Package ‘Rpolyhedra’

October 12, 2022

Type Package

Title Polyhedra Database

Version 0.5.4

Language en-US

Maintainer Alejandro Baranek <abaranek@dc.uba.ar>

Description
A polyhedra database scraped from various sources as R6 objects and 'rgl' visualizing capabilities.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.2.1

VignetteBuilder knitr

Depends R (>=3.5.0)

Imports R6, geometry, rgl, stringr, XML, digest, lgr, git2r

Suggests testthat, dplyr, knitr, pkgdown, rmarkdown, covr, codemetar

Collate 'Rpolyhedra-package.R' 'polyhedra-lib.R' 'ledger-lib.R'
'db-1ib.R' 'env-lib.R' 'package-lib.R' 'serialization-lib.R'
"public-lib.R' 'test-1ib.R' 'zzz.R'

BugReports https://github.com/ropensci/Rpolyhedra/issues

URL https://docs.ropensci.org/Rpolyhedra/,
https://github.com/ropensci/Rpolyhedra

StagedInstall TRUE

NeedsCompilation no

Author Alejandro Baranek [aut, com, cre, cph],
Leonardo Belen [aut, com, cph],
gbotics [cph],
Barret Schloerke [rev],
Lijia Yu [rev]

Repository CRAN
Date/Publication 2022-10-01 13:20:02 UTC

https://github.com/ropensci/Rpolyhedra/issues
https://docs.ropensci.org/Rpolyhedra/
https://github.com/ropensci/Rpolyhedra

2 Rpolyhedra-package

R topics documented:
Rpolyhedra-package 2
genlogger e 3
getAvailablePolyhedra L 3
getAvailableSources L L. L 4
getlogger 5
getPolyhedraObject L 5
getPolyhedron L. 6
loggerSetupFile 7
PolyhedraDatabase 7
Polyhedron e 13
PolyhedronState 16
PolyhedronStateDefined 18
PolyhedronStateDeserializer 0 .. 23
PolyhedronStateDmccooeyScraper oL 24
PolyhedronStateNetlibScraper L oo 27
polyhedronToXML e 30
scrapePolyhedra 31
scrapePolyhedraSources oL oL 31
switchToFullDatabase 32

Index 33

Rpolyhedra-package Rpolyhedra: Polyhedra Database

Description

A polyhedra database scraped from various sources as R6 objects and ’rgl’ visualizing capabilities.

Details

A polyhedra database scraped from:

* http://paulbourke.net/dataformats/phd/: PHD files as R6 objects and ’rgl’ visualizing capabil-

ities. The PHD format was created to describe the geometric polyhedra definitions derived
mathematically <https://netlib.org/polyhedra/> by Andrew Hume and by the Kaleido program
of Zvi Har’El.

* http://dmccooey.com/Polyhedra/: Polyhedra text datafiles.

Author(s)

Maintainer: Alejandro Baranek <abaranek@dc.uba.ar> [compiler, copyright holder]
Authors:

* Leonardo Belen <leobelen@gmail.com> [compiler, copyright holder]

Other contributors:

genLogger 3

* gbotics <gbotics6@gmail.com> [copyright holder]
¢ Barret Schloerke <schloerke@gmail.com> [reviewer]

* Lijia Yu <yu@lijiayu.net> [reviewer]

See Also
Useful links:
* https://docs.ropensci.org/Rpolyhedra/

* https://github.com/ropensci/Rpolyhedra
* Report bugs at https://github.com/ropensci/Rpolyhedra/issues

genlLogger genLogger

Description
Returns a configured logger with threshold according r6 object. This function is usually called in
class constructors

Usage

genLogger(r6.object)

Arguments

ré.object an r6.object

Author(s)
ken4rab

getAvailablePolyhedra Get available polyhedra

Description
Gets the list of names of available polyhedra and its status in the polyhedra database, which can be
later called with getPolyhedron

Usage

getAvailablePolyhedra(sources, search.string)

https://docs.ropensci.org/Rpolyhedra/
https://github.com/ropensci/Rpolyhedra
https://github.com/ropensci/Rpolyhedra/issues

4 getAvailableSources

Arguments

sources A string vector containing the source, which can be obtained from getAvailable-
Sources().

search.string A search string

Value

polyhedra names vector

See Also

getAvailableSources

Examples

gets all polyhedra in the database
available.polyhedra <- getAvailablePolyhedra()

returns all polyhedra from a given source, in this case, netlib
available.netlib.polyhedra <- getAvailablePolyhedra(sources = "netlib")

search within the polyhedron names

cube <- getAvailablePolyhedra(sources = "netlib”, search.string = "cube")
cube
getAvailableSources Get available sources
Description

Gets the list of names of available sources in database to be used later as references to the package.

Usage

getAvailableSources()

Value

sources string vector, which can be obtained from getAvailableSources()

See Also

getAvailablePolyhedra, getPolyhedron

getLogger 5

Examples

gets all sources in the database
available.sources <- getAvailableSources()

returns all polyhedra from all sources
available.polyhedra <- getAvailablePolyhedra(sources = available.sources)

search within the polyhedron names from all sources
cubes <- getAvailablePolyhedra(

sources = available.sources,

search.string = "cube”

)

cubes

getlLogger getLogger

Description
Returns the configured lgr of an 16 object. If the object don’t have a Igr or is not initialized returns
an error

Usage

getLogger(r6.object)

Arguments

ré.object an r6.object

Author(s)
ken4rab

getPolyhedraObject Get a polyhedra object

Description

Return the polyhedra database handler.

Usage

getPolyhedraObject ()

6 getPolyhedron

Value

.polyhedra

See Also
PolyhedraDatabase

getPolyhedron Get polyhedron

Description

Gets a polyhedron from the database. It returns an R6 Class with all its characteristics and functions.
The object returned, of type Polyhedron, allows to the user to get access to all the functionality
provided.

Usage
getPolyhedron(source = "netlib”, polyhedron.name)
Arguments
source string vector, which can be obtained from getAvailableSources()

polyhedron.name
a valid name of a polyhedron in the database. Current names can be found with
getAvailablePolyhedra()

Value

polyhedron R6 object

See Also

getAvailablePolyhedra, getAvailableSources

Examples
tetrahedron <- getPolyhedron(
source = "netlib”,
polyhedron.name = "tetrahedron”

)

returns name of polyhedra
tetrahedron$getName ()

polyhedron state
tetrahedron.state <- tetrahedron$getState()

loggerSetupFile 7

Johnson symbol and Schlafli symbol
tetrahedron.state$getSymbol ()

vertex data.frame
tetrahedron.state$getVertices()

List of faces of solid representation (3D)
tetrahedron.state$getSolid()

List of faces of net representation (2D)
tetrahedron.state$getNet ()

loggerSetupFile loggerSetupFile

Description

loggerSetupFile

Usage

loggerSetupFile(log.file, default.threshold = "info", append = TRUE)

Arguments

log.file log path for logging file

default. threshold
threshold for setting root. Default = "info"

append if set to FALSE, cleanup all previous logs
Author(s)
kenarab
PolyhedraDatabase Polyhedra database
Description

Scrapes all polyhedra in data folder to save a representation which is accessible by the final users
upon call to getPolyhedron().

PolyhedraDatabase

Public fields

version version of database file

polyhedra.rds.file path of rds database file

sources.config Sources configuration for scraping different sources

ledger rr ledger of scraping process

logger class logger

Methods

Public methods:

PolyhedraDatabase$new()
PolyhedraDatabase$getVersion()
PolyhedraDatabase$configPolyhedraRDSPath()
PolyhedraDatabase$existsSource()
PolyhedraDatabase$addSourceConfig()
PolyhedraDatabase$existsPolyhedron()
PolyhedraDatabase$getPolyhedraSourceDir ()
PolyhedraDatabase$getPolyhedronFilename()
PolyhedraDatabase$getPolyhedron()
PolyhedraDatabase$addPolyhedron()
PolyhedraDatabase$configPolyhedraSource()
PolyhedraDatabase$saveRDS ()
PolyhedraDatabase$cover()
PolyhedraDatabase$scrape()
PolyhedraDatabase$testRR()
PolyhedraDatabase$generateTestTasks()
PolyhedraDatabase$schedulePolyhedraSources()
PolyhedraDatabase$getAvailableSources()
PolyhedraDatabase$getAvailablePolyhedra()
PolyhedraDatabase$clone()

Method new(): Create a new PolyhedraDatabase object.

Usage:

PolyhedraDatabase$new()

Returns: A new ‘PolyhedraDatabase‘ object.

Method getVersion(): get the version of the current object.

Usage:

PolyhedraDatabase$getVersion()

Returns: Database version

Method configPolyhedraRDSPath(): sets the path of the RDS object

PolyhedraDatabase 9

Usage:
PolyhedraDatabase$configPolyhedraRDSPath()

Returns: Database version

Method existsSource(): Determines if the source exists on the database

Usage:
PolyhedraDatabase$existsSource(source)

Arguments:
source source description

Returns: boolean value

Method addSourceConfig(): add source.config to the database

Usage:
PolyhedraDatabase$addSourceConfig(source.config)

Arguments:
source.config SourceConfig object able to scrape source polyhedra definitions

Returns: PolyhedraDatabase object
Method existsPolyhedron(): Determines if the database includes a polyhedron which name
matches the parameter value

Usage:

PolyhedraDatabase$existsPolyhedron(source = "netlib"”, polyhedron.name)

Arguments:

source source description

polyhedron.name polyhedron description

Returns: boolean value

Method getPolyhedraSourceDir(): gets polyhedra sources folder
Usage:
PolyhedraDatabase$getPolyhedraSourceDir(source, create.dir = TRUE)
Arguments:
source source description

create.dir if dir does not exists, create it

Returns: string with polyhedra sources path

Method getPolyhedronFilename(): gets the filename of the polyhedron matching parameter.

Usage:
PolyhedraDatabase$getPolyhedronFilename(source, polyhedron.name, extension)
Arguments:

source source description

polyhedron.name polyhedron description

extension extension of the polyhedron filename

PolyhedraDatabase

Returns: string with polyhedron filename

Method getPolyhedron(): gets polyhedron object which name matches the parameter value

Usage:
PolyhedraDatabase$getPolyhedron(
source = "netlib”,

polyhedron.name,
strict = FALSE

)

Arguments:

source source description

polyhedron.name polyhedron description
strict halts execution if polyhedron not found

Returns: Polyhedron object

Method addPolyhedron(): add polyhedron object to the database

Usage:
PolyhedraDatabase$addPolyhedron(
source = "netlib”,
source.filename,
polyhedron,
overwrite = FALSE,
save.on.change = FALSE

)

Arguments:

source source description

source. filename filename of the polyhedron source definition
polyhedron polyhedron object

overwrite overwrite exiting definition

save.on.change saves Database state after operation

Returns: Polyhedron object

Method configPolyhedraSource(): Process parameter filenames using source.config param-
eter
Usage:
PolyhedraDatabase$configPolyhedraSource(
source.config,
source.filenames = NULL,
max.quant = 0,
save.on.change = FALSE

)

Arguments:

source.config source configuration for scraping files
source.filenames filenames of the polyhedron source definition

PolyhedraDatabase

max.quant maximum filenames to process
save.on.change saves Database state after operation

Returns: Modified ‘PolyhedraDatabase‘ object.

Method saveRDS(): saveRDS

Usage:
PolyhedraDatabase$saveRDS(save.on.change = TRUE)

Arguments:

save.on.change saves Database state after operation

Returns: saveRDS return status

Method cover(): Cover objects and applies covering.code parameter

Usage:
PolyhedraDatabase$cover(
mode,
sources = names(self$sources.config),
covering.code,
polyhedra.names = NULL,
max.quant = 0,
save.on.change = FALSE,
seed = NULL

)

Arguments:

mode covering mode. Available values are "scrape.queued”, "scrape.retry
sources sources hames

covering.code code for applying in covering

polyhedra.names polyhedra names to cover (optional)

max.quant maximum numbers of polyhedra to cover

save.on.change saves Database state after operation

seed seed for deterministic random generator

Returns: A list with resulting objects covered

Method scrape(): Scrape polyhedra queued sources

Usage:

PolyhedraDatabase$scrape(
mode = "scrape.queued”,
sources = names(self$sources.config),
max.quant = 0,
time2scrape.source = 30,
save.on.change = FALSE,
skip.still.queued = FALSE

)

Arguments:

mode covering mode. Available values are "scrape.queued”, "scrape.retry

non
bl

non
bl

skipped", "test"

skipped", "test"

11

12

PolyhedraDatabase

sources sources names
max.quant maximum numbers of polyhedra to cover
time2scrape.source maximum time to spend scraping each source
save.on.change saves Database state after operation
skip.still.queued Flag unscraped files with status ‘skipped*
covering.code code for applying in covering

polyhedra.names polyhedra names to cover (optional)

Returns: A list with resulting objects covered

Method testRR(): testRR
Usage:
PolyhedraDatabase$testRR(sources = names(self$sources.config), max.quant = Q)
Arguments:
sources sources names

max.quant maximum numbers of polyhedra to cover

Returns: A list with resulting objects tested

Method generateTestTasks(): generate Test tasks for selected polyhedra

Usage:

PolyhedraDatabase$generateTestTasks(
sources = names(self$sources.config),
polyhedra.names = NULL,

TestTaskClass,
max.quant = @
)
Arguments:

sources sources names
polyhedra.names polyhedra names to cover (optional)
TestTaskClass an R6 TestTaskClass class

max.quant maximum numbers of polyhedra to cover

Returns: A list with resulting TestTasks generated

Method schedulePolyhedraSources(): Schedules polyhedra sources for scraping

Usage:

PolyhedraDatabase$schedulePolyhedraSources(
sources.config = getPackageEnvir(".available.sources"),
source.filenames = NULL,
max.quant = 0,
save.on.change = FALSE

)

Arguments:

sources.config sources configurations for scraping files

source.filenames filenames of the polyhedron source definition

Polyhedron 13

max.quant maximum filenames to process
save.on.change saves Database state after operation

Returns: Modified ‘PolyhedraDatabase‘ object.

Method getAvailableSources(): Returns available sources in current database

Usage:
PolyhedraDatabase$getAvailableSources()

Returns: A vector with names of available sources

Method getAvailablePolyhedra(): Retrieves all polyhedron within the source those names
match with search.string
Usage:
PolyhedraDatabase$getAvailablePolyhedra(
sources = self$getAvailableSources(),
search.string = NULL,
ignore.case = TRUE

)

Arguments:

sources sources names

search.string string for matching polyhedron names

ignore.case ignore case in search string

Returns: A list with resulting objects covered

Method clone(): The objects of this class are cloneable with this method.

Usage:
PolyhedraDatabase$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Polyhedron Polyhedron

Description

Polyhedron container class, which is accessible by the final users upon call

Public fields

file.id Polyhedron file.id
state Polyhedron state

logger class logger

14

Methods

Public methods:
e Polyhedron$new()
* Polyhedron$scrapeNetlib()
* Polyhedron$scrapeDmccooey ()
e Polyhedron$deserialize()
* Polyhedron$getName ()
* Polyhedron$getState()
* Polyhedron$getSolid()
¢ Polyhedron$isChecked()
* Polyhedron$getRGLModel ()
* Polyhedron$exportToXML ()
e Polyhedron$getErrors()
e Polyhedron$checkProperties()
* Polyhedron$clone()

Method new(): Create a polyhedronState object

Usage:
Polyhedron$new(file.id, state = NULL)

Arguments:
file.id the file id
state polyhedron state object

Returns: A new Polyhedron object.

Method scrapeNetlib(): scrape Netlib polyhedron definition

Usage:
Polyhedron$scrapeNetlib(netlib.p3.1lines)

Arguments:

netlib.p3.lines vector with netlib definition lines

Returns: A new PolyhedronStateDefined object.

Method scrapeDmccooey(): scrape Dmccooey polyhedron definition

Usage:
Polyhedron$scrapeDmccooey(polyhedra.dmccooey.lines)

Arguments:

polyhedra.dmccooey.lines vector with Dmccooey definition lines

Returns: A new PolyhedronStateDefined object.

Method deserialize(): deserialize a polyhedron state definition

Usage:
Polyhedron$deserialize(serialized.polyhedron)

Polyhedron

Polyhedron 15

Arguments:

serialized.polyhedron a serialized version of a polyhedron state

Returns: A new PolyhedronStateDefined object.

Method getName(): get Polyhedron name

Usage:
Polyhedron$getName ()

Returns: string with polyhedron name

Method getState(): Gets polyhedron state

Usage:
Polyhedron$getState()

Returns: A new PolyhedronState object.

Method getSolid(): Gets a solid definition

Usage:
Polyhedron$getSolid()

Returns: A list of vertex vectors composing polyhedron faces.

Method isChecked(): checks Edges consistency

Usage:
Polyhedron$isChecked()

Returns: A boolean value
Method getRGLModel(): Return an 'rgl’ model with an optional transformation described by
transformation.matrix parameter

Usage:
Polyhedron$getRGLModel (transformation.matrix = NULL)

Arguments:

transformation.matrix transformation matrix parameter

Returns: An tmesh3d object

Method exportToXML(): exports an XML definition of current polyhedron

Usage:
Polyhedron$exportToXML ()

Returns: A character object with the XML definition

Method getErrors(): returns the errors found when processing current polyhedron

Usage:
Polyhedron$getErrors()

Returns: a data.frame with polyhedron errors

Method checkProperties(): check properties of current polyhedron

16 PolyhedronState
Usage:
Polyhedron$checkProperties(expected.vertices, expected.faces)
Arguments:
expected.vertices expected vertices number
expected. faces expected faces number
Returns: Unmodified polyhedron object
Method clone(): The objects of this class are cloneable with this method.
Usage:
Polyhedron$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.
Author(s)
kendrab
PolyhedronState PolyhedronState
Description
This abstract class provide the basis from which every polyhedron state class derivate.
Public fields
source polyhedron definition source
file.id polyhedron file id
errors Errors string
logger class logger
Methods

Public methods:

PolyhedronState$new()
PolyhedronState$addError()
PolyhedronState$scrape()
PolyhedronState$getName ()
PolyhedronState$getSolid()
PolyhedronState$checkEdgesConsistency()
PolyhedronState$applyTransformationMatrix()
PolyhedronState$buildRGL ()
PolyhedronState$exportToXML ()

PolyhedronState 17

* PolyhedronState$clone()

Method new(): Create a polyhedronState object
Usage:
PolyhedronState$new(source, file.id)

Arguments:

source the source file
file.id the file id

Returns: A new PolyhedronState object. *@description Adds an error to the error string and
log it as info
Method addError():

Usage:
PolyhedronState$addError(current.error)

Arguments:

current.error the error to add

Method scrape(): Scrapes the polyhedra folder files

Usage:
PolyhedronState$scrape()

Method getName(): Get Polyhedron name

Usage:
PolyhedronState$getName()

Returns: string with polyhedron name

Method getSolid(): Returns the object corresponding to the solid

Usage:
PolyhedronState$getSolid()

Method checkEdgesConsistency(): Checks edge consistency

Usage:
PolyhedronState$checkEdgesConsistency()

Method applyTransformationMatrix(): Apply transformation matrix to polyhedron

Usage:
PolyhedronState$applyTransformationMatrix(transformation.matrix)

Arguments:

transformation.matrix the transformation matrix to apply to the polyhedron

Method buildRGL(): Creates a ’rgl’ representation of the object

Usage:
PolyhedronState$buildRGL (transformation.matrix)

18

PolyhedronStateDefined

Arguments:

transformation.matrix the transformation matrix to apply to the polyhedron

Method exportToXML(): Gets an XML representation out of the polyhedron object
Usage:
PolyhedronState$exportToXML ()
Method clone(): The objects of this class are cloneable with this method.
Usage:
PolyhedronState$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

Author(s)

kendrab

PolyhedronStateDefined
PolyhedronStateDefined

Description

Polyhedron State scraped and defined

Super class

Rpolyhedra: :PolyhedronState -> PolyhedronStateDefined

Public fields

file.id polyhedron filename in original
source polyhedron definition source (netlibldmccooey)
name polyhedron name (netlibldmccooey)

symbol the eqn(1) input for two symbols separated by a tab; the Johnson symbol, and the Schlafli
symbol (netlib)

dual the name of the dual polyhedron optionally followed by a horizontal tab and the number of
the dual (netlib)

sfaces polyhedron solid face list (netlib)

svertices polyhedron solid vertices list (netlib)

vertices Polyhedron vertices list (netlibldmccooey)

vertices.centered centered vertices for applying transformation matrices

net polyhedron 2D net model with vertices defined for a planar representation (netlib)

PolyhedronStateDefined 19

solid polyhedron list of edges which generate a solid (netlibldmccooey)

hinges Polyhedron hinge list (netlib)
dih Dih attribute (netlib)
edges polyhedron edges (netlibldmccooey)

transformation.matrix transformation matrix for calculations and visualizing polyhedron

Methods

Public methods:

PolyhedronStateDefined$new()
PolyhedronStateDefined$scrape()
PolyhedronStateDefined$getName ()
PolyhedronStateDefined$getSymbol ()
PolyhedronStateDefined$adjustVertices()
PolyhedronStateDefined$getVertices()
PolyhedronStateDefined$getNet ()
PolyhedronStateDefined$getSolid()
PolyhedronStateDefined$inferEdges()
PolyhedronStateDefined$checkEdgesConsistency()
PolyhedronStateDefined$triangulate()
PolyhedronStateDefined$getConvHull ()
PolyhedronStateDefined$calculateMassCenter()
PolyhedronStateDefined$getNormalizedSize()
PolyhedronStateDefined$getTransformedVertices()
PolyhedronStateDefined$resetTransformationMatrix()
PolyhedronStateDefined$applyTransformationMatrix()
PolyhedronStateDefined$buildRGL ()
PolyhedronStateDefined$exportToXML ()
PolyhedronStateDefined$expectEqual ()
PolyhedronStateDefined$serialize()
PolyhedronStateDefined$clone()

Method new(): object initialization routine

Usage:
PolyhedronStateDefined$new(

source,
file.id,

name,
vertices,
solid,

net = NULL,
symbol = "",
dual = NULL,
sfaces = NULL,

PolyhedronStateDefined

svertices = NULL,
hinges = NULL,
dih = NULL,
normalize.size = TRUE
)
Arguments:
source the library to use
file.id identifier of the definition file.
name the polyhedron name
vertices the vertices
solid the solid object
net the net
symbol the symbol
dual whether it is dual or not
sfaces the solid faces
svertices the solid vertices
hinges the hinges
dih the dih
normalize.size whether it has to normalize the size or not

Returns: A new PolyhedronStateDefined object.

Method scrape(): scrape polyhedron. As the state is defined this functions do nothing

Usage:
PolyhedronStateDefined$scrape()

Returns: current object

Method getName(): get Polyhedron name

Usage:
PolyhedronStateDefined$getName ()

Returns: string with polyhedron name

Method getSymbol(): get Polyhedron symbol

Usage:
PolyhedronStateDefined$getSymbol ()

Returns: string with polyhedron symbol

Method adjustVertices(): adjust polyhedron Vertices

Usage:
PolyhedronStateDefined$adjustVertices(normalize.size = TRUE)

Arguments:

normalize.size whether it has to normalize the size or not

Returns: modified PolyhedronStateDefined object.

PolyhedronStateDefined

Method getVertices(): Get the polyhedron state
Usage:
PolyhedronStateDefined$getVertices(solid = FALSE)

Arguments:

solid toggles the production of solid vertices.

Method getNet(): Gets the net property

Usage:
PolyhedronStateDefined$getNet ()

Method getSolid(): Gets the solid property

Usage:
PolyhedronStateDefined$getSolid()

Method inferEdges(): Infer edges
Usage:
PolyhedronStateDefined$inferEdges(force.recalculation = FALSE)

Arguments:
force.recalculation forces the recalculation of the edges

Method checkEdgesConsistency(): Checks edges consistency

Usage:
PolyhedronStateDefined$checkEdgesConsistency()

Method triangulate(): Triangulates the polyhedron
Usage:
PolyhedronStateDefined$triangulate(force = FALSE)
Arguments:

force forces the triangulation.

Method getConvHull(): Gets the convex hull

Usage:

PolyhedronStateDefined$getConvHull(
transformation.matrix = self$transformation.matrix,
vertices.id.3d = private$vertices.id.3d

)

Arguments:
transformation.matrix the transformation matrix
vertices.id. 3d the vertices ids

Returns: the convex hull

Method calculateMassCenter(): Calculates the center of mass.

Usage:

PolyhedronStateDefined

PolyhedronStateDefined$calculateMassCenter(
vertices.id.3d = private$vertices.id.3d,
applyTransformation = TRUE

)

Arguments:
vertices.id.3d the vertices ids
applyTransformation does it need to apply transformations?

Method getNormalizedSize(): Gets the normalized size

Usage:
PolyhedronStateDefined$getNormalizedSize(size)

Arguments:

size the object’s size

Method getTransformedVertices(): Gets the transformed vertices

Usage:

PolyhedronStateDefined$getTransformedVertices(
vertices = self$vertices.centered,
transformation.matrix = self$transformation.matrix

)

Arguments:
vertices input vertices
transformation.matrix the transformation matrix
Method resetTransformationMatrix(): Resets the transformation matrix
Usage:
PolyhedronStateDefined$resetTransformationMatrix()
Method applyTransformationMatrix(): Apply transformation matrix to polyhedron

Usage:
PolyhedronStateDefined$applyTransformationMatrix(transformation.matrix)

Arguments:
transformation.matrix the transformation matrix to apply to the polyhedron

Returns: an applied transformation.matrix

Method buildRGL(): Build rgl’

Usage:
PolyhedronStateDefined$buildRGL (transformation.matrix = NULL)

Arguments:

transformation.matrix the transformation matrix

Method exportToXML(): Exports the object to XML format
Usage:

PolyhedronStateDeserializer 23
PolyhedronStateDefined$exportToXML ()

Method expectEqual(): Determines if a polyhedron is equal to this one.

Usage:
PolyhedronStateDefined$expectEqual (polyhedron)

Arguments:

polyhedron the polyhedron to compare to.

Method serialize(): Serialize the object.
Usage:
PolyhedronStateDefined$serialize()
Method clone(): The objects of this class are cloneable with this method.

Usage:
PolyhedronStateDefined$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

kendrab

PolyhedronStateDeserializer
PolyhedronStateDeserializer

Description

Polyhedron state for deserialize from database

Super class

Rpolyhedra: :PolyhedronState -> PolyhedronStateDeserializer

Public fields

serialized.polyhedron polyhedron definition serialized

24 PolyhedronStateDmccooeyScraper

Methods
Public methods:

* PolyhedronStateDeserializer$new()
e PolyhedronStateDeserializer$scrape()
* PolyhedronStateDeserializer$clone()
Method new(): Initialize PolyhedronStateDeserializer object

Usage:
PolyhedronStateDeserializer$new(serialized.polyhedron)

Arguments:
serialized.polyhedron a serialized polyhedron

Returns: A new PolyhedronStateDeserializer object.

Method scrape(): Generates a PolyhedronStateDefined from a serialized polyhedron

Usage:
PolyhedronStateDeserializer$scrape()

Returns: A new PolyhedronStateDefined object.

Method clone(): The objects of this class are cloneable with this method.

Usage:
PolyhedronStateDeserializer$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)
ken4rab

PolyhedronStateDmccooeyScraper
PolyhedronStateDmccooeyScraper

Description

Scrapes polyhedra from a dmccooey file format

Super class

Rpolyhedra: :PolyhedronState -> PolyhedronStateDmccooeyScraper

PolyhedronStateDmccooeyScraper

Public fields

regexp.values.names regexp for scraping values names
regexp.rn regexp for scraping real numbers

regexp.values regexp for scraping values

regexp.vertex regexp for scraping vertices

regexp.faces regexp for scraping faces
polyhedra.dmccooey.lines dmccooey polyhedra definition lines
labels.map labels map where values are

values labels map where values are

vertices specification

vertices.replaced 3D values

faces definition

Methods
Public methods:

¢ PolyhedronStateDmccooeyScraper$new()

e PolyhedronStateDmccooeyScraper$setupRegexp()

* PolyhedronStateDmccooeyScraper$scrapeValues()

* PolyhedronStateDmccooeyScraper$scrapeVertices()
¢ PolyhedronStateDmccooeyScraper$scrapeFaces()

¢ PolyhedronStateDmccooeyScraper$scrape()

* PolyhedronStateDmccooeyScraper$getName ()

e PolyhedronStateDmccooeyScraper$applyTransformationMatrix()
e PolyhedronStateDmccooeyScraper$buildRGL ()

* PolyhedronStateDmccooeyScraper$exportToXML()

* PolyhedronStateDmccooeyScraper$clone()

Method new(): Initialize Dmccooey scraper

Usage:
PolyhedronStateDmccooeyScraper$new(file.id, polyhedra.dmccooey.lines)

Arguments:
file.id identifier of the definition file.
polyhedra.dmccooey.lines raw Dmccooey definition file lines

Returns: A new PolyhedronStateDmccooeyScraper object.

Method setupRegexp(): setupRegexp for Dmccooey definition

Usage:
PolyhedronStateDmccooeyScraper$setupRegexp ()

Returns: This PolyhedronStateDmccooeyScraper object with regexp defined.

25

26

PolyhedronStateDmccooeyScraper

Method scrapeValues(): scrape values from Dmccooey definition

Usage:
PolyhedronStateDmccooeyScraper$scrapeValues(values. lines)

Arguments:
values.lines values definitions in Dmccooey source

Returns: This PolyhedronStateDmccooeyScraper object with values defined.

Method scrapeVertices(): scrape polyhedron vertices from definition

Usage:
PolyhedronStateDmccooeyScraper$scrapeVertices(vertices.lines)

Arguments:
vertices.lines vertices definitions in Dmccooey source

Returns: This PolyhedronStateDmccooeyScraper object with faces defined.

Method scrapeFaces(): scrape polyhedron faces from definition

Usage:
PolyhedronStateDmccooeyScraper$scrapeFaces(faces.lines)

Arguments:

faces.lines face

Returns: This PolyhedronStateDmccooeyScraper object with faces defined.

Method scrape(): scrape Dmccooey polyhedron definition

Usage:
PolyhedronStateDmccooeyScraper$scrape()

Returns: A new PolyhedronStateDefined object.

Method getName(): get Polyhedron name

Usage:
PolyhedronStateDmccooeyScraper$getName ()

Returns: string with polyhedron name

Method applyTransformationMatrix(): Apply transformation matrix to polyhedron

Usage:
PolyhedronStateDmccooeyScraper$applyTransformationMatrix(transformation.matrix)

Arguments:
transformation.matrix the transformation matrix to apply to the polyhedron

Method buildRGL(): Creates a ’rgl’ representation of the object

Usage:
PolyhedronStateDmccooeyScraper$buildRGL(transformation.matrix)

Arguments:
transformation.matrix the transformation matrix to apply to the polyhedron

PolyhedronStateNetlibScraper 27

Method exportToXML(): serializes object in XML
Usage:
PolyhedronStateDmccooeyScraper$exportToXML ()
Method clone(): The objects of this class are cloneable with this method.

Usage:
PolyhedronStateDmccooeyScraper$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)
kendrab

PolyhedronStateNetlibScraper
PolyhedronStateNetlibScraper

Description

Scrapes polyhedra from a PHD file format.

Super class

Rpolyhedra: :PolyhedronState -> PolyhedronStateNetlibScraper

Public fields
netlib.p3.1lines The path to the PHD files

labels.rows Labels - row of appearance
labels.map Labels - Map of content

errors the errors found

Methods

Public methods:
¢ PolyhedronStateNetlibScraper$new()
* PolyhedronStateNetlibScraper$extractRowsFromLabel ()
* PolyhedronStateNetlibScrapers$getLabels()
* PolyhedronStateNetlibScraper$scrapeNet()
* PolyhedronStateNetlibScraper$extractCFOutBrackets()
e PolyhedronStateNetlibScraper$scrapeVertices()
e PolyhedronStateNetlibScraper$setuplLabelsOrder()
* PolyhedronStateNetlibScrapers$getDataFromLabel ()

28

PolyhedronStateNetlibScraper

* PolyhedronStateNetlibScraper$getName ()

e PolyhedronStateNetlibScraper$scrape()

e PolyhedronStateNetlibScrapers$applyTransformationMatrix()
* PolyhedronStateNetlibScraper$buildRGL ()

* PolyhedronStateNetlibScraper$exportToXML ()

e PolyhedronStateNetlibScraper$clone()

Method new(): Initializes the object, taking the file.id and PDH file as parameters

Usage:
PolyhedronStateNetlibScraper$new(file.id, netlib.p3.lines)

Arguments:
file.id the file id
netlib.p3.1lines the lines to add

Returns: A new PolyhedronStateNetlibScraper object.
Method extractRowsFromLabel(): Extracts data from the label, taking the label number and
the expected label as parameters

Usage:
PolyhedronStateNetlibScraper$extractRowsFromLabel (label.number, expected.label)

Arguments:
label.number the label number
expected.label the expected label

Method getLabels(): get Labels from current netlib file description

Usage:
PolyhedronStateNetlibScraper$getLabels()

Returns: alist containing labels from netlib file description

Method scrapeNet(): scrape Net Model from netlib format

Usage:
PolyhedronStateNetlibScraper$scrapeNet(net.txt, offset = @)

Arguments:
net.txt a vector containing net model in netlib format

offset in numbering vertices

Returns: alist containing a net model

Method extractCFOutBrackets(): Remove brackets for current field content

Usage:
PolyhedronStateNetlibScraper$extractCFOutBrackets(x)

Arguments:

X a string containing brackets

Returns: value

PolyhedronStateNetlibScraper 29

Method scrapeVertices(): scrape vertices described in netlib format

Usage:
PolyhedronStateNetlibScraper$scrapeVertices(vertices.txt)

Arguments:
vertices.txt vector containing netlib format vertices

Returns: data.frame containing netlib vertices

Method setuplLabelsOrder(): setupLabelsOrder

Usage:
PolyhedronStateNetlibScraper$setuplLabelsOrder()

Arguments:
vertices.txt vector containing netlib format vertices

Returns: data.frame containing netlib vertices

Method getDataFromLabel(): Get data from label specified as parameter

Usage:
PolyhedronStateNetlibScraper$getDataFromLabel (1abel)

Arguments:
label the label to get data from

Returns: value

Method getName(): get Polyhedron name

Usage:
PolyhedronStateNetlibScraper$getName ()

Returns: string with polyhedron name

Method scrape(): scrape Netlib polyhedron definition

Usage:
PolyhedronStateNetlibScraper$scrape()

Returns: A new PolyhedronStateDefined object.

Method applyTransformationMatrix(): Apply transformation matrix to polyhedron

Usage:
PolyhedronStateNetlibScrapers$applyTransformationMatrix(transformation.matrix)

Arguments:
transformation.matrix the transformation matrix to apply to the polyhedron
Method buildRGL(): Creates a ’rgl’ representation of the object

Usage:
PolyhedronStateNetlibScraper$buildRGL (transformation.matrix)

Arguments:
transformation.matrix the transformation matrix to apply to the polyhedron

30 polyhedronToXML

Method exportToXML(): serializes object in XML
Usage:
PolyhedronStateNetlibScraper$exportToXML ()

Method clone(): The objects of this class are cloneable with this method.

Usage:
PolyhedronStateNetlibScraper$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)
kendrab

polyhedronToXML Polyhedron to XML

Description

Gets an XML representation out of the polyhedron object

Usage

polyhedronToXML(polyhedron.state.defined, is.transformed.vertices = TRUE)

Arguments

polyhedron.state.defined
the polyhedron to get a representation from

is.transformed.vertices
flag which states if vertices are in original position or transformationMatrix ap-
plied
Value

an XML document, ready to be converted to String with XML::saveXML()

Examples

get the representation of a cube (netlib library)
XML : : saveXML (polyhedronToXML (getPolyhedron(”"netlib”, "cube")$state))

scrapePolyhedra 31

scrapePolyhedra Scrape polyhedra objects

Description

Gets polyhedra objects from text files of different sources, scheduling and scraping using predefined
configurations.

Usage

scrapePolyhedra(
scrape.config,
source.filenames = NULL,
sources.config = getUserEnvir(".available.sources"),
logger = lgr

Arguments

scrape.config predefined configuration for scraping
source.filenames
if not null specify which source filenames to scrape

sources.config the sources that will be used by the function

logger logger for inheriting threshold from calling class/function
Value
polyhedra db object

scrapePolyhedraSources
Scrape polyhedra sources

Description

Scrapes polyhedra objects from text files of different sources, in order to make them available to the
package.

Usage

scrapePolyhedraSources(sources.config =
getUserEnvir(”.available.sources"),
max.quant.config.schedule = 0,
max.quant.scrape = @, time2scrape.source = 30,
source.filenames = NULL, retry.scrape = FALSE,
logger = 1lgr)

32 switchToFullDatabase

Arguments

sources.config the sources that will be used by the function
max.quant.config.schedule

number of files to schedule
max.quant.scrape

number of files scrape
time2scrape.source
time applied to scrape source
source.filenames
if not null specify which source filenames to scrape

retry.scrape should it retry scrape?

logger logger for inheriting threshold from calling class/function
Value
polyhedra db object

switchToFullDatabase Switch to full database

Description
Prompts user for changing database to fulldb in user filespace. Also, allows the user to switch back
to the package database, which is a minimal one for testing purposes.

Usage

switchToFullDatabase(env = NA, logger = lgr)

Arguments
env The environment to run on, can be PACKAGE,
logger logger for inheriting threshold from calling class/function HOME or NA. If NA,
it asks the user for a an Environment.
Value

.data.env

Index

_PACKAGE (Rpolyhedra-package), 2

genLogger, 3
getAvailablePolyhedra, 3
getAvailableSources, 4
getLogger, 5
getPolyhedraObject, 5
getPolyhedron, 6

loggerSetupFile, 7

PolyhedraDatabase, 7

Polyhedron, 13

PolyhedronState, 16
PolyhedronStateDefined, 18
PolyhedronStateDeserializer, 23
PolyhedronStateDmccooeyScraper, 24
PolyhedronStateNetlibScraper, 27
polyhedronToXML, 30

Rpolyhedra (Rpolyhedra-package), 2

Rpolyhedra-package, 2

Rpolyhedra: :PolyhedronState, 18, 23, 24,
27

scrapePolyhedra, 31
scrapePolyhedraSources, 31
switchToFullDatabase, 32

33

	Rpolyhedra-package
	genLogger
	getAvailablePolyhedra
	getAvailableSources
	getLogger
	getPolyhedraObject
	getPolyhedron
	loggerSetupFile
	PolyhedraDatabase
	Polyhedron
	PolyhedronState
	PolyhedronStateDefined
	PolyhedronStateDeserializer
	PolyhedronStateDmccooeyScraper
	PolyhedronStateNetlibScraper
	polyhedronToXML
	scrapePolyhedra
	scrapePolyhedraSources
	switchToFullDatabase
	Index

