Package ‘cate’

October 12, 2022

Type Package

Title High Dimensional Factor Analysis and Confounder Adjusted Testing
and Estimation

Version 1.1.1
Date 2020-06-22

Description Provides several methods for factor analysis in high dimension (both n,p >> 1) and meth-
ods to adjust for possible confounders in multiple hypothesis testing.

biocViews sva

Imports Matrix, MASS, esaBcv, ruv, sva, corpcor, leapp
Suggests knitr, ggplot2, gridExtra

Encoding UTF-8

License GPL-2

LazyData TRUE

VignetteBuilder knitr

RoxygenNote 7.1.0

NeedsCompilation no

Author Jingshu Wang [aut],
Qingyuan Zhao [aut, cre]

Maintainer Qingyuan Zhao <qz280@cam.ac.uk>
Repository CRAN
Date/Publication 2020-06-23 10:10:03 UTC

R topics documented:

cate-package L. e e 2
adjust.latent L e 2
CAE . . o v o e e e e e 3
est.confoundernum 6
faem e 8
fa.pc . . e 9

2 adjust.latent
factor.analysis L e e e e 9
gen.sim.data L L L L e e e e e e 11
genderSm L. e e 12
WIAPPET .+« o v v v e e e e e e e e e e e e e e 13

Index 16

cate-package High dimensional factor analysis and confounder adjusted testing and
estimation (CATE)

Description

Provides several methods for factor analysis in high dimension (both n,p » 1) and methods to adjust
for possible confounders in multiple hypothesis testing.

See Also

factor.analysis, cate
adjust.latent Adjust for latent factors, after rotationn
Description
Adjust for latent factors, after rotationn
Usage

adjust.latent(
corr.margin,

n’
X.

cov,

Gamma,
Sigma,

method = c("rr",

n

nC”, ”1qs”),

psi = psi.huber,
nc = NULL,
nc.var.correction = TRUE

cate

Arguments

corr.margin
n

X.cov

Gamma

Sigma
method

psi

nc

marginal correlations, p*d1 matrix

sample size

estimated second moment of X, d*d matrix

estimated confounding effects, p*r matrix

diagonal of the estimated noise covariance, p*1 vector
adjustment method

derivative of the loss function in robust regression, choices are psi.huber,
psi.bisquareand psi.hampel

position of the negative controls

nc.var.correction

Details

correct asymptotic variance based on our formula

The function essentially runs a regression of corr.margin ~ Gamma. The sample size n is needed to
have the right scale.

This function should only be called if you know what you are doing. Most of the time you want to
use the main function cate to adjust for confounders.

Value

a list of objects

alpha estimated alpha, r*d1 matrix

beta estimated beta, p*d1 matrix

beta.cov.row estimated row covariance of beta, a length p vector

beta.cov.col estimated column covariance of beta, a d1*d1 matrix

See Also

cate

cate

The main function for confounder adjusted testing

Description

The main function for confounder adjusted testing

4 cate

Usage
cate(
formula,
X.data = NULL,
Y,
r,
fa.method = c("ml"”, "pc", "esa"),
adj.method = c("rr”, "nc”, "lgs”, "naive"),
psi = psi.huber,
nc = NULL,

nc.var.correction = TRUE,
calibrate = TRUE

)
cate.fit(
X.primary,
X.nuis = NULL,
Y,
r!
fa.method = c("ml”, "pc", "esa"),
adj.method = c("rr", "nc", "lgs", "naive"),
psi = psi.huber,
nc = NULL,

nc.var.correction = TRUE,
calibrate = TRUE

)
Arguments

formula a formula indicating the known covariates including both primary variables and
nuisance variables, which are seperated by |. The variables before | are primary
variables and the variables after | are nuisance variables. It’s OK if there is no
nuisance variables, then | is not needed and formula becomes a typical formula
with all the covariates considered primary. When there is confusion about where
the intercept should be put, cate will include it in X.nuis.

X.data the data frame used for formula

Y outcome, n*p matrix

r number of latent factors, can be estimated using the function est. confounder.num

fa.method factor analysis method

adj.method adjustment method

psi derivative of the loss function in robust regression

nc position of the negative controls, if d0 > 1, this should be a matrix with 2

columns
nc.var.correction
correct asymptotic variance based on our formula

cate 5

calibrate if TRUE, use the Median and the Mean Absolute Deviation(MAD) to calibrate
the test statistics
X.primary primary variables, n*d0 matrix or data frame
X.nuis nuisance covarites, n*d1 matrix
Details

Ideally nc can either be a vector of numbers between 1 and p, if dO = 1 or the negative controls are
the same for every treatment variable, or a 2-column matrix specifying which positions of beta are
known to be zero. But this is yet implemented.

Value

a list of objects

alpha estimated alpha, r*d1 matrix

alpha.p.value asymptotic p-value for the global chi squared test of alpha, a vector of length d1
beta estimated beta, p*d1 matrix

beta.cov.row estimated row covariance of beta, a length p vector

beta.cov.col estimated column covariance of beta, a d1*d1 matrix

beta.t asymptotic z statistics for beta

beta.p.value asymptotic p-values for beta, based on beta.t

Y.tilde the transformed outcome matrix, an n*p matrix

Gamma estimated factor loadings, p*r matrix

Z estimated latent factors

Sigma estimated noise variance matrix, a length p vector

Functions

* cate.fit: Basic computing function called by cate

References
J. Wang, Q. Zhao, T. Hastie, and A. B. Owen (2017). Confounder adjustment in multiple testing.
Annals of Statistics, 45(5), 1863—-1894.

See Also

wrapper for wrapper functions of some existing methods.

6 est.confounder.num

Examples

simulate a dataset with 100 observations, 1000 variables and 5 confounders
data <- gen.sim.data(n = 100, p = 1000, r = 5)
X.data <- data.frame(X1 = data$xX1)

linear regression without any adjustment

output.naive <- cate(~ X1 | 1, X.data, Y = data$y, r = @, adj.method = "naive”)
confounder adjusted linear regression

output <- cate(~ X1 | 1, X.data, Y = data$y, r = 5)

plot the histograms of unadjusted and adjusted regression statistics
par(mfrow = c(1, 2))

hist(output.naive$beta.t)

hist(output$beta.t)

simulate a dataset with 100 observations, 1000 variables and 5 confounders

data <- gen.sim.data(n = 100, p = 1000, r = 5)

linear regression without any adjustment

output.naive <- cate.fit(X.primary = data$X1, X.nuis = NULL, Y = data$y,
r = @, adj.method = "naive")

confounder adjusted linear regression

output <- cate.fit(X.primary = data$Xx1, X.nuis = NULL, Y = data$y, r = 5)

plot the histograms of unadjusted and adjusted regression statistics

par(mfrow = c(1, 2))

hist(output.naive$beta.t)

hist(output$beta.t)

est.confounder.num Estimate the number of confounders

Description

Estimate the number of confounders

Usage

est.confounder.num(
formula,
X.data = NULL,
Y,
method = c("bcv", "ed"),
rmax = 20,
nRepeat = 20,
bcv.plot = TRUE,
log = ""

est.factor.num(

est.confounder.num 7

Y,
method = c("bcv", "ed"),
rmax = 20,
nRepeat = 12,
bcv.plot = TRUE,
10g - nn
)
Arguments
formula a formula indicating the known covariates including both primary variables and
nuisance variables, which are seperated by |. The variables before | are primary
variables and the variables after | are nuisance variables. It’s OK if there is no
nuisance variables, then | is not needed and formula becomes a typical formula
with all the covariates considered primary. When there is confusion about where
the intercept should be put, cate will include it in X.nuis.
X.data the data frame used for formula
Y outcome, n*p matrix
method method to estimate the number of factors. There are currently two choices, "ed"
is the eigenvalue difference method proposed by Onatski (2010) and "bcv" is the
bi-cross-validation method proposed by Owen and Wang (2015). "bcv" tends to
estimate more weak factors and takes longer time
rmax the maximum number of factors to consider. If the estimated number of factors
is rmax, then users are encouraged to increase rmax and run again. Default is
20.
nRepeat the number of repeats of bi-cross-validation. A larger nRepeat will result in a
more accurate estimate of the bcv error, but will need longer time to run.
bcv.plot whether to plot the relative bev error versus the number of estimated ranks. The
relative bev error is the entrywise mean square error devided by the average of
the estimated noise variance.
log if log = "y", then the y-axis of the bev plot is in log scale.
Value

if method is "ed", then return the estimated number of confounders/factors. If method is "bcv", then
return the a list of objects

r estimated number of confounders/factors

errors the relative bev errors of length 1 + rmax

Functions

e est.factor.num: Estimate the number of factors

8 fa.em

References

A. B. Owen and J. Wang (2015), Bi-cross-validation for factor analysis. Statistical Science, 31(1),
119-139.

A. Onatski (2010), Determining the number of factors from empirical distribution of eigenvalues.
The Review of Economics and Statistics 92(4).

Examples

example for est.confounder.num

data <- gen.sim.data(n = 50, p = 50, r = 5)

X.data <- data.frame(X1 = data$X1)
est.confounder.num(~ X1 | 1, X.data, data$Y, method
est.confounder.num(~ X1 | 1, X.data, data$Y, method

"ed™)
"bev™)

example for est.factor.num

n <- 50

p <- 100

r <-5

Z <- matrix(rnorm(n * r), n, r)
Gamma <- matrix(rnorm(p * r), p, r)
Y <= Z %*% t(Gamma) + rnorm(n * p)

est.factor.num(Y, method "ed")
est.factor.num(Y, method = "bcv")

fa.em Factor analysis via EM algorithm to maximize likelihood

Description

Factor analysis via EM algorithm to maximize likelihood

Usage

fa.em(Y, r, tol = 1e-06, maxiter = 1000)

Arguments

Y data matrix, a n*p matrix
r number of factors

tol a tolerance scale of change of log-likelihood for convergence in the EM itera-
tions

maxiter maximum iterations

fa.pc

References

Bai, J. and Li, K. (2012). Statistical analysis of factor models of high dimension
Statistics 40, 436-465.

See Also

factor.analysis for the main function.

. The Annals of

fa.pc Factor analysis via principal components

Description

Factor analysis via principal components

Usage
fa.pc(Y, r)

Arguments

Y data matrix, a n*p matrix

r number of factors

See Also

factor.analysis for the main function.

factor.analysis Factor analysis

Description

The main function for factor analysis with potentially high dimensional variables.

Here we imple-

ment some recent algorithms that is optimized for the high dimensional problem where the number

of samples n is less than the number of variables p.

Usage

factor.analysis(Y, r, method = c("ml"”, "pc", "esa"))
Arguments

Y data matrix, a n*p matrix

r number of factors

method algorithm to be used

10 factor.analysis

Details

The three methods are quasi-maximum likelihood (ml), principal component analysis (pc), and
factor analysis using an early stopping criterion (esa).

The ml is iteratively solved the Expectation-Maximization algorithm using the PCA solution as the
initial value. See Bai and Li (2012) and for more details. For the esa method, see Owen and Wang
(2015) for more details.

Value
a list of objects
Gamma estimated factor loadings

Z estimated latent factors

Sigma estimated noise variance matrix

References

Bai, J. and Li, K. (2012). Statistical analysis of factor models of high dimension. The Annals of
Statistics 40, 436-465. Owen, A. B. and Wang, J. (2015). Bi-cross-validation for factor analysis.
arXiv:1503.03515.

See Also

fa.pc, fa.em, ESA

Examples

a factor model

n <- 100
p <- 1000
r <-5

Z <- matrix(rnorm(n * r), n, r)
Gamma <- matrix(rnorm(p * r), p, r)
Y <= Z %*% t(Gamma) + rnorm(n * p)

to check the results, verify the true factors are in the linear span of the estimated factors.
pc.results <- factor.analysis(Y, r = 5, "pc")
sapply(summary(Im(Z ~ pc.results$z)), function(x) x$r.squared)

ml.results <- factor.analysis(Y, r = 5, "ml")
sapply(summary(Im(Z ~ ml.results$z)), function(x) x$r.squared)

esa.results <- factor.analysis(Y, r = 5, "esa")
sapply(summary(Im(Z ~ esa.results$Z)), function(x) x$r.squared)

gen.sim.data 11

gen.sim.data Generate simulation data set

Description

gen.sim.data generates data from the following model Y = X_0 Beta_O"T + X_1 Beta_I"T + Z
Gamma’T + E Sigman1/2, ZIX_0, X_1 =X_0 Alpha_0"T + X_1 Alpha_I"T + D, cov(X_0, X_1)
~ Sigma_X

Usage

gen.sim.data(

n7

P,

r,

do = o,
dl =1,
X.dist = c("binary”, "normal”),
alpha = matrix(@.5, r, do + d1),
beta = NULL,
beta.strength = 1,
beta.nonzero.frac = 0.05,
Gamma = NULL,
Gamma.strength = sqrt(p),

Gamma.beta.cor = 0,
Sigma = 1,
seed = NULL
)
Arguments
n number of observations
p number of observed variables
r number of confounders
de number of nuisance regression covariates
di number of primary regression covariates
X.dist the distribution of X, either "binary" or "normal"
alpha association of X and Z, a r*d vector (d =d0 + d1)
beta treatment effects, a p*d vector

beta.strength strength of beta
beta.nonzero.frac
if beta is not specified, fraction of nonzeros in beta

Gamma confounding effects, a p*r matrix

12 gender.sm

Gamma.strength strength of Gamma, more precisely the mean of square entries of Gamma *

alpha
Gamma.beta.cor the "correlation" (proportion of variance explained) of beta and Gamma
Sigma noise variance, a p*p matrix or p*1 vector or a single real number
seed random seed
Value

a list of objects

X0 matrix of nuisance covariates

X1 matrix of primary covariates

Y matrix Y

Z matrix of confounders

alpha regression coefficients between X and Z
beta regression coefficients between X and Y
Gamma coefficients between Z and Y

Sigma noise variance

beta.nonzero.pos the nonzero positions in beta

r number of confounders

gender.sm Gender study dataset

Description

This genetics dataset is used to demonstrate the usage of cate in the vignette. It was originally
extracted by Gagnon-Bartsch and Speed (2012) as an example of confounded multiple testing. The
data included in this package contains only 500 genes that are sampled from the original 12600
genes, besides keeping all the spike-in controls.

References

http://www-personal.umich.edu/~johanngb/ruv/ Vawter, M. P., S. Evans, P. Choudary, H.
Tomita, J. Meador-Woodruff, M. Molnar, J. Li, J. F. Lopez, R. Myers, D. Cox, et al. (2004).
Gender-specific gene expression in post-mortem human brain: localization to sex chromosomes.
Neuropsychopharmacology 29(2), 373-384. Gagnon-Bartsch, J. A. and T. P. Speed (2012). Using
control genes to correct for unwanted variation in microarray data. Biostatistics 13(3), 539-552.

http://www-personal.umich.edu/~johanngb/ruv/

wrapper

13

wrapper Wrapper functions for some previous methods

Description

These functions provide an uniform interface to three existing methods: SVA, RUV, LEAPP The
wrapper functions transform the data into desired forms and call the corresponding functions in the

package sva, ruv, leapp

Usage

sva.wrapper(
formula,
X.data = NULL,
Y,
r,
sva.method = c("irw", "two-step”),
B=5

)

ruv.wrapper (
formula,
X.data = NULL,
Y,
r,
nc,
lambda = 1,
ruv.method = c("RUV2", "RUV4", "RUVinv")

)

leapp.wrapper (
formula,
X.data = NULL,
Y,

r’
search.tuning = F,

ipod.method = c("hard”, "soft")

Arguments

formula a formula indicating the known covariates including both primary variables and
nuisance variables, which are seperated by |. The variables before | are primary
variables and the variables after | are nuisance variables. It’s OK if there is no
nuisance variables, then | is not needed and formula becomes a typical formula
with all the covariates considered primary. When there is confusion about where

the intercept should be put, cate will include it in X.nuis.

14

wrapper

X.data the data frame used for formula

Y outcome, n*p matrix

r number of latent factors, can be estimated using the function est . confounder. num

sva.method parameter for sva. whether to use an iterative reweighted algorithm (irw) or a
two-step algorithm (two-step).

B parameter for sva. the number of iterations of the irwsva algorithm

nc parameter for ruv functions: position of the negative controls

lambda parameter for RUVinv

ruv.method either using RUV2, RUV4 or RUVinv functions

search.tuning logical parameter for leapp, whether using BIC to search for tuning parameter
of IPOD.

ipod.method parameter for leapp. "hard": hard thresholding in the IPOD algorithm; "soft":
soft thresholding in the IPOD algorithm

Details

The beta.p.values returned is a length p vector, each for the overall effects of all the primary
variables.

Only 1 variable of interest is allowed for leapp.wrapper. The method can be slow.

Value

All functions return beta.p.value which are the p-values after adjustment. For the other returned
objects, refer to cate for their meaning.

Examples

this is the simulation example in Wang et al. (2015).
n <- 100
p <- 1000
r <- 2
set.seed(1)
data <- gen.sim.data(n = n, p=p, r =r,
alpha = rep(1 / sqrt(r), r),
beta.strength = 3 x sqrt(1 + 1) / sqrt(n),
Gamma.strength = c(seq(3, 1, length = r)) * sqrt(p),
Sigma = 1 / rgamma(p, 3, rate = 2),
beta.nonzero.frac = 0.05)
X.data <- data.frame(X1 = data$X1)
sva.results <- sva.wrapper(~ X1 | 1, X.data, data$y,
r =r, sva.method = "irw"
ruv.results <- ruv.wrapper(~ X1 | 1, X.data, data$y, r = r,
nc = sample(datasbeta.zero.pos, 30), ruv.method = "RUV4")
leapp.results <- leapp.wrapper(~ X1 | 1, X.data, datas$y, r = r)
cate.results <- cate(~ X1 | 1, X.data, datas$y, r = r)

p-values after adjustment
par(mfrow = c(2, 2))

wrapper 15

hist(sva.results$beta.p.value)
hist(ruv.results$beta.p.value)
hist(leapp.results$beta.p.value)
hist(cate.results$beta.p.value)

type I error
mean(sva.results$beta.p.value[data$beta.zero.pos] < 0.05)

power
mean(sva.results$beta.p.value[data$beta.nonzero.pos] < 0.05)

false discovery proportion for sva

discoveries.sva <- which(p.adjust(sva.results$beta.p.value, "BH") < 0.2)

fdp.sva <- length(setdiff(discoveries.sva, data$beta.nonzero.pos)) / max(length(discoveries.sva), 1)
fdp.sva

Index

x data
gender.sm, 12

adjust.latent, 2

cate, 2, 3,3, 14
cate-package, 2

ESA, 10
est.confounder.num, 6
est.factor.num (est.confounder.num), 6

fa.em, 8, 10
fa.pc, 9, 10
factor.analysis, 2, 9,9

gen.sim.data, 11
gender.sm, 12

leapp, 13, 14
leapp.wrapper (wrapper), 13

ruv, 13, 14

ruv.wrapper (wrapper), 13
RUV2, 14

RUV4, 14

RUVinv, 14

sva, 13, 14
sva.wrapper (wrapper), 13

wrapper, 5, 13

16

	cate-package
	adjust.latent
	cate
	est.confounder.num
	fa.em
	fa.pc
	factor.analysis
	gen.sim.data
	gender.sm
	wrapper
	Index

