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1 Strength and weakness of this package

There are many R packages for fitting models with change points/thresholds. Similar to the seg-
mented package (Muggeo, 2008), this package is designed to work with threshold regression models,
not structural change models. Unique strengths of this package include:

• Supports fourteen different continuous two-phase models (Son and Fong, 2020).

• Implements fast grid search, a super fast and exact algorithm, for linear models (Elder and
Fong, 2019).

• Implements smooth approximation, a fast and accurate algorithm, for logistic models (Fong
et al., 2017a).

• Provides bootstrap-based confidence intervals for both independent and time series data and
supports parallel processing to improve speed (Son and Fong, 2020).

• Provides model-robust analytical confidence intervals for logistic regression models (Fong
et al., 2017b).

• Supports hypothesis testing (Fong et al., 2015, 2017a).

The weakness of this package include:

• Support for multi-threshold models is limited to one type of two-threshold model.

• Support for random effects models is limited to random intercepts linear mixed models.
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2 Types of threshold effects supported

This package supports 14 types of continuous two-phase models (one threshold), 1 type of contin-
uous three-phase model (two thresholds), and 2 types of discontinuous (jump) two-phase models.

2.1 Continuous two-phase models

Continuous two-phase models are continuous at the threshold. They are also known as kink models
or broken-stick models. The package support the following continuous two-phase models:
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Figure 2.1: Types of continuous two-phase models supported in chngpt.

Piecewise linear two-phase models are studied in Fong et al. (2017b) and Elder and Fong (2019),
two-phase polynomial models are studied in Son and Fong (2020). The two digits in the model
names refer to the highest order of polynomials before and after the threshold, respectively. If the
model name ends with ‘c’, the model is constrained and become smoother. The parameterization
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are adopted in the package:

η = α1 + α
T
2 z + β1 (x− e)+ (hinge, M01)

η = α1 + α
T
2 z + β1 (x− e)+ + β2 (x− e)

2
+ (M02)

η = α1 + α
T
2 z + β1 (x− e)+ + β2 (x− e)

2
+ + β3 (x− e)

3
+ (M03)

η = α1 + α
T
2 z + β1 (x− e)− (upper hinge, M10)

η = α1 + α
T
2 z + β1 (x− e)− + β2 (x− e)

2
− (M20)

η = α1 + α
T
2 z + β1 (x− e)− + β2 (x− e)

2
− + β3 (x− e)

3
− (M30)

η = α1 + α
T
2 z + γx+ β1 (x− e)+ (segmented, M11)

η = α1 + α
T
2 z + γx+ β1 (x− e)+ + β2 (x− e)

2
+ (M12)

η = α1 + α
T
2 z + γx+ β1 (x− e)+ + β2 (x− e)

2
+ + β3 (x− e)

3
+ (M13)

η = α1 + α
T
2 z + γx+ β1 (x− e)− + β2 (x− e)

2
− (M21)

η = α1 + α
T
2 z + γx+ β1 (x− e)− + β2 (x− e)

2
− + β3 (x− e)

3
− (M31)

η = α1 + α
T
2 z + β1,− (x− e)− + β1,+ (x− e)+ + β2,− (x− e)

2
− + β2,+ (x− e)

2
+ (M22)

η = α1 + α
T
2 z + γx+ β2,− (x− e)

2
− + β2,+ (x− e)

2
+ (M22c)

η = α1 + α
T
2 z + γx+ β2 (x− e)

2 + β3,− (x− e)3− + β3,+ (x− e)
3
+ (M33c)

where e denote the threshold parameter, x is the predictor with threshold effect, z denote a vector
of additional predictors, and (x− e)+ = x − e if x > e and 0 otherwise, and (x− e)− = x − e if
x ≤ e and 0 otherwise.
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2.2 Discontinuous two-phase models

The following discontinuous two-phase models are supported in the chngpt package:

step stegmented

Figure 2.2: Types of discontinuous threshold effects supported in chngpt.

The models can be written as

η = α1 + α
T
2 z + β1I (x > e) (step)

η = α1 + α
T
2 z + β1 (x− e)+ + γx+ β2I (x > e) , (stegmented)

where e denote the threshold parameter, x is the predictor with threshold effect, z denote a vector
of additional predictors, and

I (x > e) =

{
1 if x > e
0 if otherwise

.
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2.3 Continuous three-phase models
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Figure 2.3: A three-phase segmented model.

η = α1 + α
T
2 z + β1 (x− e)− + β2 (x− f)− + β3x (M111)
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3 Examples - estimation for fixed effects models

Some general notes:

• The fitted model has a component named best.fit, which is the model fit conditional on the
estimated threshold parameter.

• The recommended ci.bootstrap.size is 1000 in real problems.

• P values are not provided for the threshold estimates because it does not make sense to make
it a default null hypothesis that the threshold parameter is 0.

• Wild, sieve, and wild sieve bootstrap methods are implemented for time series data through
the bootstrap.type argument.
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3.1 Continuous two-phase linear regression

For continuous two-phase linear regression, we have developed a grid search method for estimation
that is super fast (Fong, 2019; Elder and Fong, 2019). Together with the observation that bootstrap
confidence intervals have better coverage than robust analytical confidence intervals (Fong et al.,
2017b) for continuous two-phase linear regression, internally we set the default estimation method
to be fast grid search and the default variance method to be bootstrap.

3.1.1 Segmented model

To fit a segmented linear regression model, we call

fit=chngptm (formula.1=V3_BioV3B∼1, formula.2=∼NAb_score, dat.mtct.2, type="segmented", family="gaussian")
summary(fit)

Change point model type: segmented

Coefficients:
est p.value* (lower upper)

(Intercept) -22.33152 1.593423e-08 -30.07675 -14.58628
NAb_score 67.23925 2.212981e-14 49.98398 84.49452
(NAb_score-chngpt)+ -64.83129 3.692679e-14 -81.61413 -48.04845

Threshold:
est (lower upper)

0.4653923 0.4535000 0.4772845

In the output above, the row starting with (NAb_score-chngpt)+ corresponds to β1 in equation
(segmented, M11). In other words, it is the change in slope as the covariate NAb_score crosses
the threshold. Note that we there is an asterisk next to p.value. This is because bootstrap proce-
dures to generate confidence intervals do not readily lead to p values. The presented p values are
approximations, obtained assuming that the bootstrap sampling distributions are normal.

To get an estimate of the slope after threshold, we call

lincomb(fit, comb=c(0,1,1), alpha=0.05)

est lb ub
2.40795883 -0.06780353 4.88372120

To perform a likelihood ratio test, we call

library(lmtest)
fit.0=lm(V3_BioV3B∼1, dat.mtct.2)
lrtest(fit, fit.0)

Likelihood ratio test

Model 1: V3_BioV3B ~NAb_score + x.mod.e
Model 2: V3_BioV3B ~1
#Df LogLik Df Chisq Pr(>Chisq)

1 5 -354.95
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2 2 -431.50 -3 153.1 < 2.2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Calling plot(fit) makes the following figure.
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Figure 3.1: Scatterplot, profile likelihood plot, and bootstrap distribution of threshold estimates.
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3.1.2 Other models

To specify the types of threshold effects, use the type argment. For example,

fit=chngptm(formula.1=pressure∼1, formula.2=∼temperature, data=pressure,
type="M02", family="gaussian", var.type="bootstrap")
summary(fit)

Change point model threshold.type: M02

Coefficients:
est p.value* (lower upper)

(Intercept) 8.278463507 0.4733673 -14.35129837 30.9082254
(temperature-chngpt)+ 0.007124705 0.9944183 -2.00325636 1.9890069
I((temperature-chngpt)+^2) 0.039305656 0.3644561 -0.04564143 0.1242527

Threshold:
est Std. Error (lower upper)

220.00000 20.40816 160.00000 240.00000

Suppose the samples are autocorrelated and/or heteroscedastic, the bootstrap.type argument can
be set. For example,

dat=sim.chngpt(mean.model="thresholded", threshold.type="M20", n=100, seed=1, mu.x=5, beta=c(10,1),
x.distr="lin", e.=5, family="gaussian", alpha=0, sd=3, coef.z=log(1.4), heteroscedastic=FALSE, ar=.5)
fit= chngptm(y~z, ~x, type="M20", data=dat, family="gaussian", est.method="fastgrid",
var.type="bootstrap", bootstrap.type="wildsieve")
summary(fit)

Change point model threshold.type: M20

Coefficients:
est Std. Error* (lower upper) p.value*

(Intercept) 0.8548963 0.6553686 -0.3449894 2.2240556 1.920798e-01
z 0.1641522 0.2262669 -0.2530587 0.6339074 4.681572e-01
(x-chngpt)- 7.3787555 1.7589341 3.4668998 10.3619215 2.728531e-05
(x-chngpt)-^2 0.4412215 0.4086794 -0.2973006 1.3047227 2.803081e-01

Threshold:
est Std. Error (lower upper)

5.6787879 0.3793032 5.1616162 6.6484848
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3.2 Continuous two-phase logistic regression

For continuous two-phase logistic regression, a fast grid search method for estimation is not yet
available. In addition, we have observed that bootstrap confidence intervals have similar cover-
age as robust analytical confidence intervals (Fong et al., 2017b). Thus, we recommend either
var.type="bootstrap" or var.type="robust" in the call to chngptm. Note that when it is set
to robust, an auxiliary fit needs to be supplied, which is generally a smooth parametric model with
enough but not too many degrees of freedom.
To estimate a hinge logistic regression model, we call

library(splines)
fit=chngptm(formula.1=y∼birth, formula.2=∼NAb_SF162LS, dat.mtct,
type="hinge", family="binomial",
est.method="smoothapprox", var.type="robust",
aux.fit=glm(y∼birth + ns(NAb_SF162LS,3), dat.mtct, family="binomial"))
summary(fit)

Change point model type: hinge

Coefficients:
OR p.value (lower upper)

(Intercept) 0.7026523 0.341429662 0.3388366 1.4571044
birthVaginal 1.2397649 0.523159883 0.6393632 2.4039809
(NAb_SF162LS-chngpt)+ 0.6712371 0.001332547 0.5270730 0.8548327

Threshold:
26.3% (lower upper)

7.373374 5.472271 8.186464

The chngptm function supports the use of cbind in the formula, as the glm function does. For
example,

dat.2=sim.chngpt("thresholded", "step", n=200, seed=1, beta=1, alpha=-1,
x.distr="norm", e.=4, family="binomial")

dat.2$success=rbinom(nrow(dat.2), 10, 1/(1 + exp(-dat.2$eta)))
dat.2$failure=10-dat.2$success
fit.2a=chngptm(formula.1=cbind(success,failure)~z, formula.2=~x,
family="binomial", dat.2, type="step")

Getting bootstrap confidence intervals can take some time, but parallel processing is supported on
Linux machines. For example,

system.time(chngptm(formula.1=y~birth, formula.2=~NAb_SF162LS, dat.mtct, type="hinge", family="binomial",
est.method="smoothapprox", var.type="bootstrap"))
system.time(chngptm(formula.1=y~birth, formula.2=~NAb_SF162LS, dat.mtct, type="hinge", family="binomial",
est.method="smoothapprox", var.type="bootstrap", ncpus=10))

user system elapsed
20.057 0.141 20.218

user system elapsed
19.500 1.256 2.673
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3.3 Continuous two-phase Poisson regression

Only grid search method and bootstrap confidence intervals are supported, so getting the model
fit with confidence intervals could take some time. If run on Linux machines, setting ncpus to the
number of cores available can speed things up by ncpus fold.

counts <- c(18,17,15,20,10,20,25,13,12)
outcome <- as.integer(gl(3,1,9))
treatment <- gl(3,3)
print(d.AD <- data.frame(treatment, outcome, counts))
fit.4=chngptm(formula.1=counts ~treatment, formula.2=~outcome, data=d.AD,
family="poisson", type="segmented", var.type="bootstrap")

summary(fit.4)
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3.4 Discontinuous two-phase GLM

Confidence interval for discontinuous threshold regression models can be constructed by m-out-of-n
bootstrap.

fit=chngptm(formula.1=mpg~hp, formula.2=~drat, mtcars, type="step",
family="gaussian", var.type="bootstrap", ci.bootstrap.size=100, m.out.of.n=20)
summary(fit)

Change point model threshold.type: step

Coefficients:
est Std. Error* (lower upper) p.value*

(Intercept) 27.29298302 2.89102342 21.62657712 32.95938892 3.706663e-21
hp -0.05692654 0.01644498 -0.08915870 -0.02469439 5.369001e-04
drat>chngpt 5.24824935 2.72504835 -0.09284542 10.58934411 5.411325e-02

Threshold:
est Std. Error (lower upper) p.value

3.9200000 0.4693878 3.0000000 4.8400000 NA
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3.5 Two-phase Cox regression

The chngpt package also provides some support for estimation of threshold Cox regression models.
What is missing, though, is confidence intervals for parameter estimates and hypothesis testing
methods. See the help page on chngpt for an example.
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3.6 Two-phase models with interaction terms

In the following example we fit a model with an interaction term.

η = β1 + β2z + β3x+ β4 (x− e)+ + β5zx+ β6z (x− e)+

fit=chngptm(formula.1=mpg ~hp, formula.2=~hp*drat, mtcars, type="segmented",
family="gaussian", var.type="bootstrap", ci.bootstrap.size=100)
summary(fit)

Change point model threshold.type: segmented

Coefficients:
est Std. Error* (lower upper) p.value*

(Intercept) 71.0423961 107.7931740 -140.2322250 282.3170173 0.5098559
hp -0.5714405 0.7521618 -2.0456777 0.9027967 0.4474155
drat -14.3708279 35.7034558 -84.3496013 55.6079456 0.6873122
(drat-chngpt)+ 21.6073593 73.6732299 -122.7921714 166.0068899 0.7693032
hp:drat 0.1658607 0.2482010 -0.3206132 0.6523346 0.5039730
hp:(drat-chngpt)+ -0.1970979 0.5108437 -1.1983515 0.8041557 0.6996239

Threshold:
est Std. Error (lower upper) p.value

3.2300000 0.4489796 2.3500000 4.1100000 NA

In the following example we fit a model with two interaction terms

η = β1 + β2z1 + β3z2 + β4I (x > e) + β5z1I (x > e) + β6z2I (x > e)

fit=chngptm(formula.1=mpg~hp+wt, formula.2=~hp*drat+wt*drat, mtcars, type="step",
family="gaussian", var.type="bootstrap", ci.bootstrap.size=100)
summary(fit)

Change point model threshold.type: step

Coefficients:
est Std. Error* (lower upper) p.value*

(Intercept) 30.83332346 4.06186261 22.87207274 38.79457417 3.176122e-14
hp -0.02389962 0.02760935 -0.07801395 0.03021471 3.866903e-01
wt -2.58756410 1.17757075 -4.89560276 -0.27952543 2.799370e-02
drat>chngpt 11.69827186 28.02745000 -43.23553015 66.63207386 6.763959e-01
hp:I(drat>chngpt) -0.00894615 0.20736123 -0.41537415 0.39748185 9.655877e-01
wt:I(drat>chngpt) -3.22148003 21.48073350 -45.32371769 38.88075762 8.807878e-01

Threshold:
est Std. Error (lower upper) p.value

3.7000000 0.2806122 3.1500000 4.2500000 NA
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3.7 Continuous three-phase linear regression

The following code fits a three-phase linear regression model. The default estimation method is
fastgrid and the default variance type is bootstrap.

η = β1 + β2z + β3x+ β4 (x− e)+ + β5zx+ β6z (x− e)+

fit=chngptm (formula.1=pressure~1, formula.2=~temperature, pressure, type="M111",
family="gaussian", ci.bootstrap.size=20)
summary(fit)

Change point model threshold.type: M111

Coefficients:
est Std. Error* (lower upper) p.value*

(Intercept) -3310.976868 1006.428099 -5283.575941 -1338.3777950 1.002481e-03
temperature 11.417859 3.015001 5.508457 17.3272614 1.524670e-04
(temperature-chngpt1)- -3.862734 1.612508 -7.023249 -0.7022192 1.659850e-02
(temperature-chngpt2)- -7.425005 1.700649 -10.758278 -4.0917324 1.265528e-05

Threshold:
est Std. Error (lower upper) p.value

chngpt.1 240 30.61224 180 300 NA
chngpt.2 320 31.12245 259 381 NA
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4 Examples - estimation for random effects models

4.1 Continuous two-phase linear regression with random intercepts

The following code fits the linear mixed model:

Y = a+ αT z + γx+ β (x− e)+ + ε
a ∼ N(0, σa)

ε ∼ N(0, σε)

Variance estimates are being developed.

dat=sim.twophase.ran.inte(threshold.type="segmented", n=50, seed=1)
fit = chngptm (formula.1=y~z+(1|id), formula.2=~x, family="gaussian", dat,
type="segmented", est.method="grid", var.type="none")
summary(fit)
plot(fit, which=1, plot.individual.line=T, lcol="gray", lwd=.5)

No variance estimate available.

(Intercept) z x (x-chngpt)+ chngpt
2.7154145 0.3514853 1.7894006 2.5695986 5.1571429
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Figure 4.1: Each line correponds to one id.

The code above also works if we replace segmented with other models, e.g. M20.

16



5 Examples - testing for independent data

An example in linear regression:

test=chngpt.test(formula.null=Volume∼1, formula.chngpt=∼Girth, trees,
type="segmented", family="gaussian")
test

Maximum of Likelihood Ratio Statistics

data: trees
Maximal statistic = 17.694, change point = 15.388, p-value = 0.00014
alternative hypothesis: two-sided

The first line gives the type of test carried out, and it is maximal likelihood ratio test here, which
is the default. In addition, a plot function can be called on the test object to show the score or
likelihood ratio statistic as a function of candidate change points.

An example in logistic regression:

test=chngpt.test(formula.null=y∼birth, formula.chngpt=∼NAb_SF162LS, dat.mtct,
type="hinge", family="binomial", main.method="score")
test

Maximum of Score Statistics

data: dat.mtct
Maximal statistic = 3.3209, change point = 7.0347, p-value = 0.00284
alternative hypothesis: two-sided

The first line gives the type of test carried out, and it may be maximal likelihood ratio test. In
addition, a plot function can be called on the test object to show the score or likelihood ratio
statistic as a function of candidate change points.
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6 Further considerations

6.1 Model choice

• The choice of threshold effects is typically through a combination of domain knowledge and
modeling. One modeling approach is to first examine the relationship using local polynomial
regression. A nice tool for that is the R package mgcv, which provides automatic smoothness
estimation.

• To choose among the segmented, hinge, and upper hinge models formally, we can use Wald
tests. For example, if the question is framed as choosing between segmented and hinge models,
we can fit a segmented model and then look at the slope before threshold in the summary
function output. If the estimate is not significantly different from 0, then it is justifiable to
fit a hinge model. We can also look at the slope after threshold, which is not displayed as
part of the summary function output, but can be obtained by calling lincomb (see example
in Section 3.1.1). If this estimate is not significantly different from 0, then it is justifiable to
fit an upper hinge model.

— If the hinge or upper hinge model is reasonable, it is preferred over the segmented model
because the model can be estimated with substantially higher precision (Fong et al.,
2017b; Elder and Fong, 2019).

6.2 Estimation methods

There are three types of search methods for finding the maximum likelihood estimator. Users
generally do not need to worry about setting the argument, which is est.method, since the function
chooses the most appropriate one by default. In the order of development, the three search methods
are:

• grid search. The grid method is the most flexible, but also the most time-consuming.

• smooth approximation. The smooth approximation method (Fong et al., 2017a) involves
approximating the likelihood function with a differentiable function to allow gradient-based
search; it is recommended when grid search is too slow and fast grid search is not available.

• fast grid. This is a new type of methods (Fong, 2019; Elder and Fong, 2019; Son and Fong,
2020) that are super fast and gives exact solutions. The only downside is that it is only
available for linear regression and independent data.

6.3 Confidence interval methods

• We recommend bootstrap confidence interval methods for all models. For linear models, this
can be done very fast with fast grid search. For other models, this can take some time, but
parallele processing with multiple cores help speed things up.

• Robust analytical confidence interval methods were developed in Fong et al. (2017b). The
disadvantage of this method is that it needs an auxiliary model fit.
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6.4 Hypothesis testing

Hypothesis testing methods that are implemented in this package are described in Fong et al.
(2017a) and Fong et al. (2015).
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