
Package ‘bayesImageS’
October 12, 2022

Type Package

Title Bayesian Methods for Image Segmentation using a Potts Model

Version 0.6-1

Date 2021-04-10

Description Various algorithms for segmentation of 2D and 3D images, such
as computed tomography and satellite remote sensing. This package implements
Bayesian image analysis using the hidden Potts model with external field
prior of Moores et al. (2015) <doi:10.1016/j.csda.2014.12.001>.
Latent labels are sampled using chequerboard updating or Swendsen-Wang.
Algorithms for the smoothing parameter include pseudolikelihood, path sampling,
the exchange algorithm, approximate Bayesian computation (ABC-MCMC and ABC-SMC),
and the parametric functional approximate Bayesian (PFAB) algorithm. Refer to
<doi:10.1007/978-3-030-42553-1_6> for an overview and also to <doi:10.1007/s11222-014-
9525-6>
and <doi:10.1214/18-BA1130> for further details of specific algorithms.

License GPL (>= 2) | file LICENSE

URL https://bitbucket.org/Azeari/bayesimages,

https://mooresm.github.io/bayesImageS/

BugReports https://bitbucket.org/Azeari/bayesimages/issues

LazyData true

Depends R (>= 3.5.0)

Imports Rcpp (>= 0.10.6)

LinkingTo Rcpp, RcppArmadillo

Suggests mcmcse, coda, PottsUtils, rstan, knitr, rmarkdown, lattice

VignetteBuilder knitr

RoxygenNote 7.1.1

NeedsCompilation yes

Author Matt Moores [aut, cre] (<https://orcid.org/0000-0003-4531-3572>),
Dai Feng [ctb],
Kerrie Mengersen [aut, ths] (<https://orcid.org/0000-0001-8625-9168>)

1

https://doi.org/10.1016/j.csda.2014.12.001
https://doi.org/10.1007/978-3-030-42553-1_6
https://doi.org/10.1007/s11222-014-9525-6
https://doi.org/10.1007/s11222-014-9525-6
https://doi.org/10.1214/18-BA1130
https://bitbucket.org/Azeari/bayesimages
https://mooresm.github.io/bayesImageS/
https://bitbucket.org/Azeari/bayesimages/issues
https://orcid.org/0000-0003-4531-3572
https://orcid.org/0000-0001-8625-9168

2 bayesImageS

Maintainer Matt Moores <mmoores@gmail.com>

Repository CRAN

Date/Publication 2021-04-11 15:10:02 UTC

R topics documented:
bayesImageS . 2
exactPotts . 3
getBlocks . 4
getEdges . 5
getNeighbors . 6
gibbsGMM . 8
gibbsNorm . 9
gibbsPotts . 10
initSedki . 10
mcmcPotts . 11
mcmcPottsNoData . 12
res . 13
res2 . 13
res3 . 14
res4 . 14
res5 . 15
smcPotts . 15
sufficientStat . 16
swNoData . 16
synth . 17
testResample . 18

Index 19

bayesImageS Package bayesImageS

Description

Bayesian methods for segmentation of 2D and 3D images, such as computed tomography and satel-
lite remote sensing. This package implements image analysis using the hidden Potts model with
external field prior. Latent labels are sampled using chequerboard updating or Swendsen-Wang.
Algorithms for the smoothing parameter include pseudolikelihood, path sampling, the exchange
algorithm, and approximate Bayesian computation (ABC-MCMC and ABC-SMC).

Author(s)

M. T. Moores and K. Mengersen with additional code contributed by D. Feng

Maintainer: Matt Moores <mmoores@uow.edu.au>

exactPotts 3

References

Moores, M. T.; Nicholls, G. K.; Pettitt, A. N. & Mengersen, K. (2020) "Scalable Bayesian infer-
ence for the inverse temperature of a hidden Potts model" Bayesian Analysis 15(1), 1–17, DOI:
doi: 10.1214/18BA1130

Moores, M. T.; Drovandi, C. C.; Mengersen, K. & Robert, C. P. (2015) "Pre-processing for ap-
proximate Bayesian computation in image analysis" Statistics & Computing 25(1), 23–33, DOI:
doi: 10.1007/s1122201495256

Moores, M. T.; Hargrave, C. E.; Deegan, T.; Poulsen, M.; Harden, F. & Mengersen, K. (2015) "An
external field prior for the hidden Potts model, with application to cone-beam computed tomogra-
phy" Computational Statistics & Data Analysis 86, 27–41, DOI: doi: 10.1016/j.csda.2014.12.001

Feng, D. (2008) "Bayesian Hidden Markov Normal Mixture Models with Application to MRI Tis-
sue Classification" Ph. D. Dissertation, The University of Iowa

See Also

vignette(package="bayesImageS")

exactPotts Calculate the distribution of the Potts model using a brute force algo-
rithm.

Description

Warning: this algorithm is O(kn) and therefore will not scale for kn > 231 − 1

Usage

exactPotts(neighbors, blocks, k, beta)

Arguments

neighbors A matrix of all neighbours in the lattice, one row per pixel.

blocks A list of pixel indices, dividing the lattice into independent blocks.

k The number of unique labels.

beta The inverse temperature parameter of the Potts model.

Value

A list containing the following elements:

expectation The exact mean of the sufficient statistic.

variance The exact variance of the sufficient statistic.

exp_PL Pseudo-likelihood (PL) approximation of the expectation of S(z).

var_PL PL approx. of the variance of the sufficient statistic.

https://doi.org/10.1214/18-BA1130
https://doi.org/10.1007/s11222-014-9525-6
https://doi.org/10.1016/j.csda.2014.12.001

4 getBlocks

getBlocks Get Blocks of a Graph

Description

Obtain blocks of vertices of a 1D, 2D, or 3D graph, in order to use the conditional independence to
speed up the simulation (chequerboard idea).

Usage

getBlocks(mask, nblock)

Arguments

mask a vector, matrix, or 3D array specifying vertices of a graph. Vertices of value 1
are within the graph and 0 are not.

nblock a scalar specifying the number of blocks. For a 2D graph nblock could be either
2 or 4, and for a 3D graph nblock could be either 2 or 8.

Details

The vertices within each block are mutually independent given the vertices in other blocks. Some
blocks could be empty.

Value

A list with the number of components equal to nblock. Each component consists of vertices within
the same block.

References

Wilkinson, D. J. (2005) "Parallel Bayesian Computation" Handbook of Parallel Computing and
Statistics, pp. 481-512 Marcel Dekker/CRC Press

Examples

#Example 1: split a line into 2 blocks
getBlocks(mask=c(1,1,1,1,0,0,1,1,0), nblock=2)

#Example 2: split a 4*4 2D graph into 4 blocks in order
to use the chequerboard idea for a neighbourhood structure
corresponding to the second-order Markov random field.
getBlocks(mask=matrix(1, nrow=4, ncol=4), nblock=4)

#Example 3: split a 3*3*3 3D graph into 8 blocks
in order to use the chequerboard idea for a neighbourhood
structure based on the 18 neighbors definition, where the
neighbors of a vertex comprise its available

getEdges 5

adjacencies sharing the same edges or faces.
mask <- array(1, dim=rep(3,3))
getBlocks(mask, nblock=8)

getEdges Get Edges of a Graph

Description

Obtain edges of a 1D, 2D, or 3D graph based on the neighbourhood structure.

Usage

getEdges(mask, neiStruc)

Arguments

mask a vector, matrix, or 3D array specifying vertices of a graph. Vertices of value 1
are within the graph and 0 are not.

neiStruc a scalar, vector of four components, or 3 × 4 matrix corresponding to 1D, 2D,
or 3D graphs. It specifies the neighbourhood structure. See getNeighbors for
details.

Details

There could be more than one way to define the same 3D neighbourhood structure for a graph (see
Example 4 for illustration).

Value

A matrix of two columns with one edge per row. The edges connecting vertices and their corre-
sponding first neighbours are listed first, and then those corresponding to the second neighbours,
and so on and so forth. The order of neighbours is the same as in getNeighbors.

References

Winkler, G. (2003) "Image Analysis, Random Fields and Markov Chain Monte Carlo Methods: A
Mathematical Introduction" (2nd ed.) Springer-Verlag

Feng, D. (2008) "Bayesian Hidden Markov Normal Mixture Models with Application to MRI Tis-
sue Classification" Ph. D. Dissertation, The University of Iowa

6 getNeighbors

Examples

#Example 1: get all edges of a 1D graph.
mask <- c(0,0,rep(1,4),0,1,1,0,0)
getEdges(mask, neiStruc=2)

#Example 2: get all edges of a 2D graph based on neighbourhood structure
corresponding to the first-order Markov random field.
mask <- matrix(1 ,nrow=2, ncol=3)
getEdges(mask, neiStruc=c(2,2,0,0))

#Example 3: get all edges of a 2D graph based on neighbourhood structure
corresponding to the second-order Markov random field.
mask <- matrix(1 ,nrow=3, ncol=3)
getEdges(mask, neiStruc=c(2,2,2,2))

#Example 4: get all edges of a 3D graph based on 6 neighbours structure
where the neighbours of a vertex comprise its available
N,S,E,W, upper and lower adjacencies. To achieve it, there
are several ways, including the two below.
mask <- array(1, dim=rep(3,3))
n61 <- matrix(c(2,2,0,0,

0,2,0,0,
0,0,0,0), nrow=3, byrow=TRUE)

n62 <- matrix(c(2,0,0,0,
0,2,0,0,
2,0,0,0), nrow=3, byrow=TRUE)

e1 <- getEdges(mask, neiStruc=n61)
e2 <- getEdges(mask, neiStruc=n62)
e1 <- e1[order(e1[,1], e1[,2]),]
e2 <- e2[order(e2[,1], e2[,2]),]
all(e1==e2)

#Example 5: get all edges of a 3D graph based on 18 neighbours structure
where the neighbours of a vertex comprise its available
adjacencies sharing the same edges or faces.
To achieve it, there are several ways, including the one below.

n18 <- matrix(c(2,2,2,2,
0,2,2,2,
0,0,2,2), nrow=3, byrow=TRUE)

mask <- array(1, dim=rep(3,3))
getEdges(mask, neiStruc=n18)

getNeighbors Get Neighbours of All Vertices of a Graph

Description

Obtain neighbours of vertices of a 1D, 2D, or 3D graph.

getNeighbors 7

Usage

getNeighbors(mask, neiStruc)

Arguments

mask a vector, matrix, or 3D array specifying vertices within a graph. Vertices of
value 1 are within the graph and 0 are not.

neiStruc a scalar, vector of four components, or 3 × 4 matrix corresponding to 1D, 2D,
or 3D graphs. It gives the definition of neighbours of a graph. All components
of neiStruc should be positive (≥ 0) even numbers. For 1D graphs, neiStruc
gives the number of neighbours of each vertex. For 2D graphs, neiStruc[1]
specifies the number of neighbours on vertical direction, neiStruc[2] horizontal
direction, neiStruc[3] north-west (NW) to south-east (SE) diagonal direction,
and neiStruc[4] south-west (SW) to north-east (NE) diagonal direction. For
3D graphs, the first row of neiStruc specifies the number of neighbours on
vertical direction, horizontal direction and two diagonal directions from the 1-
2 perspective, the second row the 1-3 perspective, and the third row the 2-3
perspective. The index to perspectives is represented with the leftmost subscript
of the array being the smallest.

Details

There could be more than one way to define the same 3D neighbourhood structure for a graph (see
Example 3 for illustration).

Value

A matrix with each row giving the neighbours of a vertex. The number of the rows is equal to the
number of vertices within the graph and the number or columns is the number of neighbours of each
vertex.

For a 1D graph, if each vertex has two neighbours, The first column are the neighbours on the left-
hand side of corresponding vertices and the second column the right-hand side. For the vertices on
boundaries, missing neighbours are represented by the number of vertices within a graph plus 1.
When neiStruc is bigger than 2, The first two columns are the same as when neiStruc is equal to
2; the third column are the neighbours on the left-hand side of the vertices on the first column; the
forth column are the neighbours on the right-hand side of the vertices on the second column, and so
on and so forth. And again for the vertices on boundaries, their missing neighbours are represented
by the number of vertices within a graph plus 1.

For a 2D graph, the index to vertices is column-wised. For each vertex, the order of neighbours
are as follows. First are those on the vertical direction, second the horizontal direction, third the
NW to SE diagonal direction, and forth the SW to NE diagonal direction. For each direction, the
neighbours of every vertex are arranged in the same way as in a 1D graph.

For a 3D graph, the index to vertices is that the leftmost subscript of the array moves the fastest.
For each vertex, the neighbours from the 1-2 perspective appear first and then the 1-3 perspective
and finally the 2-3 perspective. For each perspective, the neighbours are arranged in the same way
as in a 2D graph.

8 gibbsGMM

References

Winkler, G. (2003) "Image Analysis, Random Fields and Markov Chain Monte Carlo Methods: A
Mathematical Introduction" (2nd ed.) Springer-Verlag

Feng, D. (2008) "Bayesian Hidden Markov Normal Mixture Models with Application to MRI Tis-
sue Classification" Ph. D. Dissertation, The University of Iowa

Examples

#Example 1: get all neighbours of a 1D graph.
mask <- c(0,0,rep(1,4),0,1,1,0,0,1,1,1)
getNeighbors(mask, neiStruc=2)

#Example 2: get all neighbours of a 2D graph based on neighbourhood structure
corresponding to the second-order Markov random field.
mask <- matrix(1, nrow=2, ncol=3)
getNeighbors(mask, neiStruc=c(2,2,2,2))

#Example 3: get all neighbours of a 3D graph based on 6 neighbours structure
where the neighbours of a vertex comprise its available
N,S,E,W, upper and lower adjacencies. To achieve it, there
are several ways, including the two below.
mask <- array(1, dim=rep(3,3))
n61 <- matrix(c(2,2,0,0,

0,2,0,0,
0,0,0,0), nrow=3, byrow=TRUE)

n62 <- matrix(c(2,0,0,0,
0,2,0,0,
2,0,0,0), nrow=3, byrow=TRUE)

n1 <- getNeighbors(mask, neiStruc=n61)
n2 <- getNeighbors(mask, neiStruc=n62)
n1 <- apply(n1, 1, sort)
n2 <- apply(n2, 1, sort)
all(n1==n2)

#Example 4: get all neighbours of a 3D graph based on 18 neighbours structure
where the neighbours of a vertex comprise its available
adjacencies sharing the same edges or faces.
To achieve it, there are several ways, including the one below.

n18 <- matrix(c(2,2,2,2,
0,2,2,2,
0,0,2,2), nrow=3, byrow=TRUE)

mask <- array(1, dim=rep(3,3))
getNeighbors(mask, neiStruc=n18)

gibbsGMM Fit a mixture of Gaussians to the observed data.

gibbsNorm 9

Description

Fit a mixture of Gaussians to the observed data.

Usage

gibbsGMM(y, niter = 1000, nburn = 500, priors = NULL)

Arguments

y A vector of observed pixel data.

niter The number of iterations of the algorithm to perform.

nburn The number of iterations to discard as burn-in.

priors A list of priors for the parameters of the model.

Value

A matrix containing MCMC samples for the parameters of the mixture model.

gibbsNorm Fit a univariate normal (Gaussian) distribution to the observed data.

Description

Fit a univariate normal (Gaussian) distribution to the observed data.

Usage

gibbsNorm(y, niter = 1000, priors = NULL)

Arguments

y A vector of observed pixel data.

niter The number of iterations of the algorithm to perform.

priors A list of priors for the parameters of the model.

Value

A list containing MCMC samples for the mean and standard deviation.

Examples

y <- rnorm(100,mean=5,sd=2)
res.norm <- gibbsNorm(y, priors=list(mu=0, mu.sd=1e6, sigma=1e-3, sigma.nu=1e-3))
summary(res.norm$mu[501:1000])
summary(res.norm$sigma[501:1000])

10 initSedki

gibbsPotts Fit a hidden Potts model to the observed data, using a fixed value of
beta.

Description

Fit a hidden Potts model to the observed data, using a fixed value of beta.

Usage

gibbsPotts(y, labels, beta, mu, sd, neighbors, blocks, priors, niter = 1)

Arguments

y A vector of observed pixel data.

labels A matrix of pixel labels.

beta The inverse temperature parameter of the Potts model.

mu A vector of means for the mixture components.

sd A vector of standard deviations for the mixture components.

neighbors A matrix of all neighbors in the lattice, one row per pixel.

blocks A list of pixel indices, dividing the lattice into independent blocks.

priors A list of priors for the parameters of the model.

niter The number of iterations of the algorithm to perform.

Value

A matrix containing MCMC samples for the parameters of the Potts model.

initSedki Initialize the ABC algorithm using the method of Sedki et al. (2013)

Description

Initialize the ABC algorithm using the method of Sedki et al. (2013)

Usage

initSedki(y, neighbors, blocks, param = list(npart = 10000), priors = NULL)

mcmcPotts 11

Arguments

y A vector of observed pixel data.
neighbors A matrix of all neighbours in the lattice, one row per pixel.
blocks A list of pixel indices, dividing the lattice into independent blocks.
param A list of options for the ABC-SMC algorithm.
priors A list of priors for the parameters of the model.

Value

A matrix containing SMC samples for the parameters of the Potts model.

References

Sedki, M.; Pudlo, P.; Marin, J.-M.; Robert, C. P. & Cornuet, J.-M. (2013) "Efficient learning in
ABC algorithms" arXiv:1210.1388

mcmcPotts Fit the hidden Potts model using a Markov chain Monte Carlo algo-
rithm.

Description

Fit the hidden Potts model using a Markov chain Monte Carlo algorithm.

Usage

mcmcPotts(
y,
neighbors,
blocks,
priors,
mh,
niter = 55000,
nburn = 5000,
truth = NULL

)

Arguments

y A vector of observed pixel data.
neighbors A matrix of all neighbors in the lattice, one row per pixel.
blocks A list of pixel indices, dividing the lattice into independent blocks.
priors A list of priors for the parameters of the model.
mh A list of options for the Metropolis-Hastings algorithm.
niter The number of iterations of the algorithm to perform.
nburn The number of iterations to discard as burn-in.
truth A matrix containing the ground truth for the pixel labels.

https://arxiv.org/abs/1210.1388

12 mcmcPottsNoData

Value

A matrix containing MCMC samples for the parameters of the Potts model.

mcmcPottsNoData Simulate pixel labels using chequerboard Gibbs sampling.

Description

Simulate pixel labels using chequerboard Gibbs sampling.

Usage

mcmcPottsNoData(beta, k, neighbors, blocks, niter = 1000, random = TRUE)

Arguments

beta The inverse temperature parameter of the Potts model.

k The number of unique labels.

neighbors A matrix of all neighbors in the lattice, one row per pixel.

blocks A list of pixel indices, dividing the lattice into independent blocks.

niter The number of iterations of the algorithm to perform.

random Whether to initialize the labels using random or deterministic starting values.

Value

A list containing the following elements:

alloc An n by k matrix containing the number of times that pixel i was allocated to label j.

z An (n+1) by k matrix containing the final sample from the Potts model after niter iterations of
chequerboard Gibbs.

sum An niter by 1 matrix containing the sum of like neighbors, i.e. the sufficient statistic of the
Potts model, at each iteration.

Examples

Swendsen-Wang for a 2x2 lattice
neigh <- matrix(c(5,2,5,3, 1,5,5,4, 5,4,1,5, 3,5,2,5), nrow=4, ncol=4, byrow=TRUE)
blocks <- list(c(1,4), c(2,3))
res.Gibbs <- mcmcPottsNoData(0.7, 3, neigh, blocks, niter=200)
res.Gibbs$z
res.Gibbs$sum[200]

res 13

res Simulation from the Potts model using single-site Gibbs updates.

Description

100 iterations of Gibbs sampling for a 500× 500 lattice with β = 0.22 and k = 2.

Usage

res

Format

A list containing 7 variables.

See Also

mcmcPotts

res2 Simulation from the Potts model using single-site Gibbs updates.

Description

100 iterations of Gibbs sampling for a 500× 500 lattice with β = 0.44 and k = 2.

Usage

res2

Format

A list containing 7 variables.

See Also

mcmcPotts

14 res4

res3 Simulation from the Potts model using single-site Gibbs updates.

Description

100 iterations of Gibbs sampling for a 500× 500 lattice with β = 0.88 and k = 2.

Usage

res3

Format

A list containing 7 variables.

See Also

mcmcPotts

res4 Simulation from the Potts model using single-site Gibbs updates.

Description

100 iterations of Gibbs sampling for a 500× 500 lattice with β = 1.32 and k = 2.

Usage

res4

Format

A list containing 7 variables.

See Also

mcmcPotts

res5 15

res5 Simulation from the Potts model using single-site Gibbs updates.

Description

5000 iterations of Gibbs sampling for a 500× 500 lattice with β = 1.32 and k = 2.

Usage

res5

Format

A list containing 4 variables.

See Also

mcmcPottsNoData

smcPotts Fit the hidden Potts model using approximate Bayesian computation
with sequential Monte Carlo (ABC-SMC).

Description

Fit the hidden Potts model using approximate Bayesian computation with sequential Monte Carlo
(ABC-SMC).

Usage

smcPotts(
y,
neighbors,
blocks,
param = list(npart = 10000, nstat = 50),
priors = NULL

)

Arguments

y A vector of observed pixel data.

neighbors A matrix of all neighbors in the lattice, one row per pixel.

blocks A list of pixel indices, dividing the lattice into independent blocks.

param A list of options for the ABC-SMC algorithm.

priors A list of priors for the parameters of the model.

16 swNoData

Value

A matrix containing SMC samples for the parameters of the Potts model.

sufficientStat Calculate the sufficient statistic of the Potts model for the given labels.

Description

Calculate the sufficient statistic of the Potts model for the given labels.

Usage

sufficientStat(labels, neighbors, blocks, k)

Arguments

labels A matrix of pixel labels.
neighbors A matrix of all neighbors in the lattice, one row per pixel.
blocks A list of pixel indices, dividing the lattice into independent blocks.
k The number of unique labels.

Value

The sum of like neighbors.

swNoData Simulate pixel labels using the Swendsen-Wang algorithm.

Description

The algorithm of Swendsen & Wang (1987) forms clusters of neighbouring pixels, then updates all
of the labels within a cluster to the same value. When simulating from the prior, such as a Potts
model without an external field, this algorithm is very efficient.

Usage

swNoData(beta, k, neighbors, blocks, niter = 1000, random = TRUE)

Arguments

beta The inverse temperature parameter of the Potts model.
k The number of unique labels.
neighbors A matrix of all neighbors in the lattice, one row per pixel.
blocks A list of pixel indices, dividing the lattice into independent blocks.
niter The number of iterations of the algorithm to perform.
random Whether to initialize the labels using random or deterministic starting values.

synth 17

Value

A list containing the following elements:

alloc An n by k matrix containing the number of times that pixel i was allocated to label j.

z An (n+1) by k matrix containing the final sample from the Potts model after niter iterations of
Swendsen-Wang.

sum An niter by 1 matrix containing the sum of like neighbors, i.e. the sufficient statistic of the
Potts model, at each iteration.

References

Swendsen, R. H. & Wang, J.-S. (1987) "Nonuniversal critical dynamics in Monte Carlo simulations"
Physical Review Letters 58(2), 86–88, DOI: doi: 10.1103/PhysRevLett.58.86

Examples

Swendsen-Wang for a 2x2 lattice
neigh <- matrix(c(5,2,5,3, 1,5,5,4, 5,4,1,5, 3,5,2,5), nrow=4, ncol=4, byrow=TRUE)
blocks <- list(c(1,4), c(2,3))
res.sw <- swNoData(0.7, 3, neigh, blocks, niter=200)
res.sw$z
res.sw$sum[200]

synth Simulation from the Potts model using Swendsen-Wang.

Description

Simulations for a 500× 500 lattice for fixed values of the inverse temperature parameter, β.

Usage

synth

Format

A list containing 5 variables:

0.22 simulations for β = 0.22

0.44 simulations for β = 0.44

0.88 simulations for β = 0.88

1.32 simulations for β = 1.32

tm time taken by the simulations

See Also

swNoData

https://doi.org/10.1103/PhysRevLett.58.86

18 testResample

testResample Test the residual resampling algorithm.

Description

Test the residual resampling algorithm.

Usage

testResample(values, weights, pseudo)

Arguments

values A vector of SMC particles.

weights A vector of importance weights for each particle.

pseudo A matrix of pseudo-data for each particle.

Value

A list containing the following elements:

beta A vector of resampled particles.

wt The new importance weights, after resampling.

pseudo A matrix of pseudo-data for each particle.

idx The indices of the parents of the resampled particles.

References

Liu, J. S. & Chen, R. (1998) "Sequential Monte Carlo Methods for Dynamic Systems" J. Am. Stat.
Assoc. 93(443): 1032–1044, DOI: doi: 10.1080/01621459.1998.10473765

https://doi.org/10.1080/01621459.1998.10473765

Index

∗ datasets
res, 13
res2, 13
res3, 14
res4, 14
res5, 15
synth, 17

∗ spatial
getBlocks, 4
getEdges, 5
getNeighbors, 6

bayesImageS, 2

exactPotts, 3

getBlocks, 4
getEdges, 5
getNeighbors, 6
gibbsGMM, 8
gibbsNorm, 9
gibbsPotts, 10

initSedki, 10

mcmcPotts, 11, 13, 14
mcmcPottsNoData, 12, 15

res, 13
res2, 13
res3, 14
res4, 14
res5, 15

smcPotts, 15
sufficientStat, 16
swNoData, 16, 17
synth, 17

testResample, 18

19

	bayesImageS
	exactPotts
	getBlocks
	getEdges
	getNeighbors
	gibbsGMM
	gibbsNorm
	gibbsPotts
	initSedki
	mcmcPotts
	mcmcPottsNoData
	res
	res2
	res3
	res4
	res5
	smcPotts
	sufficientStat
	swNoData
	synth
	testResample
	Index

