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s?
i = 1

2 min(s1, . . . , sn), i in a subset of {1, . . . , n}. As small measurement accuracies stand for
precise observations, the influence of observations with disturbed measurement accuracies s?

i

rises in case of a weighted fit. For unweighted regression, this type of disturbance does not
affect the result of the fit.

Optionally, disturber also replaces observed values yi by atypical values. For this, a time
interval [tstart, tstart + 3ps] within the interval [t1, tn] is randomly chosen and all observed
values belonging to this time interval are replaced by a peak function:

y?
i = 6 ỹ0.9 φ

(
ti − tstart − 1.5ps

ps

)/
φ(0) ∀ i : ti ∈ [tstart, tstart + 3ps], (33)

where φ denotes the density of the standard normal distribution. If the yi are intended to be
disturbed and the light curve is shorter than 3ps, the function will stop with an error message.

The function returns the modified vectors y = (y1, . . . , yn)T and s = (s1, . . . , sn)T. If the
option to change y values is not used (see Table 4) and the fraction of outlying measurement
accuracies is set to zero, y and s are returned unchanged.

5. Application

In this section, we give examples how to use the RobPer package for light curve analysis. We
start with an artificial example, also given in the manual, and then analyze some real data.

5.1. Artificial example

To generate an artificial light curve, tsgen can be used:

R> library("RobPer")

R> set.seed(22)

R> lightcurve <- tsgen(ttype = "sine", ytype = "peak", pf = 7,

+ redpart = 0.1, s.outlier.fraction = 0.1, interval = TRUE,

+ npoints = 200, ncycles = 25, ps = 20, SNR = 3, alpha = 0)

This light curve has a sine-shaped sampling (ttype) with sampling period 20 (ps) and covers
a time interval of about 25 sampling cycles (ncycles), so 500 time units. It consists of 200
observations (npoints) and the observed values contain a peak-shaped periodic fluctuation
(ytype) with fluctuation period 7 (pf). The measurement accuracies are related to about 90
percent of the noise component (1-redpart), the rest of the noise is white as well (alpha). The
empirical variance of the periodic fluctuating component in the observed values is three times
larger than the empirical variance in the noise component (SNR). The light curve contains 10
per cent outliers in the measurement accuracies (s.outlier.fraction) and atypical observed
values (interval).

Alternatively, the functions sampler, signalgen, lc_noise and disturber can be used to
generate the same light curve, see Section 4.

Sampling observation times:

R> set.seed(22)

R> tt <- sampler(ttype = "sine", npoints = 200, ncycles = 25, ps = 20)
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Figure 4: Artificial light curve in Panel 4a with vertical bars marking the si. Plotting time
axis modulo 7 in Panel 4b reveals the periodic fluctuation of pf = 7. Histogram and sampling
density of the observation times modulo 20 in Panel 4c shows the sampling periodicity of
ps = 20.

Generate periodic fluctuation:

R> yf <- signalgen(tt, ytype = "peak", pf = 7)

Add noise and scale signal to the right SNR:

R> temp <- lc_noise(tt, sig = yf, SNR = 3, redpart = 0.1, alpha = 0)

R> y <- temp$y

R> s <- temp$s

Replace measurement accuracies by tiny outliers and include a peak:

R> temp <- disturber(tt, y, s, ps = 20, s.outlier.fraction = 0.1,

+ interval = TRUE)

The result is the same:

R> all(cbind(tt, temp$y, temp$s) == lightcurve)

Figure 4 shows plots of the generated light curve.

In the next step, we calculate a periodogram of the light curve. The periodogram is calculated
fitting a step model using unweighted M-regression with the Huber function. The light curve
spans a time interval of approximately ncycles · ps = 500 time units, so it is sensible to
investigate periods up to 50 (one tenth, see Halpern, Leighly, and Marshall 2003).

R> PP <- RobPer(lightcurve, model = "splines", regression = "huber",

+ weighting = FALSE, var1 = FALSE, periods = 1:50)

Outstanding periodogram bars are sought fitting a beta distribution to the periodogram values
using Cramér-von-Mises distance minimization (CvM) and determining the q

√
0.95-quantile

with q = 50 as the number of periodogram bars.



Anita M. Thieler, Roland Fried, Jonathan Rathjens 21

R> betavalues <- betaCvMfit(PP)

R> crit.val <- qbeta((0.95)^(1 / 50), shape1 = betavalues[1],

+ shape2 = betavalues[2])

Panel 5a depicts the histogram of the periodogram bars, the beta distribution fitted (solid
line) and its 50

√
0.95-quantile (solid vertical line). Further fits of a beta distribution (method

of moments, dashed, and robust method of moments, dotted) and their respective 50
√

0.95-
quantiles are shown as well.

R> hist(PP, breaks = 20, freq = FALSE, xlim = c(0, 0.08), col = "grey",

+ main = "", xlab="Periodogram")

R> betafun <- function(x) dbeta(x, shape1 = betavalues[1],

+ shape2 = betavalues[2])

R> curve(betafun, add = TRUE, lwd = 2)

R> abline(v = crit.val, lwd = 2)

Application of method of moments:

R> par.mom <- betaCvMfit(PP, rob = FALSE, CvM = FALSE)

R> myf.mom <- function(x) dbeta(x, shape1 = par.mom[1], shape2 = par.mom[2])

R> curve(myf.mom, add = TRUE, lwd = 2, lty = 2)

R> crit.mom <- qbeta((0.95)^(1 / 50), shape1 = par.mom[1],

+ shape2 = par.mom[2])

R> abline(v = crit.mom, lwd = 2, lty = 2)

Application of robust method of moments:

R> par.rob <- betaCvMfit(PP, rob = TRUE, CvM = FALSE)

R> myf.rob <- function(x) dbeta(x, shape1 = par.rob[1], shape2 = par.rob[2])

R> curve(myf.rob, add = TRUE, lwd = 2, lty = 3)

R> crit.rob <- qbeta((0.95)^(1 / 50), shape1 = par.rob[1],

+ shape2 = par.rob[2])

R> abline(v = crit.rob, lwd = 2, lty = 3)

R> legend("topright", lty = 1:3, legend = c("CvM", "Moments",

+ "Robust moments"), bg = "white", lwd = 2)

R> box()

Using the 50
√

0.95 quantile of the CvM fit (solid line), a period of 7 time units seems to be
valid, see Panel 5b. Twice this period, which is 14, might be valid, too. So the real periodic
fluctuation of pf = 7 is well recognized within the disturbed signal, as intended. Of course, a
periodic function with period p is also periodic with period k · p, k ∈ N.

R> plot(1:50, PP, xlab = "Trial period", ylab = "Periodogram", main = "",

+ type = "l")

R> abline(h = crit.val, lwd = 2)

R> text(7, PP[7]-0.002,7, pos=4)

R> text(14, PP[14]+0.002,14, pos=4)
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Figure 5: Periodogram bars calculated fitting a spline model using unweighted M-regression
with the Huber function to the artificial example from Figure 4: Robustly fitting a beta
distribution to the periodogram bars in Panel 5a leads to two outstanding trial periods in
Panel 5b.
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Figure 6: Analysis of the artificial example as in Figure 5, now using least squares regression.

While the robust M-regression recognizes the real periodic fluctuation, fitting the same model
by least squares regression does not, as shown in Figure 6. Only the periodogram is calculated
in another way.

R> PP <- RobPer(lightcurve, model = "splines", regression = "L2",

+ weighting = FALSE, var1 = FALSE, periods = 1:50)

The analysis proceeds as before.

5.2. Disturbed data from GROJ0422+32

The first real data set we analyze is a light curve for gamma ray emission of the source
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GROJ0422+32, obtained by the BATSE Earth Occultation Monitoring project of the NASA.
These experiments are described in Harmon, Fishman, Wilson, Paciesas, Zhang, Finger,
Koshut, McCollough, Robinson, and Rubin (2002) and Harmon, Wilson, Fishman, Con-
naughton, Henze, Paciesas, Finger, McCollough, Sahi, Peterson, Shrader, Grindlay, and Bar-
ret (2004). The data have been kindly provided by the NASA, are available from http:

//gammaray.nsstc.nasa.gov/batse/occultation, and are shown in Panel 7a.

A large peak is visible starting at about 48900 Markarian Julian days (which corresponds to
December 10 1991 in the Gregorian calendar), a so called gamma ray burst. It occasionally
occurs in gamma ray observations and can be considered as outlier. The light curve covers
a time interval of about 3312 days, so following Halpern et al. (2003) we consider periods
up to 330 days (about one tenth of the overall duration of the light curve). Figure 7b shows
the periodogram obtained fitting a sine function using least squares regression, which is the
classical approach in astroparticle physics. It is calculated using

R> data(star_groj0422.32)

R> PP <- RobPer(star_groj0422.32, periods = 1:330, model = "sine",

+ regression = "L2", weighting = FALSE)

Periodograms for τ -regression and M-regression using the Huber function are obtained replac-
ing "L2" by "tau" or "huber" in the code above. The respective periodograms are shown in
Panels 7c and 7d. All three periodograms do not show any outstanding peak. Apart from
this, the periodograms using robust regression have a completely different shape than the least
squares periodogram, which seems to have problems with the gamma ray burst. It might be
questionable if the least squares periodogram can find a periodic structure in the observations
in the presence of the gamma ray burst. We add a sine with period 30 and amplitude 0.005 to
the observed values and repeat the analysis. The results can be seen in Figure 8. In Panel 8a
it is visible that we did not introduce a strong periodic behavior. Nevertheless, the robust
periodograms, Panels 8c and 8d, easily detect it, while there is only a small local peak in
the least squares periodogram in Panel 8b. The horizontal lines in Panels 8c and 8d show
the respective 330

√
0.95-quantiles of the CvM-fitted beta distribution and are calculated from

a periodogram PP using

R> shapes <- betaCvMfit(PP)

R> Crit <- qbeta(0.95^(1 / 330), shape1 = shapes[1], shape2 = shapes[2])

So, as opposed to least squares regression, robust techniques are able to detect an (added)
periodic fluctuation although the data are disturbed seriously by the gamma ray burst.

5.3. Data from Markarian 421 and 501

A further real data example are gamma ray light curves from Markarian 421 (Mrk 421) and
Markarian 501 (Mrk 501), kindly provided by the Gamma Astronomy group of the Deutsches
Elektronen-Synchrotron. The data have been collected from various original sources, com-
bined, and published by Tluczykont et al. (2010), and are available from http://astro.desy.

de/gamma_astronomy/magic/projects/light_curve_archive/index_eng.html. See the
RobPer manual for details about the original sources and references.

The light curve obtained for Mrk 421 is shown in Panel 1a on page 2. Periodograms obtained
fitting a sine are shown in Figure 9. Using the least squares periodogram in Panel 9a, no valid

http://gammaray.nsstc.nasa.gov/batse/occultation
http://gammaray.nsstc.nasa.gov/batse/occultation
http://astro.desy.de/gamma_astronomy/magic/projects/light_curve_archive/index_eng.html
http://astro.desy.de/gamma_astronomy/magic/projects/light_curve_archive/index_eng.html
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Figure 7: Analysis of GROJ0422+32: Panel 7a shows the light curve, while the other panels
show the periodograms fitting a sine using least squares in Panel 7b, τ - in Panel 7c, Huber
M-regression in Panel 7d. No periodogram bar exceeds the respective 330

√
0.95-quantile of the

CvM-fitted beta distribution (horizontal line).

period is detected, but considering the shape of the periodogram, one might wonder if there is
a periodicity of 31 hidden in the same way as when adding a small periodic fluctuation to the
GROJ0422+32 data, see Panel 8b. However, the periodograms for τ -regression in Panel 9b
and Huber M-regression in Panel 9c show a different behavior from Figure 8, so this does
not seem to be the case. Especially, the least squares and the Huber M periodogram show a
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Figure 8: Adding a sine with amplitude 0.005 to the light curve of GROJ0422+32. Panel 8a
shows the modified light curve, while the other panels show the periodograms fitting a sine
using least squares in Panel 8b, τ - in Panel 8c, Huber M-regression in Panel 8d. The hori-
zontal lines in those three panels show the respective 330

√
0.95-quantile of the CvM-fitted beta

distribution.

quite similar behavior regarding the local maxima. This could mean that there are not many
observations weighted down in Huber M-regression.

Another light curve, obtained for Mrk 501, and periodograms using least squares regression,
τ -regression and Huber M-regression are shown in Figure 10. Here we apply step regression,
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Figure 9: Periodograms for Mrk 421, see Panel 1a, obtained fitting a sine with least squares
regression in Panel 9a, τ -regression in Panel 9b, Huber M-regression in Panel 9c.

which is equivalent to epoch folding or phase dispersion minimization when using least squares
regression (see Section 2). The periodogram is calculated applying

R> data(Mrk501)

R> RobPer(Mrk501, periods = 1:400, model = "step", regression = "L2",

+ weighting = FALSE)

in case of least squares regression and with regression = "tau" or regression = "huber"

in case of τ - or Huber M-regression, respectively. For least squares regression in Panel 10b and
Huber M-regression in Panel 10d we see a broad peak between the trial periods 200 and 300,
much too broad to be considered as valid period (see Halpern et al. 2003). For τ -regression
in Panel 10c, this behavior is not observed.

In the examples from the previous section, robust techniques recognize some periodicity in a
light curve, while the least squares periodogram only provides a slightly atypical behavior for
the trial period in question. Here it is the other way round: the least squares periodogram
does not indicate a valid period, but exhibits some interesting feature similar to the previous
data set, where a periodicity was hidden in noisy data. This initial suspicion cannot be
confirmed by using robust regression instead of least squares regression. In summary, using
our methods, we do not find a periodicity in the light curves for Mrk 421 and Mrk 501, neither
using least squares nor robust regression.

6. Conclusions

The R package RobPer presented in this work allows searching for periodicity in irregularly
sampled time series, possibly taking into account additional information on the precision of
the measurement, if available. These are the typical characteristics of light curves, that is
time series occurring in astroparticle physics. The periodogram is calculated fitting periodic
functions to the light curve. The user can choose between six different periodic functions
and seven different regression techniques, meaning that 42 possible combinations are offered,
not taking into account further options like choosing the number of steps for the step model
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Figure 10: Light curve in Panel 10a and periodograms for Mrk 501 obtained fitting a periodic
step function with least squares regression in Panel 10b, τ -regression in Panel 10c, Huber
M-regression in Panel 10d.

or using weighted regression. The function betaCvMfit allows to search for prominent pe-
riodogram bars as outliers in a beta distribution robustly fitted to the periodogram. The
function tsgen allows generation of artificial light curves for investigative use.
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A. Implementation diagrams for RobPer

In this appendix, the structure of the RobPer function is displayed as Nassi-Shneiderman
diagram (structogram after Norm DIN 66261). Figure 11 contains a reading guidance for the
blocks used in the structogram. The structogram for RobPer is displayed in Figure 12, for the
algorithm singleFUN in Figure 13 and for the function IRWLS in Figure 14. The arguments
and return values of the latter are shown in Table 5. The following definitions are used:

ζL2(r) =
n∑

i=1

r2
i (34)

ζLT S(r) =

h(m)∑

i=1

r(i), h(m) =

⌊
n

2

⌋
+

⌊
m + 1

2

⌋
, (35)

ζL1(r) =
n∑

i=1

|ri|, (36)

ρMH(ν) =

{
ν2 |ν| ≤ k

2k|ν| − k2 |ν| > k
, ρMB(ν) =





1 −
(
1 − (

ν
k

)2)3
|ν| ≤ k

1 |r| > k
, (37)

ζMH(r) =
n∑

i=1

ρMH

(
ri

σ̂

)
, ζMB(r) =

n∑

i=1

ρMB

(
ri

σ̂

)
, (38)

WMH(ν) =





cMH |ν| ≤ k

cMH · k
|ν| |ν| > k

, WMB(ν) =





cMB ·
(
1 − (

ν
k

)2)2
|ν| ≤ k

0 |ν| > k
. (39)

The normalization constant can be set to cMH = cMB = 1 due to the scale invariance of the
least squares estimation used in the iteratively reweighted least squares (IRWLS) step.
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B1
B2
B3

First run B1, afterwards run B2, at last run B3.
Horizontal lines between subsequent blocks are
sometimes omitted for better readability.

case

1 2 3
B1 B2 B3

If case 1, run B1; if case 2, run B2; if case 3, run B3.

sub Run sub (some algorithm, code or function outsourced).

condition
block

Reiteration of a block with a check in advance, whether
a condition is fulfilled (e.g., a for-loop)

block
condition

Reiteration of a block with a check afterwards, whether
a condition is fulfilled (e.g., by if(!...). . .break)

(a)

runifgen R> eval(parse(text = runifgen))

t← τ · 30 R> t <- tau * 30

Sort t. R> t <- sort(t)

Choose wei randomly from {TRUE, FALSE}. R> wei <- sample(c(TRUE, FALSE), 1)

wei R> if (wei) {

+ eval(parse(text = runifgen))

TRUE FALSE + s <- tau }

runifgen R> if(!wei) {

s← τ s← 0.5 · 1100 + s <- rep(0.5, 100) }

y ∈ R
100 R> y <- numeric(100)

For i = 1, . . . , 100 R> for (i in 1:100) {

Choose yi from N
(
sin(2π/5ti), s2

i

)
+ y[i] <- rnorm(1, mean = sin(2 * pi / 5 *

+ t[i]), sd = s) }

Block runifgen:
R> runifgen <- paste("

τ ∈ R
100 + tau <- numeric(100)

i← 1 + i <- 1

+ repeat {

Choose τi from U[0,1] + tau[i] <- runif(1)

i← i + 1 + i <- i+1

i < 101 + if(!i < 101) break }")

(b)

Figure 11: Reading guidance for the structograms: In Panel 11a, the blocks used for the
representation of an algorithm. In Panel 11b, a structogram (left) for a simple R code (right),
which generates the observations (ti, yi, si)i=1,...,100 of a simple light curve with fluctuation
period 5. This R code is for demonstration only and not programmed efficiently.



34 RobPer: Calculating Periodograms Based on Robust Regression in R

Check arguments, remove incomplete cases

regression

"L2" "L1" "LTS" "bisquare" "huber" "S" ∨ "tau"

ζ ← ζL2
ζ ← ζL1

ζ ← ζLT S

ρ← ρMB

W ←WMB

ζ ← ζMB

ρ← ρMH

W ←WMH

ζ(r)← dummy

weighting

FALSE TRUE

s← 1n

ỹi ← yi/si, i = 1, . . . , n

ii ← 1/si, i = 1, . . . , n

ỹi ← yi/si, i = 1, . . . , n

ii ← 1/si, i = 1, . . . , n

regression

"huber" ∨

"bisquare"

"L2"∨ "L1" "S"∨ "tau" "LTS"

µ̂ is the regression

estimate in
ỹ = iµ + ε.
e← ỹ − iµ̂

SY← ζ(e)

SY is the scale value
of the fit to
ỹ = iµ + ε

model ∈ {"step", "2step"}

FALSE TRUE

model

"sine""fourier(2)""fourier(3)""splines"

m← 3 m← 5 m← 7 m← 4

µ̂ is the LTS estimate with
trimming h(m̃))in ỹ = iµ + ε.

e← ỹ − iµ̂

SY← ζ(e)

µ← dummy

SY← dummy

model = "2step"

FALSE TRUE

design ← model design ← "step"

For pi, i = 1, . . . , q

singleFUN

model = "2step"

FALSE TRUE

design← "stepB"

Per1(p)← Per(p), p = (p1, . . . , pq)>

For pi, i = 1, . . . , q

singleFUN

Per2(p)← Per(p), p = (p1, . . . , pq)>

Per(p)←
1

2
(Per1(p) + Per2(p))

Return value: Per(p), p = (p1, . . . , pq)>

Figure 12: Structogram of RobPer. The block singleFUN is displayed in detail in Figure 13.
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X ← Xgen(model, p) with p as the period pi

X̃ ← X/s

Enough independent rows in X̃

FALSE TRUE

regression ∈ {"huber", "bisquare"}

TRUE FALSE

m̃← number of columns of X̃
ltsReg(...,nsamp=50) :

β̂ is the LTS estimate with trimming h(m̃) in

ỹ = X̃β + ε.
r ← ỹ − X̃β̂

β̂ is the regression estimate in

ỹ = X̃β + ε.

r ← ỹ − X̃β̂

SE← ζ(r)

var1 regression="LTS" ∧ design ∈ {"step", "stepB"}

FALSE TRUE FALSE TRUE

σ̂ ←
med(|rj |,rj 6=0)

0.675
σ̂ ← 1

m̃← number of colums of X
µ̂ is the LTS estimate with trimming h(m̃) in

ỹ = iµ + ε.
e← ỹ − iµ̂

SY← ζ(e)

µ̂ is the L1 estimate in ỹ = ĩµ + ε.
e← ỹ − iµ̂

regression="LTS" ∧ LTSopt=TRUE

regression = "bisquare" FALSE TRUE

TRUE FALSE

β̂ is the regression estimate in

ỹ = X̃β + ε.
using σ̂ as scale estimate

and β̂ as initial coefficient estimate
genoud

r ← ỹ − X̃β̂

SE← ζ(r)
genoud

r ← ỹ − X̃β̂

regression = "bisquare"

FALSE TRUE

β̂ ← IRWLS

with (ỹ, X̃, W, r, σ̂, tol) as arguments
(yy, matrix_, W, residuals_,scale_ , tol)

SE←

n∑

j=1

ρ

(
ỹj − x̃j β̂

σ̂

)

SY←

n∑

j=1

ρ

(
ỹj − ĩµ̂

σ̂

)

Per(pi)←NA Per(pi)← 1− SE
/

SY

Figure 13: Structogram of singleFUN. NA indicates a missing value. The block IRWLS is
displayed in detail in Figure 14.
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Argument Symbol Explanation

yy ∈ R
n yy Observed values

matrix_ ∈ R
n×m

X Design matrix
W: R → R≥0 W Weight function
residuals_ ∈ R

n
e Vector of residuals

scale_ ∈ R>0 σ (Estimate of) Standard deviation
tol ∈ R>0 tol Precision for convergence

Return value

tempIRWLS$coeff b̂ Fitted vector of parameters

Table 5: Arguments and return value of the function IRWLS.

e
′
← e

ŷy← yy
√

W(e′/σ)

X̂← X

√
W(e′/σ)

b̂← L2 solution of ŷy = X̂b + ε

e← yy− Xb̂

max
j

|e′−e|
σ

< tol

Return value: b̂

Figure 14: Function IRWLS in RobPer
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