Package ‘clusterability’

October 12, 2022

Title Performs Tests for Cluster Tendency of a Data Set
Version 0.1.1.0

Description Test for cluster tendency (clusterability) of a data set.
The methods implemented -
reducing the data set to a single dimension using principal component analysis or computing
pairwise distances, and performing a multimodality test like the Dip Test or Silverman's Criti-
cal Bandwidth Test -
are described in Adolfsson, Ackerman, and Brown-
stein (2019) <doi:10.1016/j.patcog.2018.10.026>. Such methods can inform whether cluster-
ing algorithms
are appropriate for a data set.

Depends R (>=3.4.0)
License GPL-2
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Imports diptest, splines
Suggests testthat
NeedsCompilation no

Author Zachariah Neville [aut, cre],
Naomi Brownstein [aut],
Maya Ackerman [aut],
Andreas Adolfsson [aut]

Maintainer Zachariah Neville <z.neville@stat. fsu.edu>
Repository CRAN
Date/Publication 2020-03-04 11:40:07 UTC

R topics documented:

clusterability L
clusterabilitytest L L e

https://doi.org/10.1016/j.patcog.2018.10.026

2 clusterability
normalsl . . . L e 7
normals2 L e 8
normals3 L e 8
normalsd . . .o L e 9
normalsSo L e e 10
print.clusterability 10

Index 11

clusterability clusterability: a package to perform tests of clusterability

Description

The clusterabilitytest function can test for clusterability of a dataset, and the print function
to display output in the console. Below we include code to use with the provided example datasets.
Please see the clusterabilitytest function for documentation on available parameters.

Examples

Normalsi

data(normals1)

normals1 <- normalsi[,-3]

norml_dippca <- clusterabilitytest(normalsl, "dip")

norml_dipdist <- clusterabilitytest(normalsl, "dip"”, distance_standardize = "NONE",
reduction = "distance")

norml_silvpca <- clusterabilitytest(normalsl, "silverman”, s_setseed = 123)

norml_silvdist <- clusterabilitytest(normalsl, "silverman”, distance_standardize = "NONE",

reduction = "distance”, s_setseed = 123)

print(norml_dippca)
print(norml_dipdist)
print(normi_silvpca)
print(norml_silvdist)

Normals?2

data(normals2)

normals?2 <- normals2[,-3]
norm2_dippca <-
clusterabilitytest(normals2, "dip")
norm2_dipdist <-

clusterabilitytest(normals2, "dip"”, reduction = "distance”, distance_standardize = "NONE")

norm2_silvpca <- clusterabilitytest(normals2, "silverman”, s_setseed = 123)
norm2_silvdist <- clusterabilitytest(normals2, "silverman”, reduction = "distance”,
distance_standardize = "NONE", s_setseed = 123)

print(norm2_dippca)
print(norm2_dipdist)

clusterability

print(norm2_silvpca)
print(norm2_silvdist)

Normals3

data(normals3)

normals3 <- normals3[,-3]

norm3_dippca <- clusterabilitytest(normals3, "dip")

norm3_dipdist <- clusterabilitytest(normals3, "dip"”, reduction = "distance”,
distance_standardize = "NONE")

norm3_silvpca <- clusterabilitytest(normals3, "silverman”, s_setseed = 123)
norm3_silvdist <- clusterabilitytest(normals3, "silverman", reduction = "distance",
distance_standardize = "NONE"”, s_setseed = 123)

print(norm3_dippca)
print(norm3_dipdist)
print(norm3_silvpca)
print(norm3_silvdist)

Normals4

data(normals4)

normals4 <- normals4[,-4]

norm4_dippca <- clusterabilitytest(normals4, "dip")

norm4_dipdist <- clusterabilitytest(normals4, "dip", reduction = "distance",
distance_standardize = "NONE")

norm4_silvpca <- clusterabilitytest(normals4, "silverman”, s_setseed = 123)
norm4_silvdist <- clusterabilitytest(normals4, "silverman”, reduction = "distance",
distance_standardize = "NONE", s_setseed = 123)

print(norm4_dippca)
print(norm4_dipdist)
print(norm4_silvpca)
print(norm4_silvdist)

Normals5

data(normals5)

normals5 <- normals5[,-4]

norm5_dippca <- clusterabilitytest(normals5, "dip")

norm5_dipdist <- clusterabilitytest(normals5, "dip"”, reduction = "distance”,
distance_standardize = "NONE")

norm5_silvpca <- clusterabilitytest(normals5, "silverman”, s_setseed = 123)
norm5_silvdist <- clusterabilitytest(normals5, "silverman”, reduction = "distance",
distance_standardize = "NONE", s_setseed = 123)

print(norm5_dippca)
print(norm5_dipdist)
print(norm5_silvpca)
print(norm5_silvdist)

4 clusterabilitytest

iris

data(iris)

newiris <- iris[,c(1:4)]

iris_dippca <- clusterabilitytest(newiris, "dip")

iris_dipdist <- clusterabilitytest(newiris, "dip", reduction = "distance”,
distance_standardize = "NONE")

iris_silvpca <- clusterabilitytest(newiris, "silverman”, s_setseed = 123)
iris_silvdist <- clusterabilitytest(newiris, "silverman”, reduction = "distance”,
distance_standardize = "NONE", s_setseed = 123)

print(iris_dippca)
print(iris_dipdist)
print(iris_silvpca)
print(iris_silvdist)

cars
data(cars)

cars_dippca <- clusterabilitytest(cars, "dip")

cars_dipdist <- clusterabilitytest(cars, "dip", reduction = "distance”,
distance_standardize = "NONE")

cars_silvpca <- clusterabilitytest(cars, "silverman”, s_setseed = 123)
cars_silvdist <- clusterabilitytest(cars, "silverman", reduction = "distance”,
distance_standardize = "NONE", s_setseed = 123)

print(cars_dippca)
print(cars_dipdist)
print(cars_silvpca)
print(cars_silvdist)

clusterabilitytest Perform a test of clusterability

Description

Performs tests for clusterability of a data set and returns results in a clusterability object. Can do
data reduction via PCA or pairwise distances and standardize data prior to performing the test.

Usage

clusterabilitytest(data, test, reduction = "pca",
distance_metric = "euclidean”, distance_standardize = "std",
pca_center = TRUE, pca_scale = TRUE, is_dist_matrix = FALSE,
completecase = FALSE, d_simulatepvalue = FALSE, d_reps = 2000,
s_m = 999, s_adjust = TRUE, s_digits = 6, s_setseed = NULL,
s_outseed = FALSE)

clusterabilitytest 5

Arguments
data the data set to be used in the test. Must contain only numeric data.
test the test to be performed. Either "dip” or "silverman”. See ’Details’ section
below for how to pick a test.
reduction any dimension reduction that is to be performed.

* "none” performs no dimension reduction.
* "pca” uses the scores from the first principal component.
» "distance” computes pairwise distances (using distance_metric as the
metric).
For multivariate data, dimension reduction is required.
distance_metric
if applicable, the metric to be used in computing pairwise distances.

The "euclidean” (default), "maximum”, "manhattan”, "canberra”, "binary"
choices work the same as in dist. The Minkowski metric is available by pro-
viding "minkowski(p)".
Additional choices are:

* "sgeuc"”: squared Euclidean distances.

* "cov": covariance similarity coefficient,

* "corr": correlation similarity coefficient

* "sqcorr": squared correlation similarity coefficient.

CAUTION: Not all of these have been tested, but instead are provided to poten-

tially be useful. If in doubt, use the default "euclidean”.
distance_standardize

how the variables should be standardized, if at all.

* "none”: no standardization is performed

e "std" (default) each variable standardized to have mean O and standard
deviation 1

e "mean": each variable standardized to have mean O (standard deviation is
unchanged)

¢ "median”: each variable standardized to have median O (standard deviation
is unchanged)

pca_center if applicable, a logical value indicating whether the variables should be shifted
to be zero centered (see prcomp for more details). Default is TRUE.

pca_scale if applicable, a logical value indicating whether the variables should be scaled
to have unit variance before the analysis takes place (see prcomp for details).
Default is TRUE.

is_dist_matrix a logical value indicating whether the data argument is a distance matrix. If
TRUE then the lower triangular portion of data will be extracted and be used in
the multimodality test.

completecase a logical value indicating whether a complete case analysis should be performed.
For both tests, missing data must be removed before the test can be performed.
This can be done manually by the user or by setting completecase = TRUE.

clusterabilitytest

d_simulatepvalue

d_reps

s_adjust

s_digits

s_setseed

s_outseed

Value

for Dip Test, a logical value indicating whether p~values should be obtained via
Monte Carlo simulation (see dip. test for details).

for Dip Test, a positive integer. The number of replicates used in Monte Carlo
simulation. Only used if d_simulatepvalue is TRUE.

for Silverman Test, a positive integer. The number of bootstrap replicates used
in the test. Default is 999.

for Silverman Test, a logical value indicating whether p-values are adjusted us-
ing work by Hall and York.

for Silverman Test, a positive integer indicating the number of digits to round
the p value. Default is 6 and is only used when s_adjust = TRUE.

for Silverman Test, an integer used to set the seed of the random number gener-
ator. If the default value of NULL is used, then no seed will be set.

for Silverman Test, a logical value indicating whether to return the state of the
random number generator as part of the output. This is used in limited cases for
troubleshooting, so the default is FALSE.

clusterabilitytest returns a clusterability object containing information on the test per-
formed and results. Can be printed using the print.clusterability function.

References

Hall, P. and York, M., 2001. On the calibration of Silverman’s test for multimodality. Statistica
Sinica, pp.515-536.

Silverman, B.W., 1981. Using kernel density estimates to investigate multimodality. Journal of the
Royal Statistical Society. Series B (Methodological), pp.97-99.

Martin Maechler (2016). diptest: Hartigan’s Dip Test Statistic for Unimodality - Corrected. R
package version 0.75-7. https://CRAN.R-project.org/package=diptest

Schwaiger F, Holzmann H. Package which implements the silvermantest; 2013. Available from:
https://www.mathematik.uni-marburg.de/stochastik/R packages/.

See Also

print.clusterability

Examples

Quick start
Load data and remove Species

data(iris)

iris_num <- iris[,-5]

plot(iris_num)

Run test using default options
clust_result <- clusterabilitytest(iris_num, "dip")

normals1 7

Print results
print(clust_result)

Longer Example: Specifying Parameters #ii#
Load data and plot to visualize
data(normals2)

plot(normals2)

Using Silverman's test, pairwise distances to reduce dimension,

1,000 bootstrap replicates, with an RNG seed of 12345

clust_result2 <- clusterabilitytest(normals2, "silverman”, reduction = "distance",
s_m = 1000, s_setseed = 12345)

Print result
print(clust_result2)

normalsi Data generated from a single multivariate Normal distribution, 2 di-
mensions.

Description

A dataset containing 150 observations generated from a multivariate Normal distribution. The dis-
tribution has mean vector (0, 4), each variable has unit variance, and the variables are uncorrelated.
This dataset is not clusterable.

Usage

normals1

Format
A data frame with 150 rows and 3 variables:
X X variable

y y variable

cluster Distribution from which the observation was sampled

Details

The cluster variable is 1 for all observations because all were sampled from the same distribution.
Remove the variable before using the dataset in any tests.

8 normals3

normals2 Data generated from a mixture of two multivariate Normal distribu-
tions, 2 dimensions. A dataset containing 150 observations generated
from a mixture of two multivariate Normal distributions. 75 obser-
vations come from a distribution with mean vector (-3, -2) with each
variable having unit variance and uncorrelated with each other. 75
observations come from a distribution with mean vector (1, 1) with
each variable having unit variance and uncorrelated with each other.
The dataset is clusterable.

Description

Remove the cluster variable before using the dataset in any tests.

Usage

normals2

Format
A data frame with 150 rows and 3 variables:
X X variable

y y variable

cluster Distribution from which the observation was sampled

normals3 Data generated from a mixture of three multivariate Normal distribu-
tions, 2 dimensions. A dataset containing 150 observations generated
from a mixture of three multivariate Normal distributions. 50 observa-
tions are from a distribution with mean vector (3, 0), 50 observations
from a distribution with mean vector (0, 3), and 50 observations from
a distribution with mean vector (3, 6). For each of these three distribu-
tions, the x and y variables have unit variance and are uncorrelated.
The dataset is clusterable.

Description

Remove the cluster variable before using the dataset in any tests.

Usage

normals3

normals4

Format

A data frame with 150 rows and 3 variables:

X X variable
y y variable

cluster Distribution from which the observation was sampled

normals4 Data generated from a mixture of two multivariate Normal distribu-
tions, 3 dimensions. A dataset containing 150 observations generated
from a mixture of two multivariate Normal distributions. 75 obser-
vations come from a distribution with mean vector (1, 3, 2) and 75
observations come from a distribution with mean vector (4, 6, 0). For
each distribution, the variables each have unit variance and are un-
correlated. The dataset is clusterable.

Description

Remove the cluster variable before using the dataset in any tests.

Usage

normals4

Format

A data frame with 150 rows and 4 variables:

X X variable
y y variable
Z z variable

cluster Distribution from which the observation was sampled

10 print.clusterability

normals5 Data generated from a mixture of three multivariate Normal distribu-
tions, 3 dimensions. A dataset containing 150 observations generated
from a mixture of three multivariate Normal distributions. 50 obser-
vations come from a distribution with mean vector (1, 3, 3), 50 ob-
servations come from a distribution with mean vector (4, 6, 0), and
50 observations come from a distribution with mean vector (2, 8, -3).
For each distribution, the variables each have unit variance and are
uncorrelated. The dataset is clusterable.

Description

Remove the cluster variable before using the dataset in any tests.

Usage

normals5

Format
A data frame with 150 rows and 4 variables:

X X variable
y y variable
z 7 variable

cluster Distribution from which the observation was sampled

print.clusterability Print a clusterability object

Description

Print function to display results from a clusterability test.

Usage
S3 method for class 'clusterability'
print(x, ...)
Arguments
X An object of class ’clusterability’
Not used
See Also

clusterabilitytest

Index

+ datasets
normals1, 7
normals2, 8
normals3, 8
normals4, 9
normals5s, 10

clusterability, 2

clusterability-package
(clusterability), 2

clusterabilitytest, 2,4, 10

dip.test, 6
dist, 5

normals1, 7
normals2, 8
normals3, 8
normals4, 9
normalsb, 10

prcomp, 5
print, 2
print.clusterability, 6, 10

11

	clusterability
	clusterabilitytest
	normals1
	normals2
	normals3
	normals4
	normals5
	print.clusterability
	Index

