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1 Example 1: Split-plot design with one qualitative and one quantitative

level factor

Gomez and Gomez (1984, p. 143) report a rice experiment with three management practices (minimum,
optimum, intensive), five different amounts of nitrogen (N) fertilizer (0, 50, 80, 110, 140 kg/ha), and
three varieties (V1, V2, V3). The experiment involved variety and management as qualitative treatment
factors and nitrogen fertilizer as a quantitative treatment factor. Overall, there were 45 treatments with
three replicates in complete replicate blocks. The fertilizer treatments were applied to main plots, the
management practices to split-plots and the varieties to split-split-plots.

1.1 Section 1

Section 1 examines treatment effects by fitting qualitative factorial models and the first analysis calculates
a full analysis of variance (Table 1) for main plots (nitrogen), split-plots (management) and split-split-
plots (variety). Each type of experimental unit (or “stratum”) requires a separate error term in the fitted
analysis.
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library(agriTutorial)

library(magrittr)

library(tidyverse)

library(lmerTest)

library(nlme)

library(emmeans)

library(pbkrtest)

library(ggfortify)

library(broom)

library(broom.mixed)

library(kableExtra)

options(contrasts = c('contr.treatment', 'contr.poly'))

fm1.1 <- aov(yield ~ Replicate + nitrogen * management * variety +

Error(Replicate/nitrogen/management), rice)

fm1.1.Summary <- broom::tidy(fm1.1)

Table 1: ANOVA Table

stratum term df sumsq meansq statistic p.value

Replicate Replicate 2 0.732 0.366
Replicate:nitrogen nitrogen 4 61.641 15.410 27.695 0.000
Replicate:nitrogen Residuals 8 4.451 0.556
Replicate:nitrogen:management management 2 42.936 21.468 81.996 0.000
Replicate:nitrogen:management nitrogen:management 8 1.103 0.138 0.527 0.823

Replicate:nitrogen:management Residuals 20 5.236 0.262
Within variety 2 206.013 103.007 207.867 0.000
Within nitrogen:variety 8 14.145 1.768 3.568 0.002
Within management:variety 4 3.852 0.963 1.943 0.115
Within nitrogen:management:variety 16 3.699 0.231 0.467 0.954

Within Residuals 60 29.732 0.496

The second analysis (Table 2 1) uses a REML mixed model analysis to find treatment means and SE’s
for each marginal treatment classification averaged over all the other treatment factors, together with
estimates of pairwise contrasts of treatment means and the SE’s of the pairwise treatment comparisons.
This analysis fits the full set of nitrogen-by-variety interaction effects assuming additive management
effects and the fit of the model is tested by a graphical plot of the model residuals. Residual plots provide
an important check on model assumptions but many more options for model testing are available and
further methods for diagnostic testing are examined in the subsequent examples.

fm1.2 <- lmer(yield ~ Replicate + management + nitrogen * variety +

(1|Replicate:Main) + (1|Replicate:Main:Sub), data = rice)

fm1.2.ANOVA <- anova(fm1.2, ddf = "Kenward-Roger", type = 1)

fm1.3 <- lmer(yield ~ Replicate + nitrogen + management + variety + nitrogen:variety +

(1|Replicate:Main) + (1|Replicate:Main:Sub), data = rice)

fm1.3.ANOVA <- anova(fm1.3, ddf = "Kenward-Roger", type = 1)

emmeans::emmeans(fm1.3, ~ nitrogen)

1Thanks to Mehrshad Barary (mehrshad.barary@dpi.nsw.gov.au) for pointing out some problems in the original vignette.
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Table 2: Mixed Model ANOVA

Sum Sq Mean Sq NumDF DenDF F value Pr(>F)

Replicate 0.531 0.266 2 8 0.658 0.544
management 42.936 21.468 2 28 53.150 0.000
nitrogen 44.746 11.186 4 8 27.695 0.000
variety 206.013 103.007 2 80 255.021 0.000
nitrogen:variety 14.145 1.768 8 80 4.377 0.000

nitrogen emmean SE df lower.CL upper.CL

0 5.38 0.144 8 5.05 5.72

50 6.22 0.144 8 5.89 6.55

80 7.00 0.144 8 6.66 7.33

110 6.94 0.144 8 6.61 7.27

140 7.23 0.144 8 6.90 7.56

Results are averaged over the levels of: Replicate, management, variety

Degrees-of-freedom method: kenward-roger

Confidence level used: 0.95

emmeans::emmeans(fm1.3, ~ variety)

variety emmean SE df lower.CL upper.CL

V1 5.13 0.101 39.7 4.92 5.33

V2 6.40 0.101 39.7 6.19 6.60

V3 8.14 0.101 39.7 7.94 8.34

Results are averaged over the levels of: Replicate, nitrogen, management

Degrees-of-freedom method: kenward-roger

Confidence level used: 0.95

emmeans::emmeans(fm1.3, ~ nitrogen * variety)

nitrogen variety emmean SE df lower.CL upper.CL

0 V1 4.51 0.225 39.7 4.06 4.97

50 V1 4.76 0.225 39.7 4.31 5.22

80 V1 5.83 0.225 39.7 5.38 6.29

110 V1 5.44 0.225 39.7 4.99 5.90

140 V1 5.08 0.225 39.7 4.62 5.53

0 V2 5.16 0.225 39.7 4.71 5.62

50 V2 6.02 0.225 39.7 5.56 6.47

80 V2 6.59 0.225 39.7 6.13 7.04

110 V2 6.92 0.225 39.7 6.47 7.38

140 V2 7.29 0.225 39.7 6.83 7.74

0 V3 6.48 0.225 39.7 6.02 6.93

50 V3 7.88 0.225 39.7 7.43 8.34

80 V3 8.56 0.225 39.7 8.11 9.02

110 V3 8.44 0.225 39.7 7.99 8.90

140 V3 9.34 0.225 39.7 8.88 9.79

Results are averaged over the levels of: Replicate, management

Degrees-of-freedom method: kenward-roger

Confidence level used: 0.95
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emmeans::contrast(

emmeans::emmeans(fm1.3, ~ nitrogen|variety)

, alpha = 0.05

, method = "pairwise"

)

variety = V1:

contrast estimate SE df t.ratio p.value

0 - 50 -0.251 0.318 39.7 -0.788 0.9326

0 - 80 -1.322 0.318 39.7 -4.158 0.0015

0 - 110 -0.932 0.318 39.7 -2.930 0.0420

0 - 140 -0.565 0.318 39.7 -1.776 0.4012

50 - 80 -1.071 0.318 39.7 -3.370 0.0138

50 - 110 -0.681 0.318 39.7 -2.142 0.2230

50 - 140 -0.314 0.318 39.7 -0.988 0.8591

80 - 110 0.390 0.318 39.7 1.228 0.7356

80 - 140 0.757 0.318 39.7 2.382 0.1416

110 - 140 0.367 0.318 39.7 1.154 0.7768

variety = V2:

contrast estimate SE df t.ratio p.value

0 - 50 -0.853 0.318 39.7 -2.684 0.0744

0 - 80 -1.426 0.318 39.7 -4.485 0.0006

0 - 110 -1.762 0.318 39.7 -5.542 <.0001

0 - 140 -2.126 0.318 39.7 -6.686 <.0001

50 - 80 -0.572 0.318 39.7 -1.800 0.3877

50 - 110 -0.908 0.318 39.7 -2.857 0.0500

50 - 140 -1.272 0.318 39.7 -4.002 0.0023

80 - 110 -0.336 0.318 39.7 -1.057 0.8270

80 - 140 -0.700 0.318 39.7 -2.202 0.2002

110 - 140 -0.364 0.318 39.7 -1.145 0.7819

variety = V3:

contrast estimate SE df t.ratio p.value

0 - 50 -1.403 0.318 39.7 -4.413 0.0007

0 - 80 -2.086 0.318 39.7 -6.561 <.0001

0 - 110 -1.965 0.318 39.7 -6.181 <.0001

0 - 140 -2.857 0.318 39.7 -8.989 <.0001

50 - 80 -0.683 0.318 39.7 -2.147 0.2209

50 - 110 -0.562 0.318 39.7 -1.767 0.4064

50 - 140 -1.454 0.318 39.7 -4.575 0.0004

80 - 110 0.121 0.318 39.7 0.380 0.9954

80 - 140 -0.772 0.318 39.7 -2.428 0.1290

110 - 140 -0.893 0.318 39.7 -2.808 0.0561

Results are averaged over the levels of: Replicate, management

P value adjustment: tukey method for comparing a family of 5 estimates

emmeans::contrast(

emmeans::emmeans(fm1.3, ~ variety|nitrogen)

, alpha = 0.05

, method = "pairwise"

)
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nitrogen = 0:

contrast estimate SE df t.ratio p.value

V1 - V2 -0.650 0.3 80 -2.169 0.0828

V1 - V3 -1.965 0.3 80 -6.559 <.0001

V2 - V3 -1.315 0.3 80 -4.390 0.0001

nitrogen = 50:

contrast estimate SE df t.ratio p.value

V1 - V2 -1.253 0.3 80 -4.181 0.0002

V1 - V3 -3.117 0.3 80 -10.405 <.0001

V2 - V3 -1.865 0.3 80 -6.225 <.0001

nitrogen = 80:

contrast estimate SE df t.ratio p.value

V1 - V2 -0.754 0.3 80 -2.516 0.0366

V1 - V3 -2.729 0.3 80 -9.109 <.0001

V2 - V3 -1.975 0.3 80 -6.593 <.0001

nitrogen = 110:

contrast estimate SE df t.ratio p.value

V1 - V2 -1.480 0.3 80 -4.940 <.0001

V1 - V3 -2.998 0.3 80 -10.007 <.0001

V2 - V3 -1.518 0.3 80 -5.068 <.0001

nitrogen = 140:

contrast estimate SE df t.ratio p.value

V1 - V2 -2.211 0.3 80 -7.379 <.0001

V1 - V3 -4.258 0.3 80 -14.212 <.0001

V2 - V3 -2.047 0.3 80 -6.833 <.0001

Results are averaged over the levels of: Replicate, management

P value adjustment: tukey method for comparing a family of 3 estimates

fm1.3.Augment <- broom.mixed::augment(fm1.3)

ggplot(data = fm1.3.Augment, mapping = aes(x = .fitted, y = .resid)) +

geom_point() +

geom_hline(yintercept = 0) +

labs(

x = "Fitted"

, y = "Residuals"

, title = "Full analysis with full nitrogen effects") +

theme_bw() +

theme(plot.title = element_text(hjust = 0.5))
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Full analysis with full nitrogen effects

The third analysis (Table 3) shows a mixed model analysis of the full factorial model fitted by REML
using the lmer function of the lme4 package. Generally with mixed models, determination of the denomi-
nator degrees of freedom for Wald-type F- and t-statistics becomes an issue, and here we use the method
proposed by Kenward and Roger (1997).

fm1.4 <- lmer(yield ~ Replicate + nitrogen * management * variety + (1|Replicate:Main) +

(1|Replicate:Main:Sub), data = rice)

fm1.4.ANOVA <- anova(fm1.4, ddf = "Kenward-Roger", type = 1)

Table 3: Mixed Model ANOVA

Sum Sq Mean Sq NumDF DenDF F value Pr(>F)

Replicate 0.575 0.288 2 8 0.658 0.544
nitrogen 48.424 12.106 4 8 27.695 0.000
management 42.936 21.468 2 20 49.114 0.000
variety 206.013 103.007 2 60 235.653 0.000
nitrogen:management 1.103 0.138 8 20 0.315 0.951

nitrogen:variety 14.145 1.768 8 60 4.045 0.001
management:variety 3.852 0.963 4 60 2.203 0.079
nitrogen:management:variety 3.699 0.231 16 60 0.529 0.921

1.2 Section 2

Section 2 examines treatment effects by fitting polynomial models and the first step calculates a full set
of four raw polynomials for the 5-levels of N.
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fm1.5 <- lmer(yield ~ Replicate + management + variety * (nrate + I(nrate^2) +

I(nrate^3) + I(nrate^4)) +

(1|Replicate:Main) + (1|Replicate:Main:Sub), data = rice)

fm1.5.ANOVA <- anova(fm1.5, ddf = "Kenward-Roger", type = 1)

Table 4: Mixed Model ANOVA

Sum Sq Mean Sq NumDF DenDF F value Pr(>F)

Replicate 0.531 0.266 2 8 0.658 0.544
management 42.936 21.468 2 28 53.150 0.000
variety 206.013 103.007 2 80 255.021 0.000
nrate 40.624 40.624 1 8 100.575 0.000
I(nrate^2) 2.490 2.490 1 8 6.164 0.038

I(nrate^3) 0.038 0.038 1 8 0.094 0.767
I(nrate^4) 1.594 1.594 1 8 3.947 0.082
variety:nrate 9.861 4.930 2 80 12.206 0.000
variety:I(nrate^2) 0.804 0.402 2 80 0.995 0.374
variety:I(nrate^3) 2.783 1.392 2 80 3.446 0.037

variety:I(nrate^4) 0.696 0.348 2 80 0.862 0.426

The second step fits a mixed model polynomial analysis of nitrogen effects assuming additive manage-
ment effects (Table 7). In this analysis, most of the nitrogen treatment effect can be explained by linear
and quadratic trend effects. but it is important to note that there is a non-negligible Variety x Cubic N
interaction effect. This suggests that not all the varieties responded in a similar way to the N treatments
and that some further analysis of the data may be required (see also the N plots of individual varieties
and replicates in Fig 1).

fm1.6 <- lmer(yield ~ Replicate + management + variety * nrate + I(nrate^2) +

(1|Replicate:Main) + (1|Replicate:Main:Sub), data = rice)

fm1.6.Coef <- summary(fm1.6, ddf = "Kenward-Roger")$coef

Table 5: Model Coefficients

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 3.839 0.248 31.463 15.488 0.000
ReplicateR2 0.118 0.173 10.000 0.683 0.510
ReplicateR3 -0.059 0.173 10.000 -0.343 0.739
managementOptimum 0.586 0.137 28.000 4.286 0.000
managementIntensive 1.376 0.137 28.000 10.071 0.000

varietyV2 0.537 0.254 86.000 2.113 0.038
varietyV3 2.009 0.254 86.000 7.897 0.000
nrate 0.016 0.005 12.376 3.157 0.008
I(nrate^2) 0.000 0.000 10.000 -2.263 0.047
varietyV2:nrate 0.010 0.003 86.000 3.412 0.001

varietyV3:nrate 0.013 0.003 86.000 4.684 0.000

The third step fits the required model for the actual fitted model coefficients (Table 8). When estimating
model effects, only effects that are significant for the fitted model or that are marginal to those effects
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(functional marginality) should be included in the model therefore only linear and quadratic nitrogen effects
are included in this model. The fitted model for the nitrogen effects fits the actual nitrogen levels used
in the experiment therefore this model provides the required coefficients for the actual applied nitrogen
levels.

# fm1.6.Coef[ ,1, drop = FALSE]

# Intercepts

fm1.6.Coef[1, 1] + sum(fm1.6.Coef[2:3, 1])/3 + sum(fm1.6.Coef[4:5, 1])/3

[1] 4.512349

fm1.6.Coef[1, 1] + sum(fm1.6.Coef[2:3, 1])/3 + sum(fm1.6.Coef[4:5, 1])/3 +

fm1.6.Coef[6, 1]

[1] 5.049778

fm1.6.Coef[1, 1] + sum(fm1.6.Coef[2:3, 1])/3 + sum(fm1.6.Coef[4:5, 1])/3 +

fm1.6.Coef[7, 1]

[1] 6.52096

# Linear Slopes

fm1.6.Coef[8, 1]

[1] 0.01612922

fm1.6.Coef[8, 1] + fm1.6.Coef[10, 1]

[1] 0.02575925

fm1.6.Coef[8, 1] + fm1.6.Coef[11, 1]

[1] 0.02935101

# Quadratic Slopes

fm1.6.Coef[9, 1]

[1] -7.528912e-05

1.3 Section 3

Section 3 provides checks on some of the assumptions underlying the blocks-by-treatments model.
The first analysis in this section shows a complete partition of the blocks-by-treatments interaction

effects into factorial mean square terms where all the terms that contain a replicate:variety interaction
effect are estimates of the split-split-plot error variance. If the blocks-by-treatments assumptions are
valid, all the estimates of the split-split-plot error variance are expected to have the same error mean
square. However, the Replicate:variety effect has a mean square of 1.54 on 4 degrees of freedom whereas
the Replicate:management:variety:nitrogen effect has a mean square of 0.26 on 32 degrees of freedom.
The ratio of these mean squares is 5.92 with an F-probability of 0.00110 on 4 and 32 degrees of free-
dom, which means that the Replicate:variety interaction effect is significantly inflated relative to the
Replicate:management:variety:nitrogen effect. This shows that the assumptions underlying the blocks-by-
treatments analysis of the model are invalid with a high level of probability.

The 4 degrees of freedom in the Replicate:variety interaction effect are the differences between the three
varieties differenced between the three replicate blocks. Fig S1 shows graphical plots of variety effects in
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each replicate block averaged over management effects, and there is clear evidence that the effects of
Variety 1 in blocks 1 and 2 were different from the effects of Variety 1 in block 3.

The second analysis in Section 3 shows a complete partition of the blocks-by-treatments interaction
effects into factorial mean square terms ignoring Variety 1. This analysis shows a reasonably good fit to the
assumed additive block which supports the hypothesis that the non-additivity of the block-and-treatment
effects in the full unrestricted analysis is mainly due to Variety 1.

fm1.7 <- aov(yield ~ Replicate*management * variety * nitrogen, rice)

fm1.7.Summary <- broom::tidy(fm1.7)

Table 6: ANOVA

term df sumsq meansq

Replicate 2 0.732 0.4
management 2 42.936 21.5
variety 2 206.013 103.0
nitrogen 4 61.641 15.4
Replicate:management 4 0.460 0.1

Replicate:variety 4 6.153 1.5
management:variety 4 3.852 1.0
Replicate:nitrogen 8 4.451 0.6
management:nitrogen 8 1.103 0.1
variety:nitrogen 8 14.145 1.8

Replicate:management:variety 8 2.221 0.3
Replicate:management:nitrogen 16 4.777 0.3
Replicate:variety:nitrogen 16 13.125 0.8
management:variety:nitrogen 16 3.699 0.2
Replicate:management:variety:nitrogen 32 8.233 0.3

Rice1 <-

rice %>%

dplyr::group_by(Replicate, nitrogen, variety) %>%

dplyr::summarise(Yield = mean(yield, na.rm = TRUE))

WideRice1 <-

Rice1 %>%

tidyr::spread(key = nitrogen, value = Yield) %>%

dplyr::ungroup() %>%

dplyr::select(-Replicate, -variety)

Table 7: Means Data

Replicate nitrogen variety Yield

R1 0 V1 3.9
R1 0 V2 5.9
R1 0 V3 6.6
R1 50 V1 4.0
R1 50 V2 6.3

R1 50 V3 7.9
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R1 80 V1 5.8
R1 80 V2 6.3
R1 80 V3 8.7
R1 110 V1 5.4

R1 110 V2 6.9
R1 110 V3 8.9
R1 140 V1 4.6
R1 140 V2 7.0
R1 140 V3 9.6

R2 0 V1 4.7
R2 0 V2 5.2
R2 0 V3 6.7
R2 50 V1 4.9
R2 50 V2 6.7

R2 50 V3 8.0
R2 80 V1 6.3
R2 80 V2 6.5
R2 80 V3 8.1
R2 110 V1 5.5

R2 110 V2 7.4
R2 110 V3 8.5
R2 140 V1 4.7
R2 140 V2 7.2
R2 140 V3 9.4

R3 0 V1 4.9
R3 0 V2 4.4
R3 0 V3 6.2
R3 50 V1 5.4
R3 50 V2 5.0

R3 50 V3 7.7
R3 80 V1 5.3
R3 80 V2 7.0
R3 80 V3 8.8
R3 110 V1 5.4

R3 110 V2 6.4
R3 110 V3 7.9
R3 140 V1 6.0
R3 140 V2 7.6
R3 140 V3 9.0

ggplot(data = Rice1, mapping = aes(x = nitrogen, y = Yield, group = Replicate)) +

geom_line() +

facet_grid(variety ~ Replicate, labeller = label_both) +

labs(

x = "Nitrogen"

, y = "Yield"

, title = "Fig S1. Variety response to nitrogen for individual replicate blocks"

) +

theme_bw() +

theme(plot.title = element_text(hjust = 0.5))
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Fig S1. Variety response to nitrogen for individual replicate blocks

The final analysis in Section 3 shows an analysis of variance of the treatment effects ignoring Variety 1.
In this analysis, the management:variety interaction effect becomes significant at the 0.00992 probability
level compared with a non-significant management:variety interaction effect in the analysis of the full data
set.

Such anomalies are not uncommon in the analysis of real data sets and it is the task of the statistician
to identify anomalies as and when they occur. Factorial designs can be very powerful for practical research
but, as demonstrated with this data set, the analysis of such designs is complex and anomalies can be
easily missed. Unless an anomaly is due to an easily identified cause such as an incorrectly recorded data
point, it is likely that the anomaly will need to be investigated by further discussion with the research
workers. It is a mistake to suppose that data from a designed experiment can be analysed statistically in
isolation from the research workers who conducted the experiment.

riceV2V3 <-

rice %>%

dplyr::filter(variety != "V1") %>%

droplevels()

fm1.8 <- aov(yield ~ Replicate*management * variety * nitrogen, riceV2V3)

fm1.8.ANOVA <- broom::tidy(fm1.8)

fm1.9 <- aov(yield ~ Replicate + management * variety * nitrogen +

Error(Replicate/Main/Sub), riceV2V3)

fm1.9.ANOVA <- broom::tidy(fm1.9)
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Table 8: ANOVA Table

term df sumsq meansq

Replicate 2 2.995 1.5
management 2 26.136 13.1
variety 1 68.447 68.4
nitrogen 4 63.989 16.0
Replicate:management 4 0.868 0.2

Replicate:variety 2 0.518 0.3
management:variety 2 3.682 1.8
Replicate:nitrogen 8 6.975 0.9
management:nitrogen 8 0.842 0.1
variety:nitrogen 4 1.776 0.4

Replicate:management:variety 4 1.243 0.3
Replicate:management:nitrogen 16 5.288 0.3
Replicate:variety:nitrogen 8 4.435 0.6
management:variety:nitrogen 8 3.219 0.4
Replicate:management:variety:nitrogen 16 4.030 0.3

Table 9: ANOVA Table

stratum term df sumsq meansq statistic p.value

Replicate Replicate 2 2.995 1.498
Replicate:Main nitrogen 4 63.989 15.997 18.348 0.0
Replicate:Main Residuals 8 6.975 0.872
Replicate:Main:Sub management 2 26.136 13.068 42.456 0.0
Replicate:Main:Sub management:nitrogen 8 0.842 0.105 0.342 0.9

Replicate:Main:Sub Residuals 20 6.156 0.308
Within variety 1 68.447 68.447 200.819 0.0
Within management:variety 2 3.682 1.841 5.401 0.0
Within variety:nitrogen 4 1.776 0.444 1.303 0.3
Within management:variety:nitrogen 8 3.219 0.402 1.181 0.3

Within Residuals 30 10.225 0.341
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2 Example 2: Lack-of-fit and marginality for a single quantitative treat-
ment factor

Petersen (1994, p. 125) describes an experiment conducted to assess the effects of five different quantities
of N-fertiliser (0, 35, 70, 105 and 140 kg N/ha) on root dry matter yield of sugar beet (t/ha) with three
complete replications laid out in three randomized complete blocks. One objective of this experiment was
to determine the amount of fertilizer for maximizing yield.

The first stage fits a full polynomial analysis of variance based on polynomial contrasts which are fitted
in sequence from the lowest to the highest. This is equivalent to the analysis shown in Tables 4 and 5 of
Piepho and Edmondson (2018) except that a complete partition into single degree of freedom polynomial
contrasts is shown here compared with the pooled ’lack of fit’ term shown in Tables 4 and 5.

fm2.1 <- lm(yield ~ Replicate + nrate + I(nrate^2) + I(nrate^3) + I(nrate^4), data = beet)

fm2.1.ANOVA <- anova(fm2.1)

Table 10: ANOVA Table

Df Sum Sq Mean Sq F value Pr(>F)

Replicate 2 26.321 13.161 3.712 0.072
nrate 1 651.468 651.468 183.736 0.000
I(nrate^2) 1 260.504 260.504 73.471 0.000
I(nrate^3) 1 1.587 1.587 0.448 0.522
I(nrate^4) 1 0.004 0.004 0.001 0.974

Residuals 8 28.365 3.546

The second stage fits a quadratic regression model with linear and quadratic terms only. This model
provides the model coefficients, standard errors and the confidence intervals shown in Table 6 of Piepho
and Edmondson (2018). A set of diagnostic plots are fitted for the fitted quadratic regression model to
check the validity of the model assumptions.

fm2.2 <- lm(yield ~ Replicate + nrate + I(nrate^2), data = beet)

fm2.2.Coef <- summary(fm2.2)$coef

Table 11: Model Coefficients

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.1 1.133 8.066 0.000
Replicate2 -0.7 1.095 -0.658 0.526
Replicate3 2.4 1.095 2.174 0.055
nrate 0.4 0.032 13.125 0.000
I(nrate^2) 0.0 0.000 -9.325 0.000

fm2.2.Coef[1, 1] + sum(fm2.2.Coef[2:3, 1])/3

[1] 9.692381

fm2.2.Coef[4, 1]

[1] 0.4177687
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fm2.2.Coef[5, 1]

[1] -0.002033042

confint(fm2.2, level = 0.95)

2.5 % 97.5 %

(Intercept) 6.614421038 11.663674200

Replicate2 -3.159020996 1.719020996

Replicate3 -0.059020996 4.819020996

nrate 0.346848911 0.488688503

I(nrate^2) -0.002518805 -0.001547278

Finally, a smoothed quadratic graph of the yield versus the N rate is plotted to show the goodness
of fit of the quadratic regression model. This plot corresponds to plot Fig 3 in Piepho and Edmondson
(2018).

ggplot2::autoplot(fm2.2)
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ggplot(data = beet, mapping = aes(x = nrate, y = yield)) +

geom_point(shape = 1) +

stat_summary(fun.y = mean, geom = "point") +

geom_smooth(method = lm, formula = y ~ poly(x, 2)) +

labs(

x = "Amont of nitrogen (kg)"

, y = "Yield"

, title = "Fig 3 Yield versus N for sugar beet with 95 percent confidence band"

) +

theme_bw() +

theme(plot.title = element_text(hjust = 0.5))
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3 Example 3: Polynomial regression model with two quantitative level treat-
ment factors

Gomez and Gomez (1984, p. 401) report a two-factor nitrogen uptake greenhouse experiment on rice
involving duration of water stress (W) and level of nitrogen application (N) with four complete replicates
of each treatment. The experiment had four water-stress levels (0, 10, 20 and 40 days) applied as main-
plot treatments and four nitrogen rates (0, 90, 180 and 270 kg/ha) applied as sub-plot treatments. The
four sub-plot treatments were randomized within main plots and the four main plot treatments were
randomized within complete replicate blocks.

The first stage shows a Pearson residual plot of the untransformed N uptake data versus a Pearson
residual plot of the log transformed N uptake data. Comparison of the two plots shows that the untrans-
formed residuals increase as the fitted values increase whereas the log transformed N uptake residuals are
approximately constant over the full range of the fitted values. This shows that a log transformation of
the N uptake data gives a dependent variate with constant variance over the full range of fitted values
which shows that a simple unweighted analysis of variance is valid for the effects of the treatment factors.

fm3.1 <- lmer(uptake ~ Replicate + Nitrogen * Water +

(1|Replicate:Main), data = greenrice)

fm3.1.Augment <- broom.mixed::augment(fm3.1)

ggplot(data = fm3.1.Augment, mapping = aes(x = .fitted, y = .resid)) +

geom_point() +

geom_hline(yintercept = 0) +

labs(

x = "Fitted"

, y = "Residuals N uptake"

, title = "Pearson residual plot for untransformed N uptake") +

theme_bw() +

theme(plot.title = element_text(hjust = 0.5))
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fm3.2 <- lmer(loguptake ~ Replicate + Nitrogen * Water +

(1|Replicate:Main), data = greenrice)

fm3.2.Augment <- broom.mixed::augment(fm3.2)

ggplot(data = fm3.2.Augment, mapping = aes(x = .fitted, y = .resid)) +

geom_point() +

geom_hline(yintercept = 0) +

labs(

x = "Fitted"

, y = "Residuals log N uptake"

, title = "Pearson residual plot for log transformed N uptake") +

theme_bw() +

theme(plot.title = element_text(hjust = 0.5))
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fm3.3 <- lmer(loguptake ~ N + W + Nitrogen * Water +

(1|Replicate) + (1|Replicate:Main), data = greenrice)

fm3.3.ANOVA <- anova(fm3.3, ddf = "Kenward-Roger", type = 1)

fm3.3.Summary <- summary(fm3.3, ddf = "Kenward-Roger", type = 1)$coef

fm3.4 <- lmer(loguptake ~ N * W + I(N^2) + I(W^2) +

Nitrogen * Water + (1|Replicate) + (1|Replicate:Main), data = greenrice)

fm3.4.Coef <-summary(fm3.4, ddf = "Kenward-Roger", type = 1)$coef

greenrice2 <- broom.mixed::augment(fm3.4)
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Table 12: ANOVA Table

Sum Sq Mean Sq NumDF DenDF F value Pr(>F)

N 4.653 4.653 1 36 183.807 0
W 25.524 25.524 1 9 1008.297 0
Nitrogen 0.630 0.315 2 36 12.437 0
Water 2.739 1.370 2 9 54.105 0
Nitrogen:Water 1.318 0.146 9 36 5.786 0

Table 13: Model Coefficients

Estimate Std. Error df t value Pr(>|t|)

(Intercept) -1.157 0.080 47.898 -14.452 0.000
N 0.004 0.000 36.000 10.197 0.000
W -0.030 0.003 44.308 -10.691 0.000
Nitrogen90 0.113 0.099 36.000 1.143 0.261
Nitrogen180 0.135 0.099 36.000 1.361 0.182

Water10 0.354 0.101 44.308 3.495 0.001
Water20 0.419 0.097 44.308 4.304 0.000
Nitrogen90:Water10 0.064 0.159 36.000 0.404 0.689
Nitrogen180:Water10 -0.195 0.159 36.000 -1.223 0.229
Nitrogen270:Water10 -0.144 0.159 36.000 -0.903 0.372

Nitrogen90:Water20 0.090 0.159 36.000 0.564 0.576
Nitrogen180:Water20 -0.384 0.159 36.000 -2.411 0.021
Nitrogen270:Water20 -0.458 0.159 36.000 -2.876 0.007
Nitrogen90:Water40 -0.108 0.159 36.000 -0.681 0.500
Nitrogen180:Water40 -0.712 0.159 36.000 -4.477 0.000

Nitrogen270:Water40 -0.865 0.159 36.000 -5.439 0.000

Table 14: Model Coefficients

Estimate Std. Error df t value Pr(>|t|)

(Intercept) -1.157 0.080 47.898 -14.452 0.000
N 0.006 0.002 36.000 3.995 0.000
W 0.012 0.010 44.308 1.170 0.248
I(N^2) 0.000 0.000 36.000 -1.361 0.182
I(W^2) -0.001 0.000 44.308 -4.304 0.000

Nitrogen90 -0.022 0.119 36.000 -0.183 0.856
Water10 0.040 0.104 44.308 0.383 0.704
N:W 0.000 0.000 36.000 -5.439 0.000
Nitrogen90:Water10 0.136 0.156 36.000 0.872 0.389
Nitrogen180:Water10 -0.050 0.155 36.000 -0.325 0.747

Nitrogen270:Water10 0.073 0.143 36.000 0.507 0.615
Nitrogen90:Water20 0.234 0.155 36.000 1.514 0.139
Nitrogen180:Water20 -0.095 0.155 36.000 -0.615 0.542
Nitrogen270:Water20 -0.025 0.138 36.000 -0.181 0.858
Nitrogen90:Water40 0.180 0.140 36.000 1.284 0.207

Nitrogen180:Water40 -0.135 0.140 36.000 -0.965 0.341
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ggplot(

data = greenrice2

, mapping = aes(x = Water, y = loguptake, color = Nitrogen, group = Nitrogen)) +

geom_point() +

geom_smooth(mapping = aes(y =.fitted), method = "loess")
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ggplot(

data = greenrice2

, mapping = aes(x = Water, y = exp(loguptake), color = Nitrogen, group = Nitrogen)) +

geom_point() +

geom_smooth(mapping = aes(y =.fitted), method = "loess")
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ggplot(

data = greenrice2

, mapping = aes(x = Nitrogen, y = loguptake, color = Water, group = Water)) +

geom_point() +

geom_smooth(mapping = aes(y =.fitted), method = "loess")
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ggplot(

data = greenrice2

, mapping = aes(x = Nitrogen, y = exp(loguptake), color = Water, group = Water)) +

geom_point() +

geom_smooth(mapping = aes(y =.fitted), method = "loess")
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fm3.5 <- lmer(loguptake ~ N * W + I(N^2) + I(W^2) +

(1|Replicate) + (1|Replicate:Main), data = greenrice)

fm3.5.Coef <- summary(fm3.5, ddf = "Kenward-Roger", type = 1)$coef

Table 15: Model Coefficients

Estimate Std. Error df t value Pr(>|t|)

(Intercept) -1.160 0.064 47.806 -18.187 0.000
N 0.007 0.001 45.000 8.731 0.000
W 0.018 0.006 12.919 3.196 0.007
I(N^2) 0.000 0.000 45.000 -3.582 0.001
I(W^2) -0.001 0.000 10.000 -9.694 0.000

N:W 0.000 0.000 45.000 -6.365 0.000
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4 Example 4: One qualitative treatment factor with repeated measurements
over time

Milliken and Johnson (1992, p. 429) discuss data which they describe as repeated leaf index measurements
on sorghum. Their data comprises five replicate blocks of four sorghum varieties and they assume equally
spaced repeated measurements on each plot in each block on five consecutive occasions starting two weeks
after emergence. No further information is given but it appears that the data is artificial rather than real.
Although real data is more authentic, it can sometimes be useful to discuss the analysis of an example data
set from the literature, even when the data is artificial. Milliken & Johnson discuss a multivariate analysis
of variance (MANOVA) for this data but MANOVA take no account of the ordered relationship between
repeated observations or the likely correlation structure of the data and here we discuss a generalized least
squares (GLS) method that is specifically intended to account for the underlying structure of repeated
measures data. The interested reader can, if desired, compare the GLS method of analysis with the
MANOVA analysis dicussed by Milliken and Johnson (1992) in Chapter 13 of their book.

4.1 Section 1

Section 1 calculates polynomials for weeks and blocks using the poly() function. Two sets of polynomials
for weeks, raw and orthogonal, are calculated and saved as sorghum$rawWeeks and sorghum$polWeeks
respectively. Orthogonal polynomials for blocks are calculated and saved as sorghum$polBlocks. It is
important to note that the poly() function calculates all polynomial contrasts up to the required degree
but does NOT include the zero-degree polynomial. Additionally, the block variable varblock is saved as a
factor factblock.

## independent uncorrelated random plots

fm4.1 <- nlme::gls(y ~ factweek * (Replicate + variety), sorghum)

fm4.1.ANOVA <- anova(fm4.1)

fm4.1.glance <- broom::glance(fm4.1)

fm4.1.Variogram <- nlme::Variogram(fm4.1)

Table 16: ANOVA Table

numDF F-value p-value

(Intercept) 1 80947.1 0.000
factweek 4 220.9 0.000
Replicate 4 358.9 0.000
variety 3 334.9 0.000
factweek:Replicate 16 1.8 0.049

factweek:variety 12 4.5 0.000

Table 17: Model Summary

sigma df logLik AIC BIC df.residual

0.152 40 1.869 78.261 164.129 60

4.2 Section 2

Section 2 compares five different correlation structures for the repeated measures analysis using the gls()
function of the nlme package. Each analysis fits a full factorial model for the variety-by-weeks and blocks-
by-weeks effects assuming block and treatment additivity. The goodness of fit of the five models is compared
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by AIC statistics where the smaller the AIC the better the fit. Here, the AR(1)+nugget model fitted by
the corExp() function gave the best fitting model. See help(corExp)for further information about the
corExp() function. Note that corSymm represents a general correlation structure and will, presumably,
give an analysis similar to a multivariate analysis of variance. Although this structure appears to give the
best fit according to the negative log likelihood statistic, this criterion takes no account of the number
of estimated variance parameters p in the variance model which, in the case of the corSymm model, is p
= 15, compared to only p = 2 for the AR(1) model. When assessed by the AIC statistic, the corSymm
model gave the least good fit of any of the non-null correlation structures which is strong evidence that
the multivariate analysis of variance method discussed by Milliken and Johnson (1992) will lack power.

## corCompSymm compound symmetry

fm4.2 <- nlme::gls(y ~ factweek * (Replicate + variety),

corr = corCompSymm(form = ~ varweek|factplot), sorghum)

fm4.2.ANOVA <- anova(fm4.2)

fm4.2.glance <- broom::glance(fm4.2)

fm4.2.Variogram <- nlme::Variogram(fm4.2)

Table 18: ANOVA Table

numDF F-value p-value

(Intercept) 1 21284.9 0
factweek 4 738.2 0
Replicate 4 94.4 0
variety 3 88.1 0
factweek:Replicate 16 6.1 0

factweek:variety 12 15.0 0

Table 19: Model Summary

sigma df logLik AIC BIC df.residual

0.152 40 22.81 38.379 126.342 60

Table 20: Variogram

variog dist n.pairs

0.146 1 80
0.181 2 60
0.214 3 40
0.243 4 20

4.3 Section 3

Section 3 fits a full regression model over the five weeks of repeated measures and tests for possible variety
and variety-by-weeks interactions effects. The weeks factor is decomposed into individual polynomial
contrasts (see Table A2 and Table 14) to test the significance of each individual variety-by-weeks polynomial
effect. The analysis of polynomial contrasts shows that the variety-by-weeks interaction is due mainly to
the degree-1 = variety:rawWeeks[,1] and the degree-2 = variety:rawWeeks[,2] effects, although there is also
some evidence of higher-degree variety-by-weeks interaction effects. The analysis also shows the corExp()
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range and nugget statistics for the full fitted model and these are used to calculate the correlation coefficient
usingthe formula rho=(1-nugget)*exp(-1/range). Note that this formula is different from the the formula
used in Tables A1 and A2 and will give a different value of rho: see help(corExp).

## corExp without nugget

fm4.3 <- nlme::gls(y ~ factweek * (Replicate + variety),

corr = corExp(form = ~ varweek|factplot), sorghum)

fm4.3.ANOVA <- anova(fm4.3)

fm4.3.glance <- broom::glance(fm4.3)

fm4.3.Variogram <- nlme::Variogram(fm4.3)

Table 21: ANOVA Table

numDF F-value p-value

(Intercept) 1 26108.4 0.000
factweek 4 272.5 0.000
Replicate 4 112.8 0.000
variety 3 102.2 0.000
factweek:Replicate 16 3.2 0.001

factweek:variety 12 10.3 0.000

Table 22: Model Summary

sigma df logLik AIC BIC df.residual

0.149 40 22.978 38.045 126.007 60

Table 23: Variogram

variog dist n.pairs

0.153 1 80
0.189 2 60
0.223 3 40
0.255 4 20

4.4 Section 4

Section 4 fits a quadratic regression model for weeks assuming the degree-3 and degree-4 polynomial week
effects are zero. The average effects of blocks are fitted by polBlocks and the interactions between the
blocks and the weeks are fitted by polBlocks:(rawWeeks[,1] + rawWeeks[,2] + polWeeks[,3]+ polWeeks[,4]).
The gls() algorithm requires the same polynomial weeks contrasts in both the blocks and the varieties
models which is why raw degree-1 and degree-2 weeks contrasts have been used for the blocks-by-weeks
interaction model. However, orthogonal polynomials have better numerical stability than raw polynomials
so orthogonal polynomial contrasts have been used for the degree-3 and degree-4 weeks contrasts. The
summary analysis shows all variety effects as differences from the intercept which, in this analysis, is variety
1 therefore all model effects in Table 15 can be derived by adding appropriate effects to the intercept. If
SED’s are required, these must be calculated from the variance/covariance matrix which can be extracted
by the code vcov(). Using this matrix, the SED for variety differences was calculated to be 0.172, the SED
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for the variety-by-linear weeks slope parameters was calculated to be 0.117 and the SED for the variety-
by-quadratic weeks slope parameters was calculated to be 0.0192. These estimates are approximately 2-3
percent larger than those shown in Table 15 but it is not clear if the discrepancies are due to the model
specification or to a difference between the R and the SAS software. Possibly the implementation of the
Kenward-Roger method of adjusting the denominator d.f. and the estimated variance-covariance matrix
of the estimated fixed effects might be different for the two algorithms. The range, nugget and correlation
coefficient are extracted and displayed and a graphical plot of the studentized residuals from the quadratic
regression model is also shown.

## corExp with nugget

fm4.4 <- nlme::gls(y ~ factweek * (Replicate + variety),

corr = corExp(form = ~ varweek|factplot, nugget = TRUE), sorghum)

fm4.4.ANOVA <- anova(fm4.4)

fm4.4.glance <- broom::glance(fm4.4)

fm4.4.Variogram <- nlme::Variogram(fm4.4)

Table 24: ANOVA Table

numDF F-value p-value

(Intercept) 1 22278.1 0
factweek 4 447.1 0
Replicate 4 97.7 0
variety 3 88.7 0
factweek:Replicate 16 4.2 0

factweek:variety 12 12.6 0

Table 25: Model Summary

sigma df logLik AIC BIC df.residual

0.15 40 24.26 37.479 127.536 60

Table 26: Variogram

variog dist n.pairs

0.150 1 80
0.186 2 60
0.220 3 40
0.251 4 20

4.5 Section 5

Section 5 fits a quadratic regression model for the variety-by-week interaction effects assuming a full
degree-4 model for both the weeks regression model and for the blocks-by-weeks interaction model. The
quadratic regression model in Section 4 corresponds to the regression model used for Tables 14 and 15 of
Piepho and Edmondson (2018) but the range = 3397131013 and nugget = 0.4605535 of this model are
very different from the range = 10.35774 and nugget = 0.1720444 of the full factorial model. For robust
smoothed prediction, the treatments model must be as parsimonious as possible and a degree-2 regression
model for the variety-by-weeks effects seems reasonable, even though there is some evidence (Table 14
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and Table A2) of significant higher-degree variety-by-weeks interaction effects. However, as shown in the
analysis in Section 4, there is quite strong evidence of degree-3 and degree-4 polynomial weeks effects
therefore the assumption of a degree-2 regression model for weeks is problematic. In this section, we fit
a more general model that assumes a quadratic regression model for weeks-by-varieties effects and a full
degree-4 regression model for weeks and weeks-by-blocks effects. With this model, the values of the auto-
correlation parameters are: range = 42.75763, nugget = 0.3586337 and correlation = 0.6265403 which are
much closer to the autocorrelation parameters from the full factorial model than are those from Section
4. As this model fits a full degree-4 polynomial model both for weeks and for block-by-weeks effects, it is
not necessary to use polynomial blocks contrasts and instead we fit the replcate block effects by using the
Replicate blocks factor.

## corSymm unstructured

fm4.5 <- nlme::gls(y ~ factweek * (Replicate + variety),

corr = corSymm(form = ~ 1|factplot),

weights = varIdent(form = ~ 1|varweek), sorghum)

fm4.5.ANOVA <- anova(fm4.5)

fm4.5.glance <- broom::glance(fm4.5)

fm4.5.Variogram <- nlme::Variogram(fm4.5)

Table 27: ANOVA Table

numDF F-value p-value

(Intercept) 1 57534.2 0
factweek 4 594.2 0
Replicate 4 217.6 0
variety 3 144.7 0
factweek:Replicate 16 4.0 0

factweek:variety 12 12.2 0

Table 28: Model Summary

sigma df logLik AIC BIC df.residual

0.141 40 31.45142 47.097 162.286 60

Table 29: Variogram

variog dist n.pairs

0.142 1 80
0.179 2 60
0.211 3 40
0.280 4 20

Comment The model fitted in Section 5 appears to be the best model available based on the generalized
least squares method but it is clear from the graphical plots of studentized residuals that the fitted data
contains outliers that are not well accommodated by the fitted model. If the data was from a real
experiment, further information about the data might be available but as the data seems to be artificial
this option is not available. In this situation, various robust methods of model fitting or regression analysis
that can accommodate non-standard distributions or model outliers are available. However, these methods
are beyond the scope of this tutorial and will not be discussed further here.
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Table 30: Models Summary

Model sigma df logLik AIC BIC df.residual

ID 0.152 40 1.869 78.261 164.129 60
CS 0.152 40 22.810 38.379 126.342 60
AR(1) 0.149 40 22.978 38.045 126.007 60
AR(1) + nugget 0.149 40 22.978 38.045 126.007 60
UN 0.141 40 31.451 47.097 162.286 60

fm4.6 <- nlme::gls(

y ~ (factblock+variety) * (varweek + I(varweek^2) + I(varweek^3) + I(varweek^4))

, corr = corExp(form = ~ varweek | factplot, nugget = TRUE)

, sorghum)

fm4.6.ANOVA <- anova(fm4.6)

fm4.6.Coef <- broom::tidy(fm4.6)

fm4.6.vcov <- vcov(fm4.6)

fm4.6.Par <-

tibble::tibble(

"Parameter" = c("Range", "Nugget", "rho")

, "Value" = c(

coef(fm4.6$modelStruct$corStruct, unconstrained = FALSE)[1]

, coef(fm4.6$modelStruct$corStruct, unconstrained = FALSE)[2]

, (1-coef(fm4.6$modelStruct$corStruct, unconstrained = FALSE)[2])*

exp(-1/coef(fm4.6$modelStruct$corStruct, unconstrained = FALSE)[1])

)

)

fm4.6.ACF <- nlme::ACF(fm4.6)
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Table 31: ANOVA Table

numDF F-value p-value

(Intercept) 1 22278.1 0.000
factblock 4 97.7 0.000
variety 3 88.7 0.000
varweek 1 1687.5 0.000
I(varweek^2) 1 62.7 0.000

I(varweek^3) 1 18.1 0.000
I(varweek^4) 1 20.0 0.000
factblock:varweek 4 12.4 0.000
factblock:I(varweek^2) 4 1.7 0.163
factblock:I(varweek^3) 4 0.1 0.988

factblock:I(varweek^4) 4 2.7 0.042
variety:varweek 3 21.2 0.000
variety:I(varweek^2) 3 16.6 0.000
variety:I(varweek^3) 3 7.7 0.000
variety:I(varweek^4) 3 4.8 0.005
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Table 32: Model Coefficients

term estimate std.error statistic p.value

1 (Intercept) 1.530 0.705 2.171 0.034
2 factblock2 0.653 0.788 0.828 0.411
3 factblock3 0.950 0.788 1.206 0.233
4 factblock4 0.725 0.788 0.920 0.361
5 factblock5 0.423 0.788 0.536 0.594

6 variety2 2.708 0.705 3.843 0.000
7 variety3 0.398 0.705 0.565 0.574
8 variety4 3.204 0.705 4.547 0.000
9 varweek 6.701 1.287 5.205 0.000
10 I(varweek^2) -4.147 0.772 -5.371 0.000

11 I(varweek^3) 0.959 0.186 5.171 0.000
12 I(varweek^4) -0.077 0.015 -4.987 0.000
13 factblock2:varweek -1.690 1.439 -1.174 0.245
14 factblock3:varweek -2.835 1.439 -1.969 0.054
15 factblock4:varweek -3.392 1.439 -2.356 0.022

16 factblock5:varweek -4.256 1.439 -2.957 0.004
17 factblock2:I(varweek^2) 1.014 0.863 1.175 0.245
18 factblock3:I(varweek^2) 1.710 0.863 1.981 0.052
19 factblock4:I(varweek^2) 2.127 0.863 2.464 0.017
20 factblock5:I(varweek^2) 2.567 0.863 2.974 0.004

21 factblock2:I(varweek^3) -0.239 0.207 -1.150 0.255
22 factblock3:I(varweek^3) -0.407 0.207 -1.961 0.055
23 factblock4:I(varweek^3) -0.509 0.207 -2.456 0.017
24 factblock5:I(varweek^3) -0.609 0.207 -2.936 0.005
25 factblock2:I(varweek^4) 0.019 0.017 1.117 0.268

26 factblock3:I(varweek^4) 0.034 0.017 1.945 0.056
27 factblock4:I(varweek^4) 0.042 0.017 2.434 0.018
28 factblock5:I(varweek^4) 0.050 0.017 2.917 0.005
29 variety2:varweek -3.519 1.287 -2.733 0.008
30 variety3:varweek 0.067 1.287 0.052 0.958

31 variety4:varweek -4.313 1.287 -3.350 0.001
32 variety2:I(varweek^2) 2.207 0.772 2.859 0.006
33 variety3:I(varweek^2) 0.249 0.772 0.323 0.748
34 variety4:I(varweek^2) 2.549 0.772 3.302 0.002
35 variety2:I(varweek^3) -0.535 0.186 -2.883 0.005

36 variety3:I(varweek^3) -0.074 0.186 -0.401 0.690
37 variety4:I(varweek^3) -0.572 0.186 -3.082 0.003
38 variety2:I(varweek^4) 0.045 0.015 2.890 0.005
39 variety3:I(varweek^4) 0.006 0.015 0.378 0.707
40 variety4:I(varweek^4) 0.044 0.015 2.825 0.006

Table 33: Structured Parameters

Parameter Value

Range 10.358
Nugget 0.172
rho 0.752
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plot(fm4.6.ACF)
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plot(fm4.6, sub.caption = NA, main = "Residuals from full polynomial weeks model")

Residuals from full polynomial weeks model
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fm4.7 <- nlme::gls(

y ~ polBlocks + variety + rawWeeks[,1] + rawWeeks[,2] +

polBlocks:(rawWeeks[,1] + rawWeeks[,2]+ polWeeks[,3] + polWeeks[,4]) +

variety:(rawWeeks[,1] + rawWeeks[,2])

, corr = corExp(form = ~ varweek | factplot, nugget=TRUE), sorghum)

fm4.7.ANOVA <- anova(fm4.7)

fm4.7.Coef <- broom::tidy(fm4.7)

fm4.7.vcov <- vcov(fm4.7)

fm4.7.Par <-

tibble::tibble(

"Parameter" = c("Range", "Nugget", "rho")

, "Value" = c(

coef(fm4.7$modelStruct$corStruct, unconstrained = FALSE)[1]

, coef(fm4.7$modelStruct$corStruct, unconstrained = FALSE)[2]

, (1-coef(fm4.7$modelStruct$corStruct, unconstrained = FALSE)[2])*

exp(-1/coef(fm4.7$modelStruct$corStruct, unconstrained = FALSE)[1])

)

)

fm4.7.ACF <- nlme::ACF(fm4.7)

Table 34: ANOVA Table

numDF F-value p-value

(Intercept) 1 21284.9 0.000
polBlocks 4 94.4 0.000
variety 3 88.1 0.000
rawWeeks[, 1] 1 1548.2 0.000
rawWeeks[, 2] 1 29.8 0.000

polBlocks:rawWeeks[, 1] 4 11.3 0.000
polBlocks:rawWeeks[, 2] 4 0.8 0.533
polBlocks:polWeeks[, 3] 4 0.0 0.998
polBlocks:polWeeks[, 4] 4 1.0 0.408
variety:rawWeeks[, 1] 3 19.1 0.000

variety:rawWeeks[, 2] 3 8.2 0.000
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Table 35: Model Coefficients

term estimate std.error statistic p.value

1 (Intercept) 4.679 0.122 38.414 0.000
2 polBlocks1 -6.445 0.609 -10.583 0.000
3 polBlocks2 -1.259 0.609 -2.067 0.043
4 polBlocks3 -0.110 0.609 -0.180 0.858
5 polBlocks4 0.369 0.609 0.605 0.547

6 variety2 0.785 0.172 4.556 0.000
7 variety3 0.073 0.172 0.425 0.672
8 variety4 0.501 0.172 2.907 0.005
9 rawWeeks[, 1] -0.379 0.083 -4.569 0.000
10 rawWeeks[, 2] -0.004 0.014 -0.316 0.753

11 polBlocks1:rawWeeks[, 1] 0.050 0.414 0.122 0.904
12 polBlocks2:rawWeeks[, 1] -0.326 0.414 -0.787 0.434
13 polBlocks3:rawWeeks[, 1] -0.357 0.414 -0.862 0.392
14 polBlocks4:rawWeeks[, 1] -0.485 0.414 -1.170 0.246
15 polBlocks1:rawWeeks[, 2] 0.077 0.068 1.129 0.263

16 polBlocks2:rawWeeks[, 2] 0.052 0.068 0.772 0.443
17 polBlocks3:rawWeeks[, 2] 0.033 0.068 0.481 0.632
18 polBlocks4:rawWeeks[, 2] 0.070 0.068 1.035 0.304
19 polBlocks1:polWeeks[, 3] -0.210 1.134 -0.185 0.854
20 polBlocks2:polWeeks[, 3] 0.220 1.134 0.194 0.847

21 polBlocks3:polWeeks[, 3] -0.205 1.134 -0.181 0.857
22 polBlocks4:polWeeks[, 3] 0.195 1.134 0.172 0.864
23 polBlocks1:polWeeks[, 4] 2.238 1.134 1.974 0.053
24 polBlocks2:polWeeks[, 4] -0.425 1.134 -0.375 0.709
25 polBlocks3:polWeeks[, 4] 0.089 1.134 0.078 0.938

26 polBlocks4:polWeeks[, 4] 0.045 1.134 0.040 0.968
27 variety2:rawWeeks[, 1] 0.107 0.117 0.915 0.363
28 variety3:rawWeeks[, 1] 0.645 0.117 5.500 0.000
29 variety4:rawWeeks[, 1] 0.388 0.117 3.312 0.001
30 variety2:rawWeeks[, 2] -0.001 0.019 -0.060 0.953

31 variety3:rawWeeks[, 2] -0.079 0.019 -4.122 0.000
32 variety4:rawWeeks[, 2] -0.051 0.019 -2.639 0.010

Table 36: Structured Parameters

Parameter Value

Range 2.839957e+09
Nugget 4.610000e-01
rho 5.390000e-01
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plot(fm4.7.ACF)
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plot(fm4.7, sub.caption = NA, main = "Residuals from quadratic regression model")

Residuals from quadratic regression model
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fm4.8 <- nlme::gls(

y ~ Replicate * (rawWeeks[,1] + rawWeeks[,2] + polWeeks[,3] + polWeeks[,4]) +

variety * (rawWeeks[,1] + rawWeeks[,2])

, corr = corExp(form = ~ varweek | factplot, nugget = TRUE), sorghum)

fm4.8.ANOVA <- anova(fm4.8)

fm4.8.Coef <- broom::tidy(fm4.8)

fm4.8.vcov <- vcov(fm4.8)

fm4.8.Par <-

tibble::tibble(

"Parameter" = c("Range", "Nugget", "rho")

, "Value" = c(

coef(fm4.8$modelStruct$corStruct, unconstrained = FALSE)[1]

, coef(fm4.8$modelStruct$corStruct, unconstrained = FALSE)[2]

, (1-coef(fm4.8$modelStruct$corStruct, unconstrained = FALSE)[2])*

exp(-1/coef(fm4.8$modelStruct$corStruct, unconstrained = FALSE)[1])

)

)

fm4.8.ACF <- nlme::ACF(fm4.8)

Table 37: ANOVA Table

numDF F-value p-value

(Intercept) 1 21467.3 0.000
Replicate 4 95.0 0.000
rawWeeks[, 1] 1 1811.8 0.000
rawWeeks[, 2] 1 40.0 0.000
polWeeks[, 3] 1 10.2 0.002

polWeeks[, 4] 1 10.6 0.002
variety 3 88.2 0.000
Replicate:rawWeeks[, 1] 4 13.2 0.000
Replicate:rawWeeks[, 2] 4 1.1 0.380
Replicate:polWeeks[, 3] 4 0.0 0.996

Replicate:polWeeks[, 4] 4 1.4 0.244
rawWeeks[, 1]:variety 3 22.4 0.000
rawWeeks[, 2]:variety 3 11.0 0.000
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Table 38: Model Coefficients

term estimate std.error statistic p.value

1 (Intercept) 5.456 0.155 35.228 0.000
2 Replicate2 -0.303 0.173 -1.747 0.085
3 Replicate3 -0.569 0.173 -3.286 0.002
4 Replicate4 -1.183 0.173 -6.831 0.000
5 Replicate5 -1.839 0.173 -10.617 0.000

6 rawWeeks[, 1] -0.412 0.102 -4.050 0.000
7 rawWeeks[, 2] -0.009 0.017 -0.566 0.573
8 polWeeks[, 3] 0.385 0.217 1.780 0.080
9 polWeeks[, 4] -0.686 0.216 -3.180 0.002
10 variety2 0.786 0.155 5.075 0.000

11 variety3 0.074 0.155 0.475 0.636
12 variety4 0.505 0.155 3.260 0.002
13 Replicate2:rawWeeks[, 1] 0.051 0.114 0.449 0.655
14 Replicate3:rawWeeks[, 1] -0.005 0.114 -0.044 0.965
15 Replicate4:rawWeeks[, 1] 0.159 0.114 1.401 0.166

16 Replicate5:rawWeeks[, 1] -0.036 0.114 -0.319 0.751
17 Replicate2:rawWeeks[, 2] -0.006 0.019 -0.347 0.730
18 Replicate3:rawWeeks[, 2] 0.010 0.019 0.540 0.591
19 Replicate4:rawWeeks[, 2] -0.005 0.019 -0.260 0.796
20 Replicate5:rawWeeks[, 2] 0.026 0.019 1.416 0.161

21 Replicate2:polWeeks[, 3] -0.124 0.306 -0.404 0.687
22 Replicate3:polWeeks[, 3] -0.071 0.306 -0.231 0.818
23 Replicate4:polWeeks[, 3] -0.095 0.306 -0.312 0.756
24 Replicate5:polWeeks[, 3] -0.088 0.306 -0.289 0.774
25 Replicate2:polWeeks[, 4] 0.247 0.305 0.811 0.420

26 Replicate3:polWeeks[, 4] 0.430 0.305 1.412 0.163
27 Replicate4:polWeeks[, 4] 0.539 0.305 1.767 0.082
28 Replicate5:polWeeks[, 4] 0.645 0.305 2.117 0.038
29 rawWeeks[, 1]:variety2 0.106 0.102 1.045 0.300
30 rawWeeks[, 1]:variety3 0.644 0.102 6.340 0.000

31 rawWeeks[, 1]:variety4 0.386 0.102 3.800 0.000
32 rawWeeks[, 2]:variety2 -0.001 0.017 -0.058 0.954
33 rawWeeks[, 2]:variety3 -0.079 0.017 -4.765 0.000
34 rawWeeks[, 2]:variety4 -0.050 0.017 -3.040 0.003

Table 39: Structured Parameters

Parameter Value

Range 42.758
Nugget 0.359
rho 0.627
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plot(fm4.8.ACF)
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plot(fm4.8,sub.caption = NA, main = "Quadratic treatment-by-weeks model with full

blocks-by-weeks model")

Quadratic treatment−by−weeks model with full

blocks−by−weeks model

Fitted values
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5 Example 5: Transformation of treatment levels to improve model fit

Mead (1990, p. 323) describes an experiment on spacing effects with turnips, which was laid out in three
complete blocks. Five different seed rates (0.5, 2, 8, 20, 32 lb/acre) were tested in combination with four
different row widths (4, 8, 16, 32 inches), giving rise to a total of 20 treatments.

Transformation of the dependent variable will often stabilize the variance of the observations whereas
transformation of the regressor variables will often simplify the fitted model. In this example, the fit of
a regression model based on the original seed rate and row width variables is compared with the fit of
a regression model based on the log transformed seed rates and log transformed row widths. In each
case, the model lack-of-fit is examined by assessing the extra variability explained when the Density and
Spacing treatment factors and their interactions are added to the quadratic regression models. All yields
are logarithmically transformed to stabilize the variance.

The first analysis fits a quadratic regression model of log yields on the untransformed seed rates and
row widths (Table 16) while the second analysis fits a quadratic regression model of log yields on the
log transformed seed rates and log transformed row widths (Table 17). The analysis of variance of the
first model shows that significant extra variability is explained by the Density and Spacing factors and
this shows that a quadratic regression model is inadequate for the untransformed regressor variables. The
analysis of variance of the second model, however, shows no significant extra variability explained by the
Density and Spacing factors and this shows that the quadratic regression model with the log transformed
regressor variables gives a good fit to the data and therefore is the preferred model for the observed data.

fm5.1 <- lm(log_yield ~ Replicate + density * rowspacing +

I(density^2) + I(rowspacing^2) + Density * Spacing

, turnip)

fm5.1.ANOVA <- anova(fm5.1)

Table 40: ANOVA Table

Df Sum Sq Mean Sq F value Pr(>F)

Replicate 2 3.417 1.708 43.617 0.000
density 1 14.120 14.120 360.486 0.000
rowspacing 1 0.518 0.518 13.219 0.001
I(density^2) 1 6.178 6.178 157.737 0.000
I(rowspacing^2) 1 0.224 0.224 5.712 0.022

Density 2 5.350 2.675 68.293 0.000
Spacing 1 0.175 0.175 4.472 0.041
density:rowspacing 1 0.447 0.447 11.414 0.002
Density:Spacing 11 0.551 0.050 1.278 0.274
Residuals 38 1.488 0.039

fm5.2 <- lm(log_yield ~ Replicate + log(density) * log(rowspacing) +

I(log(density)^2) + I(log(rowspacing)^2) +

Density * Spacing, turnip)

fm5.2.ANOVA <- anova(fm5.2)

The superiority of the model with the log transformed regressor variables is confirmed by comparing
the fit of the quadratic regression model for the untransformed regressor variables (Figs 8 and 9) versus
the fit of the quadratic regression model for the log transformed regressor variables (Figs 10 and 11).
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Table 41: ANOVA Table

Df Sum Sq Mean Sq F value Pr(>F)

Replicate 2 3.417 1.708 43.617 0.000
log(density) 1 23.477 23.477 599.396 0.000
log(rowspacing) 1 0.280 0.280 7.156 0.011
I(log(density)^2) 1 2.100 2.100 53.619 0.000
I(log(rowspacing)^2) 1 0.610 0.610 15.575 0.000

Density 2 0.070 0.035 0.897 0.416
Spacing 1 0.026 0.026 0.672 0.417
log(density):log(rowspacing) 1 0.750 0.750 19.157 0.000
Density:Spacing 11 0.247 0.022 0.574 0.838
Residuals 38 1.488 0.039

fm5.3 <- lm(log_yield ~ density * rowspacing + I(density^2) +

I(rowspacing^2) , turnip)

fm5.3.Coef <- broom::tidy(fm5.3)

turnip1 <- broom::augment(fm5.3, turnip)

Table 42: Model Coefficients

term estimate std.error statistic p.value

1 (Intercept) 1.115 0.224 4.985 0.000
2 density 0.156 0.021 7.477 0.000
3 rowspacing 0.028 0.028 1.000 0.322
4 I(density^2) -0.003 0.001 -5.512 0.000
5 I(rowspacing^2) -0.001 0.001 -1.049 0.299

6 density:rowspacing -0.001 0.000 -1.483 0.144

ggplot(data = turnip1,

mapping = aes(x = rowspacing, y = log_yield,

color = factor(density), group = factor(density))) +

geom_point() +

geom_smooth(mapping = aes(y =.fitted), method = "loess")
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ggplot(data = turnip1,

mapping = aes(x = rowspacing, y = exp(log_yield),

color = factor(density), group = factor(density))) +

geom_point() +

geom_smooth(mapping = aes(y =exp(.fitted)), method = "loess")
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ggplot(data = turnip1,

mapping = aes(x = density, y = log_yield,

color = factor(rowspacing), group = factor(rowspacing))) +

geom_point() +

geom_smooth(mapping = aes(y =.fitted), method = "loess")
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ggplot(data = turnip1,

mapping = aes(x = density, y = exp(log_yield),

color = factor(rowspacing), group = factor(rowspacing))) +

geom_point() +

geom_smooth(mapping = aes(y =exp(.fitted)), method = "loess")
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Fig 12a shows diagnostic plots for the fit of a quadratic model with untransformed regressor variables
while Fig 12b shows corresponding diagnostic plots for the fit of a quadratic model with loge transformed
regressor variables. Each of the four types of diagnostic plots in the two figures shows an improvement in
fit for the transformed versus the untransformed regressor variables.

fm5.4 <- lm(log_yield ~ log(density) * log(rowspacing) +

I(log(density)^2) + I(log(rowspacing)^2),

turnip)

fm5.4.Coef <- broom::tidy(fm5.4)

turnip2 <- broom::augment(fm5.4, turnip)

ggplot(data = turnip2,

mapping = aes(x = log(rowspacing), y = log_yield,

color = factor(density), group = factor(density))) +

geom_point() +

geom_smooth(mapping = aes(y =.fitted), method = "loess")
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ggplot(data = turnip2,

mapping = aes(x = log(rowspacing), y = exp(log_yield),

color = factor(density), group = factor(density))) +

geom_point() +

geom_smooth(mapping = aes(y =exp(.fitted)), method = "loess")
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ggplot(data = turnip2,

mapping = aes(x = log(density), y = log_yield,

color = factor(rowspacing), group = factor(rowspacing))) +

geom_point() +

geom_smooth(mapping = aes(y =.fitted), method = "loess")
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ggplot(data = turnip2,

mapping = aes(x = log(density), y = exp(log_yield),

color = factor(rowspacing), group = factor(rowspacing))) +

geom_point() +

geom_smooth(mapping = aes(y = exp(.fitted)), method = "loess")
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fm5.5 <- lm(log_yield ~ density * rowspacing +

I(density^2) + I(rowspacing^2),

turnip)

ggplot2::autoplot(fm5.5)

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

1

52
47

−1.0

−0.5

0.0

0.5

1.0

1.5 2.0 2.5 3.0

Fitted values

R
e

s
id

u
a

ls

Residuals vs Fitted

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

1

52
47

−3

−2

−1

0

1

2

−2 −1 0 1 2

Theoretical Quantiles

S
ta

n
d

a
rd

iz
e

d
 r

e
s
id

u
a

ls

Normal Q−Q

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1

52

47

0.5

1.0

1.5

1.5 2.0 2.5 3.0

Fitted values

S
ta

n
d

a
rd

iz
e

d
 r

e
s
id

u
a
ls

Scale−Location

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

1

19

52

−3

−2

−1

0

1

2

0.00 0.05 0.10 0.15 0.20 0.25

Leverage

S
ta

n
d

a
rd

iz
e

d
 R

e
s
id

u
a

ls

Residuals vs Leverage

44



fm5.6 <- lm(log_yield ~ log(density) * log(rowspacing) +

I(log(density)^2) + I(log(rowspacing)^2),

turnip)

ggplot2::autoplot(fm5.6)
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