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Abstract

The bnclassify package provides state-of-the art algorithms for learning Bayesian network
classifiers from data. For structure learning it provides variants of the greedy hill-climbing search,
a well-known adaptation of the Chow-Liu algorithm and averaged one-dependence estimators.
It provides Bayesian and maximum likelihood parameter estimation, as well as three naive-
Bayes-specific methods based on discriminative score optimization and Bayesian model averaging.
The implementation is efficient enough to allow for time-consuming discriminative scores on
medium-sized data sets. The bnclassify package provides utilities for model evaluation, such
as cross-validated accuracy and penalized log-likelihood scores, and analysis of the underlying
networks, including network plotting via the igraph package. It is extensively tested, with over
200 automated tests that give a code coverage of 94%. Here we present the main functionalities,
illustrate them with a number of data sets, and comment on related software.
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1 Introduction

Bayesian network classifiers [Bielza and Larrañaga, 2014, Friedman et al., 1997] are competitive
performance classifiers [e.g., Zaidi et al., 2013] with the added benefit of interpretability. Their
simplest member, the naive Bayes (NB) [Minsky, 1961], is well-known [Hand and Yu, 2001].
More elaborate models exist, taking advantage of the Bayesian network [Pearl, 1988, Koller
and Friedman, 2009] formalism for representing complex probability distributions. The tree
augmented naive Bayes [Friedman et al., 1997] and the averaged one-dependence estimators
(AODE) [Webb et al., 2005] are among the most prominent.

A Bayesian network classifier is simply a Bayesian network applied to classification, that is,
the prediction of the probability P (c ♣ x) of some discrete (class) variable C given some features
X. The bnlearn [Scutari and Ness, 2018, Scutari, 2010] package already provides state-of-the
art algorithms for learning Bayesian networks from data. Yet, learning classifiers is specific,
as the implicit goal is to estimate P (c ♣ x) rather than the joint probability P (x, c). Thus,
specific search algorithms, network scores, parameter estimation and inference methods have
been devised for this setting. In particular, many search algorithms consider a restricted space
of structures such as that of augmented naive Bayes [Friedman et al., 1997] models. Unlike with
general Bayesian networks, it makes sense to omit a feature Xi from the model as long as the
estimation of P (c ♣ x) is no better than that of P (c ♣ x \ xi). Discriminative scores, related to
the estimation of P (c ♣ x) rather than P (c, x), are used to learn both structure [Keogh and
Pazzani, 2002, Grossman and Domingos, 2004, Pernkopf and Bilmes, 2010, Carvalho et al., 2011]
and parameters [Zaidi et al., 2013, 2017]. Some of the prominent classifiers [Webb et al., 2005]
are ensembles of networks, and there are even heuristics applied at inference time, such as the
lazy elimination technique [Zheng and Webb, 2006]. Many of these methods [e.g., Dash and
Cooper, 2002, Zaidi et al., 2013, Keogh and Pazzani, 2002, Pazzani, 1996] are at best available
in standalone implementations published alongside the original papers.

The bnclassify package implements state-of-the-art algorithms for learning structure and
parameters. The implementation is efficient enough to allow for time-consuming discriminative
scores on relatively large data sets. It provides utility functions for prediction and inference,
model evaluation with network scores and cross-validated estimation of predictive performance,
and model analysis, such as querying structure type or graph plotting via the \CRANpkg{igraph}
package. It integrates with the caret [Kuhn et al., 2017, Kuhn, 2008] and mlr [Bischl et al.,
2017, 2015] packages for straightforward use in machine learning pipelines. Currently it supports
only discrete variables. The functionalities are illustrated in an introductory vignette, while an
additional vignette provides details on the implemented methods. It includes over 200 unit and
integration tests that give a code coverage of 94 percent1.

The rest of this paper is structured as follows. Section 2 provides background on Bayesian
network classifiers. Section 3 describes the implemented functionalities. Section 4 illustrates
usage with a synthetic data set. Section 5 discusses implementation while Section 6 briefly
surveys related software. Finally, Section 7 concludes and outlines future work.

2 Background

2.1 Bayesian network classifiers

A Bayesian network classifier is a Bayesian network used for predicting a discrete class variable
C. It assigns x, an observation of n predictor variables (features) X = (X1, . . . , Xn), to the most
probable class:

1See https://codecov.io/github/bmihaljevic/bnclassify?branch=master
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c∗ = arg max
c

P (c ♣ x) = arg max
c

P (x, c).

The classifier factorizes P (x, c) according to a Bayesian network B = ⟨G, θ⟩. G is a directed
acyclic graph with a node for each variable in (X, C), encoding conditional independencies: a
variable X is independent of its nondescendants in G given the values pa(x) of its parents. G
thus factorizes the joint into local (conditional) distributions over subsets of variables:

P (x, c) = P (c ♣ pa(c))

n∏

i=1

P (xi ♣ pa(xi)).

Local distributions P (C ♣ pa(c)) and P (Xi ♣ pa(xi)) are specified by parameters θ(C,pa(c)) and
θ(Xi,pa(xi)), with θ = ¶θ(C,pa(c)), θ(X1,pa(x1)), . . . , θ(Xn,pa(xn))♢. It is common to assume each
local distribution has a parametric form, such as the multinomial, for discrete variables, and the
Gaussian for real-valued variables.

2.2 Learning structure

We learn B from a data set D = ¶(x1, c1), . . . , (xN , cN )♢ of N observations of X and C. There are
two main approaches to learning the structure G from D: a) testing for conditional independence
among triplets of sets of variables and b) searching a space of possible structures in order to
optimize a network quality score. Under assumptions such as a limited number of parents per
variable, approach a) can produce the correct network in polynomial time [Cheng et al., 2002,
Tsamardinos et al., 2003]. On the other hand, finding the optimal structure even with at most
two parents per variable is NP-hard [Chickering et al., 2004]. Thus, heuristic search algorithms,
such as greedy hill-climbing, are commonly used [see e.g., Koller and Friedman, 2009]. Ways to
reduce model complexity, in order to avoid overfitting the training data D, include searching in
restricted structure spaces and penalizing dense structures with appropriate scores.

Common scores in structure learning are the penalized log-likelihood scores, such as the
Akaike information criterion (AIC) [Akaike, 1974] and Bayesian information criterion (BIC)

[Schwarz, 1978]. They measure the model’s fitting of the empirical distribution P̂ (c, x) adding a
penalty term that is a function of structure complexity. They are decomposable with respect to G,
allowing for efficient search algorithms. Yet, with limited N and a large n, discriminative scores
based on P (c ♣ x), such as conditional log-likelihood and classification accuracy, are more suitable
to the classification task [Friedman et al., 1997]. These, however, are not decomposable according
to G. While one can add a complexity penalty to discriminative scores [e.g., Grossman and
Domingos, 2004], they are instead often cross-validated to induce preference towards structures
that generalize better, making their computation even more time demanding.

For Bayesian network classifiers, a common [see Bielza and Larrañaga, 2014] structure space
is that of augmented naive Bayes [Friedman et al., 1997] models (see Figure 1), factorizing
P (X, C) as

P (X, C) = P (C)
n∏

i=1

P (Xi ♣ Pa(Xi)), (1)

with C ∈ Pa(Xi) for all Xi and Pa(C) = ∅. Models of different complexity arise by extending or
shrinking the parent sets Pa(Xi), ranging from the NB [Minsky, 1961] with Pa(Xi) = ¶C♢ for
all Xi, to those with a limited-size Pa(Xi) [Friedman et al., 1997, Sahami, 1996], to those with
unbounded Pa(Xi) [Pernkopf and O’Leary, 2003]. While the NB can only represent linearly
separable classes [Jaeger, 2003], more complex models are more expressive [Varando et al., 2015].
Simpler models, with sparser Pa(Xi), may perform better with less training data, due to their
lower variance, yet worse with more data as the bias due to wrong independence assumptions
will tend to dominate the error.

The algorithms that produce the above structures are generally instances of greedy hill-
climbing [Keogh and Pazzani, 2002, Sahami, 1996], with arc inclusion and removal as their
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search operators. Some [e.g., Pazzani, 1996] add node inclusion or removal, thus embedding
feature selection [Guyon and Elisseeff, 2003] within structure learning. Alternatives include the
adaptation [Friedman et al., 1997] of the Chow-Liu [Chow and Liu, 1968] algorithm to find the
optimal one-dependence estimator (ODE) with respect to decomposable penalized log-likelihood
scores in time quadratic in n. Some structures, such as NB or AODE, are fixed and thus require
no search.

2.3 Learning parameters

Given G, learning θ in order to best approximate the underlying P (C, X) is straightforward.
For discrete variables Xi and Pa(Xi), Bayesian estimation can be obtained in closed form by
assuming a Dirichlet prior over θ. With all Dirichlet hyper-parameters equal to α,

θijk =
Nijk + α

N·j· + riα
, (2)

where Nijk is the number of instances in D such that Xi = k and pa(xi) = j, corresponding to
the j-th possible instantiation of pa(xi), N·j· is the number of instances in which pa(xi) = j,
while ri is the cardinality of Xi. α = 0 in Equation 2 yields the maximum likelihood estimate
of θijk. With incomplete data, the parameters of local distributions are no longer independent
and we cannot separately maximize the likelihood for each Xi as in Equation 2. Optimizing the
likelihood requires a time-consuming algorithm like expectation maximization [Dempster et al.,
1977] which only guarantees convergence to a local optimum.

While the NB can separate any two linearly separable classes given the appropriate θ, learning
by approximating P (C, X) cannot recover the optimal θ in some cases [Jaeger, 2003]. Several
methods [Hall, 2007, Zaidi et al., 2013, 2017] learn a weight wi ∈ [0, 1] for each feature and then
update θ as

θ
weighted
ijk =

(θijk)wi

∑ri

k=1(θijk)wi

.

A wi < 1 reduces the effect of Xi on the class posterior, with wi = 0 omitting Xi from the model,
making weighting more general than feature selection. The weights can be found by maximizing
a discriminative score [Zaidi et al., 2013] or computing the usefulness of a feature in a decision
tree [Hall, 2007]. Mainly applied to naive Bayes models, a generalization for augmented naive
Bayes classifiers has been recently developed [Zaidi et al., 2017].

Another parameter estimation method for the naive Bayes is by means of Bayesian model
averaging over the 2n possible naive Bayes structures with up to n features [Dash and Cooper,
2002]. It is computed in time linear in n and provides the posterior probability of an arc from C

to Xi.

2.4 Inference

Computing P (c ♣ x) for a fully observed x means multiplying the corresponding θ. With an
incomplete x, however, exact inference requires summing over parameters of the local distributions
and is NP-hard in the general case [Cooper, 1990], yet can be tractable with limited-complexity
structures. The AODE ensemble computes P (c ♣ x) as the average of the Pi(c ♣ x) of the n base
models. A special case is the lazy elimination [Zheng and Webb, 2006] heuristic which omits xi

from Equation 1 if P (xi ♣ xj) = 1 for some xj .

3 Functionalities

The package has four groups of functionalities:
1. Learning network structure and parameters
2. Analyzing the model
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3. Evaluating the model
4. Predicting with the model

Learning is split into two separate steps, the first being structure learning and the second,
optional, parameter learning. The obtained models can be evaluated, used for prediction or
analyzed. The following provides a brief overview of this workflow. For details on some of the
underlying methods please see the “methods” vignette.

3.1 Structures

The learning algorithms produce the following network structures:
• Naive Bayes (NB) (Figure 1a) [Minsky, 1961]
• One-dependence estimators (ODE)

– Tree-augmented naive Bayes (TAN) (Figure 1b) [Friedman et al., 1997]
– Forest-augmented naive Bayes (FAN) (Figure 1c)

• k-dependence Bayesian classifier (k-DB) [Sahami, 1996, Pernkopf and Bilmes, 2010]
• Semi-naive Bayes (SNB)(Figure 1d) [Pazzani, 1996]
• Averaged one-dependence estimators (AODE) [Webb et al., 2005]
Figure 1 shows some of these structures and their factorizations of P (c, x). We use k-DB in

the sense meant by Pernkopf and Bilmes [2010] rather than that by Sahami [1996], as we impose
no minimum on the number of augmenting arcs. SNB is the only structure whose complexity is
not a priori bounded: the feature subgraph might be complete in the extreme case.

(a) p(c, x) = p(c)p(x1♣c)p(x2♣c)p(x3♣c)p(x4♣c)
p(x5♣c)p(x6♣c)

(b) p(c, x) = p(c)p(x1♣c, x2)p(x2♣c, x3)p(x3♣c, x4)p(x4♣c)
p(x5♣c, x4)p(x6♣c, x5)

(c) p(c, x) = p(c)p(x1♣c, x2)p(x2♣c)p(x3♣c)p(x4♣c)
p(x5♣c, x4)p(x6♣c, x5)

(d) p(c, x) = p(c)p(x1♣c, x2)p(x2♣c)p(x4♣c)
p(x5♣c, x4)p(x6♣c, x4, x5)

Figure 1: Augmented naive Bayes models produced by the bnclassify package. (a) NB; (b) TAN (c)
FAN (d) SNB. k-DB and AODE not shown. The NB assumes that the features are independent
given the class. ODE allows each predictor to depend on at most one other predictor: the TAN is
a special case with exactly n − 1 augmenting arcs (i.e., inter-feature arcs) while a FAN may have
less than n − 1. The k-DB allows for up to k parent features per feature Xi, with NB and ODE
as its special cases with k = 0 and k = 1, respectively. The SNB does not restrict the number of
parents but requires that connected feature subgraphs be complete (connected, after removing C,
subgraphs in (d): ¶X1, X2♢, and ¶X4, X5, X6♢), also allowing the removal of features (X3 omitted
in (d)). The AODE is not a single structure but an ensemble of n ODE models in which one feature
is the parent of all others (a super-parent).

5



3.2 Algorithms

Each structure learning algorithm is implemented by a single R function. Table 1 lists these
algorithms along with the corresponding structures that they produce, the scores they can be
combined with, and their R functions. Below we provide their abbreviations, references, brief
comments and illustrate function calls.

3.2.1 Fixed structure

We implement two algorithms:
• NB
• AODE
The NB and AODE structures are fixed given the number of variables, and thus no search is

required to estimate them from data. For example, we can get a NB structure with
n <- nb('class', dataset = car)

where class is the name of the class variable C and car the dataset containing observations of
C and X.

3.2.2 Optimal ODEs with decomposable scores

We implement one algorithm:
• Chow-Liu for ODEs (CL-ODE; Friedman et al. [1997])
Maximizing log-likelihood will always produce a TAN while maximizing penalized log-

likelihood may produce a FAN since including some arcs can degrade such a score. With
incomplete data our implementation does not guarantee the optimal ODE as that would require
computing maximum likelihood parameters. The arguments of the tan_cl() function are the
network score to use and, optionally, the root for features’ subgraph:
n <- tan_cl('class', car, score = 'AIC', root = 'buying')

3.2.3 Greedy hill-climbing with global scores

The bnclassify package implements five algorithms:
• Hill-climbing tree augmented naive Bayes (HC-TAN) [Keogh and Pazzani, 2002]

• Hill-climbing super-parent tree augmented naive Bayes (HC-SP-TAN) [Keogh and Pazzani,
2002]

• Backward sequential elimination and joining (BSEJ) [Pazzani, 1996]

• Forward sequential selection and joining (FSSJ) [Pazzani, 1996]

• Hill-climbing k-dependence Bayesian classifier (k-DB)
These algorithms use the cross-validated estimate of predictive accuracy as a score. Only the

FSSJ and BSEJ perform feature selection. The arguments of the corresponding functions include
the number of cross-validation folds k and the minimal absolute score improvement epsilon

required for continuing the search:
fssj <- fssj('class', car, k = 5, epsilon = 0)

3.3 Parameters

The bnclassify package only handles discrete features. With fully observed data, it estimates
the parameters with maximum likelihood or Bayesian estimation, according to Equation 2, with
a single α for all local distributions. With incomplete data it uses available case analysis and
substitutes N·j· in Equation 2 with Nij· =

∑ri

k=1 Nijk, i.e., with the count of instances in which
Pa(Xi) = j and Xi is observed.

We implement two methods for weighted naive Bayes parameter estimation:
• Weighting attributes to alleviate naive Bayes’ independence assumption (WANBIA) [Zaidi

et al., 2013]
• Attribute-weighted naive Bayes (AWNB) [Hall, 2007]

6



Table 1: Implemented structure learning algorithms.

Structure Search algorithm Score Feature selection Function

NB - - - nb

TAN/FAN CL-ODE log-lik, AIC, BIC - tan_cl

TAN TAN-HC accuracy - tan_hc

TAN TAN-HCSP accuracy - tan_hcsp

SNB FSSJ accuracy forward fssj

SNB BSEJ accuracy backward bsej

AODE - - - aode

kDB kDB accuracy - kdb

And one method for estimation by means of Bayesian model averaging over all NB structures
with up to n features:

• Model averaged naive Bayes (MANB) [Dash and Cooper, 2002]
It makes little sense to apply WANBIA, MANB and AWNB to structures other than NB.

WANBIA, for example, learns the weights by optimizing the conditional log-likelihood of the NB.
Parameter learning is done with the lp() function. For example,
a <- lp(n, smooth = 1, manb_prior = 0.5)

computes Bayesian parameter estimates with α = 1 (the smooth argument) for all local distribu-
tions, and updates them with the MANB estimation obtained with a 0.5 prior probability for
each class-to-feature arc.

3.4 Utilities

Single-structure-learning functions, as opposed to those that learn an ensemble of structures,
return an S3 object of class "bnc_dag". The following functions can be invoked on such objects:

• Plot the network: plot()

• Query model type: is_tan(), is_ode(), is_nb(), is_aode(), . . .
• Query model properties: narcs(), families(), features(), . . .
• Convert to a gRain object: as_grain()

Ensembles are of type "bnc_aode" and only print() and model type queries can be applied
to such objects. Fitting the parameters (by calling lp()) of a "bnc_dag" produces a "bnc_bn"

object. In addition to all "bnc_dag" functions, the following are meaningful:
• Predict class labels and class posterior probability: predict()

• Predict joint distribution: compute_joint()

• Network scores: AIC(),BIC(),logLik(),clogLik()

• Cross-validated accuracy: cv()

• Query model properties: nparams()

• Parameter weights: manb_arc_posterior(), weights()

The above functions for "bnc_bn" can also be applied to an ensemble with fitted parameters.

3.5 Documentation

This vignette provides an overview of the package and background on the implemented methods.
Calling ?bnclassify gives a more concise overview of the functionalities, with pointers to
relevant functions and their documentation. The “usage” vignette presents more detailed usage
examples and shows how to combine the functions. The “methods” vignette provides details on
the underlying methods and documents implementation specifics, especially where they differ
from or are undocumented in the original paper.
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4 Usage example

The available functionalities can be split into four groups:
1. Learning network structure and parameters
2. Analyzing the model
3. Evaluating the model
4. Predicting with the model

We illustrate these functionalities with the synthetic car data set with six features. We begin
with a simple example for each functionality group and then elaborate on the options in the
following sections. We first load the package and the dataset,

library(bnclassify)

data(car)

then learn a naive Bayes structure and its parameters,

nb <- nb('class', car)

nb <- lp(nb, car, smooth = 0.01)

get the number of arcs in the network,

narcs(nb)

[1] 6

get the 10-fold cross-validation estimate of accuracy,

cv(nb, car, k = 10)

[1] 0.8651489

and finally classify the entire data set

p <- predict(nb, car)

head(p)

[1] unacc unacc unacc unacc unacc unacc

Levels: unacc acc good vgood

4.1 Learning

The functions for structure learning, shown in Table 1, correspond to the different algorithms.
They all receive the name of the class variable and the data set as their first two arguments,
which are then followed by optional arguments. The following runs the CL-ODE algorithm with
the AIC score, followed by the FSSJ algorithm to learn another model:

ode_cl_aic <- tan_cl('class', car, score = 'aic')

suppressWarnings(RNGversion("3.5.0"))

set.seed(3)

fssj <- fssj('class', car, k = 5, epsilon = 0)

The bnc() function is a shorthand for learning structure and parameters in a single step,

ode_cl_aic <- bnc('tan_cl', 'class', car, smooth = 1, dag_args = list(score = 'aic'))

where the first argument is the name of the structure learning function while and optional
arguments go in dag_args.
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4.2 Analyzing

Printing the model, such as the above ode_cl_aic object, provides basic information about it.

ode_cl_aic

Bayesian network classifier

class variable: class

num. features: 6

num. arcs: 9

free parameters: 131

learning algorithm: tan_cl

While plotting the network is especially useful for small networks, printing the structure in
the deal [Bottcher and Dethlefsen, 2013] and bnlearn format may be more useful for larger ones:

ms <- modelstring(ode_cl_aic)

strwrap(ms, width = 60)

[1] "[class] [buying|class] [doors|class] [persons|class]"

[2] "[maint|buying:class] [safety|persons:class]"

[3] "[lug_boot|safety:class]"

We can query the type of structure; params() lets us access the conditional probability tables
(CPTs); while features() lists the features:

is_ode(ode_cl_aic)

[1] TRUE

params(nb)$buying

class

buying unacc acc good vgood

low 0.2132243562 0.2317727320 0.6664252607 0.5997847478

med 0.2214885458 0.2994740131 0.3332850521 0.3999077491

high 0.2677680077 0.2812467451 0.0001448436 0.0001537515

vhigh 0.2975190903 0.1875065097 0.0001448436 0.0001537515

length(features(fssj))

[1] 5

For example, fssj() has selected five out of six features.
manb_arc_posterior() provides the MANB posterior probabilities for arcs from the class

to each of the features:

manb <- lp(nb, car, smooth = 0.01, manb_prior = 0.5)

round(manb_arc_posterior(manb))

buying maint doors persons lug_boot safety

1 1 0 1 1 1

With the posterior probability of 0% for the arc from class to doors, and 100% for all others,
MANB renders doors independent from the class while leaving the other features’ parameters
unaltered. We can see this by printing out the CPTs:

params(manb)$doors

class

doors unacc acc good vgood
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2 0.25 0.25 0.25 0.25

3 0.25 0.25 0.25 0.25

4 0.25 0.25 0.25 0.25

5more 0.25 0.25 0.25 0.25

all.equal(params(manb)$buying, params(nb)$buying)

[1] TRUE

For more functions for querying a structure with parameters ("bnc_bn") see ?inspect_bnc_bn.
For a structure without parameters ("bnc_dag"), see ?inspect_bnc_dag.

4.3 Evaluating

Several scores can be computed:

logLik(ode_cl_aic, car)

'log Lik.' -13307.59 (df=131)

AIC(ode_cl_aic, car)

[1] -13438.59

The cv function estimates the predictive accuracy of one or more models with a single run
of stratified cross-validation. In the following we assess the above models produced by NB and
CL-ODE algorithms:

suppressWarnings(RNGversion("3.5.0"))

set.seed(0)

cv(list(nb = nb, ode_cl_aic = ode_cl_aic), car, k = 5, dag = TRUE)

nb ode_cl_aic

0.8582303 0.9345913

Above, k is the desired number of folds, and dag = TRUE evaluates structure and parameter
learning, while dag = FALSE keeps the structure fixed and evaluates just the parameter learning.
The output gives 86% and 93% accuracy estimates for NB and CL-ODE, respectively. mlr and
caret packages provide additional options for evaluating predictive performance, such as different
metrics, and bnclassify is integrated with both (see the “usage” vignette).

4.4 Predicting

As shown above, we can predict class labels with predict(). We can also get the class posterior
probabilities:

pp <- predict(nb, car, prob = TRUE)

# Show class posterior distributions for the first six instances of car

head(pp)

unacc acc good vgood

[1,] 1.0000000 2.171346e-10 8.267214e-16 3.536615e-19

[2,] 0.9999937 6.306269e-06 5.203338e-12 5.706038e-19

[3,] 0.9999908 9.211090e-06 5.158884e-12 4.780777e-15

[4,] 1.0000000 3.204714e-10 1.084552e-15 1.015375e-15

[5,] 0.9999907 9.307467e-06 6.826088e-12 1.638219e-15

[6,] 0.9999864 1.359469e-05 6.767760e-12 1.372573e-11
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5 Implementation

With complete data, bnclassify implements prediction for augmented naive Bayes models as well
as for ensembles of such models. It multiplies the corresponding θ in logarithmic space, applying
the log-sum-exp trick before normalizing, to reduce the chance of underflow. On instances with
missing entries, it uses the gRain package [Højsgaard, 2016, Højsgaard, 2012] to perform exact
inference, which is noticeably slower. Network plotting is implemented by the igraph package.
Some functions are implemented in C++ with Rcpp for efficiency. The package is extensively
tested, with over 200 unit and integrated tests that give a 94% code coverage.

6 Related software

NB, TAN, and AODE are available in general-purpose tools such as bnlearn and Weka, while
WANBIA2 and MANB3 are only available in stand-alone software, published along with the
original publications. We are not aware of available implementations of the remaining methods
implemented in bnclassify.

bnlearn implements algorithms for learning general purpose Bayesian networks. Among
them, algorithms for Markov blanket learning by testing for independencies, such as IAMB
[Tsamardinos and Aliferis, 2003] and GS [Margaritis and Thrun, 2000], can be very useful for
classification as they can look for the Markov blanket of the class variable. bnlearn combines
the search algorithms, such as greedy hill-climbing and tabu search [Glover and Laguna, 2013],
only with generative scores such as penalized log-likelihood. Among classification models, it
implements the discrete NB and CL-ODE. It does not handle incomplete data and provides
cross-validation and prediction only for the NB and TAN models, but not for the unrestricted
Bayesian networks.

Version 3.8 of Weka [Hall et al., 2009, Bouckaert, 2004] provides variants of the AODE [Webb
et al., 2005] as well as the CL-ODE and NB. It implements five additional search algorithms,
such as K2 [Cooper and Herskovits, 1992], tabu search and simulated annealing [Kirkpatrick
et al., 1983], combining them only with generative scores. Except for the NB, Weka only handles
discrete data and uses simple imputation (replacing with the mode or mean) to handle incomplete
data. It provides two constraint-based algorithms, but performs conditional independence tests
in an ad-hoc way [Bouckaert, 2004]. Weka provides Bayesian model averaging for parameter
estimation [Bouckaert, 1995].

jBNC4 (version 1.2.2) is a Java library which learns ODE classifiers from Sacha et al. [2002]
by optimizing penalized log-likelihood or the cross-validated estimate of accuracy. The CGBayes
(version 7.14.14) package [McGeachie et al., 2014] for MATLAB implements conditional Gaussian
networks [Lauritzen and Wermuth, 1989]. It provides four structure learning algorithms,
including a variant of K2 and a greedy hill-climber, all optimizing the marginal likelihood of the
data given the network.

7 Conclusion

The bnclassify package implements several state-of-the art algorithms for learning Bayesian
network classifiers. It also provides features such as model analysis and evaluation. It is
reasonably efficient and can handle large data sets. We hope that bnclassify will be useful to
practitioners as well as researchers wishing to compare their methods to existing ones.

Future work includes handling real-valued feature via conditional Gaussian models. Straight-
forward extensions include adding flexibility to the hill-climbing algorithm, such as restarts to
avoid local minima.

2https://sourceforge.net/projects/rawnaivebayes
3https://www.dbmi.pitt.edu/content/manb
4https://jbnc.sourceforge.net/
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