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Abstract

The Tweedie compound Poisson distribution is a mixture of a degenerate distribution at the origin
and a continuous distribution on the positive real line. It has been applied in a wide range of fields in
which continuous data with exact zeros regularly arise. Nevertheless, statistical inference based on
full likelihood and Bayesian methods is not available in most statistical software, largely because the
distribution has an intractable density function and numerical methods that allow fast and accurate
evaluation of the density did not appear until fairly recently. The cplm package provides likelihood-
based and Bayesian procedures for fitting common Tweedie compound Poisson linear models. In
particular, models with hierarchical structures or penalized splines can be handled. Further, the
package implements the Gini index based on an ordered version of the Lorenz curve as a robust
model comparison tool involving zero-inflated and highly skewed distributions.
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1. Introduction

In many fields, the data of interest have a continuous distribution on positive values but often with
some observation being exact zeros. One standard method in analyzing such data is using a special form
of the compound distribution, in which the response is assumed to be generated as a random sum of
individual random variables with a positive support. That is, Y =

∑T
i Xi, where T is the number of

events following a discrete count distribution and Xi is the magnitude/severity of the outcome in the
ith event. When T = 0, we have Y = 0, thereby allowing the distribution to have a probability mass
at the origin. Indeed, for certain applications, there is some intuitive appeal to exploit this distribution,
because the underlying data can be considered as generated by a compound process. For example,

• in actuarial science, Y is the aggregate claim amount for a covered risk, T the number of reported
claims and Xi the insurance payment for the ith claim;

• in rainfall modeling, Y is the total amount of precipitation in a given period, T the number of rain
events and Xi the intensity of the precipitation for the ith rain event.

• in ecological studies of stock abundance, Y is the total biomass in a certain area, T the number of
patches of organisms and Xi the measured biomass for the ith patch.

Of special interest is the Tweedie compound Poisson distribution (henceforth the compound Poisson
distribution) in which the distributions of T and Xi are specified as:

T ∼ Pois(λ), Xi
iid∼ Gamma(α, γ), T ⊥ Xi. (1)
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For a given α, this distribution can be expressed in the form of the exponential dispersion model (Jør-
gensen 1987) with a power variance function V (µ) = µp, where the power index p = (α + 2)/(α + 1) ∈
(1, 2). As a result, estimation procedures developed for the exponential dispersion model are directly
applicable to the compound Poisson distribution. Indeed, applications of this particular compound dis-
tribution, primarily in the form of generalized linear models [GLM], have been found in actuarial science
(Smyth and Jørgensen 2002), animal studies (Perry 1981), assay analysis (Davidian 1990), botany stud-
ies (Dunn and Smyth 2005), survival analysis (Hougaard, Harvald, and Holm 1992), rainfall modeling
(Dunn 2004) and fishery research (Shono 2008).

An often neglected part of the analysis is the estimation of the unknown variance function, i.e., the index
parameter p. This parameter has a significant impact on hypothesis tests and predictive uncertainty
measures (Davidian and Carroll 1987; Peters, Shevchenko, and Wüthrich 2009; Zhang 2013), which is
of independent interest in many applications. One approach in estimating the variance function is using
the profile likelihood (Cox and Reid 1987). For the compound Poisson distribution, such an approach
must be implemented based on the true likelihood rather than the extended quasi-likelihood (Nelder and
Pregibon 1987). The extended quasi-likelihood is not well suited to this task in that it involves a term
log(V (y)) which becomes infinite for y = 0, and thus requires adding a small positive constant to the
observed zeros which, unfortunately, is highly influential on parameter estimation.

Like most other compound distributions, the density function of the compound Poisson distribution is
not analytically tractable. But unlike other compound distributions whose density must be approximated
via the slow recursive approach (Klugman, Panjer, and Willmot 2008), methods that enable fast and
accurate numerical evaluation of compound Poisson density function are available (Dunn and Smyth
2005, 2008). These methods are provided by the tweedie package (Dunn 2011). With the density
approximation methods, we can carry out not only maximum likelihood estimation but also Bayesian
inference using Markov chain Monte Carlo methods (Gelman, Carlin, Stern, and Rubin 2003).

The cplm package provides both likelihood-based and Bayesian methods for various compound Poisson
linear models. The following features of the package may be of special interest to the users:

1. All methods available in the package enable the index parameter (i.e., the unknown variance func-
tion) to be estimated from the data.

2. The compound Poisson generalized linear model handles large data set using the bounded memory
regression facility in biglm.

3. For mixed models, we provide likelihood-based methods using Laplace approximation and adaptive
Gauss-Hermit quadrature.

4. A convenient interface is offered to fit additive models (penalized splines) using the mixed model
estimation procedure.

5. Self-tuned Markov chain Monte Carlo procedures are available for both GLM-type and mixed
models.

6. We provide the Gini index based on an ordered Lorenz curve, which is better suited for model
comparison involving the compound Poisson distribution.

2. Models and Examples

2.1. Overview

Table 1 shows the mapping of the user-visible functions to the underlying model structures they handle.
Currently, all Bayesian methods are integrated in the bcplm function. A call of each function creates
an object of a class that has the same name as the function. The cplm package is written using S4
classes and methods (Chambers 1998). Most of the user-visible classes are derived from a parent class
"cplm", which specifies common slots used in the package. Several methods are defined for this class,
some of which allow users to manipulate attributes and slots of an S4 object in a similar way as a list.
For example,
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Model Likelihood-based Bayesian
GLM-type Models cpglm bcplm

Mixed Models cpglmm bcplm

Additive Models cpglmm bcplm

Table 1: Correspondence between models and functions in cplm .

R> library(cplm)

R> obj <- new("cplm") # create an object of class "cplm"

R> names(obj) # or slotNames(obj)

[1] "call" "formula" "contrasts" "link.power" "model.frame"

[6] "inits"

R> obj$inits # or obj@inits

NULL

R> obj[["inits"]] # or slot(obj, "inits")

NULL

To find out what methods are available for a particular class, say "cpglm", use the following:

R> showMethods(classes = "cpglm")

The help documentation of the available classes and methods can be assessed in the following fashion:

R> class ? bcplm

R> method ? resid("cpglm") # the "resid" method for class "cpglm"

R> method ? resid("cpglmm")

2.2. Generalized linear models

Given the index parameter p, the Tweedie compound Poisson distribution can be written in the form
of the exponential dispersion model with E(Y ) = µ, V ar(Y ) = ϕ · V (µ) = ϕ · µp, where ϕ > 0 is
the dispersion parameter. Using this representation, we denote the compound Poisson distribution as
Y ∼ CPois(µ, ϕ, p).

In the following, we assume the observed response vector is Y = (Y1, · · · , Yn)
′, where Yi ∼ CPois(µi, ϕ, p).

In the compound Poisson GLM, the mean µ = E(Y ) is stipulated as a function of some linear predictors
through a link function η as

η(µ) = Xβ, (2)

where X is the design matrix and β is the vector of fixed effects.

If the index parameter p is known, the compound Poisson GLM can be estimated using the Fisher’s
scoring algorithm (McCullagh and Nelder 1989). In R, this can be easily fitted using glm with family =

tweedie(). For unknown p, parameter estimation can be proceeded using the profile likelihood approach
(Cox and Reid 1987). We denote σ = (ϕ, p)′. Because for a given value of σ, the maximum likelihood

estimation β̂(σ) can be determined using the scoring algorithm, we can profile β out of the likelihood
and maximize the profile likelihood to estimate σ as

σ̂ = argmax
σ

ℓ(σ|y, β̂(σ)), (3)
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where ℓ(σ|y, β̂(σ)) is the loglikelihood evaluated at β̂(σ) and σ. This likelihood must be approximated
using the compound Poisson density evaluation methods provided by Dunn and Smyth (2005, 2008) .
The approximated profile loglikelihood is optimized numerically to locate the estimate σ̂, subject to the
constraints ϕ > 0 and p ∈ (1, 2). The estimate of the regression parameters is then β̂(σ̂).

The profile likelihood approach is implemented by the cpglm function. Indeed, the function tweedie.profile
in the tweedie package also makes available the profile likelihood approach. The cpglm function here
differs from tweedie.profile in two aspects. First, the user does not need to specify the grid of possible
values the index parameter can take. Rather, the optimization of the profile likelihood is automated.
Second, big data sets can be handled where the bigglm function from the biglm package (Lumley 2011)
is used in fitting GLMs. The bigglm function is invoked when the argument chunksize is greater than
0.

We use the auto insurance claim data from Yip and Yau (2005) as an example to illustrate the use of
the cpglm function. We first load and transform the data:

R> da <- subset(AutoClaim, IN_YY == 1) # use data in the Yip and Yau paper

R> da <- transform(da, CLM_AMT5 = CLM_AMT5/1000,

+ INCOME = INCOME/10000)

We are interested at the variable CLM_AMT5, which is the aggregate insurance claim amount from an auto
insurance policy. A summary of this distribution shows that it has a spike at zero (61%) while the rest
follows a continuous distribution on positive values:

R> summary(da$CLM_AMT5); sum(da$CLM_AMT5 == 0)/nrow(da)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.000 0.000 0.000 4.112 4.740 57.040

[1] 0.6066856

We would like to build a model that is predictive of the insurance loss based on some policy-related
and demographic variables. For example, we include indicators of whether the car is for commercial use
(CAR_USE), whether the policyholder is married (MARRIED), and whether the car is driven in the urban
area (AREA), as well as a continuous covariate- the MVR violation points (MVR_PTS).

R> P1 <- cpglm(CLM_AMT5 ~ CAR_USE + MARRIED + AREA + MVR_PTS, data = da)

R> summary(P1)

Call:

cpglm(formula = CLM_AMT5 ~ CAR_USE + MARRIED + AREA + MVR_PTS,

data = da)

Deviance Residuals:

Min 1Q Median 3Q Max

-4.4951 -2.5154 -1.9716 -0.1866 12.5669

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.05648 0.14710 0.384 0.701

CAR_USECommercial 0.12521 0.09299 1.347 0.178

MARRIEDYes -0.14730 0.08985 -1.639 0.101

AREAUrban 1.00957 0.14135 7.142 1.16e-12 ***

MVR_PTS 0.21683 0.01738 12.474 < 2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Estimated dispersion parameter: 7.1348

Estimated index parameter: 1.4021

Residual deviance: 18332 on 2807 degrees of freedom
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AIC: 10804

Number of Fisher Scoring iterations: 6

The cpglm function has the same syntax as the glm function except that there is no family argument.
Desired link functions can be directly specify through the link argument, which uses the log link by
default. The output shows the estimates for the index and the dispersion parameter in addition to those
for the fixed effects. These coefficients can also be extracted directly from the object using

R> c(coef(P1), p = P1$p, phi = P1$phi)

Similarly, most utility extraction methods defined for a linear model object such as fitted, resid,
model.matrix and so on can be used.

By default, the optimization of the profile likelihood in cpglm calls the glm function in estimating the
fixed effects. However, it is known that the glm function can run into memory issues for large data
sets. To overcome this problem, the cpglm function implements an alternative method that relies on
the bounded memory regression provided by the biglm package (Lumley 2011). The bigglm function
divides the data frame into chunks and regression estimates are updated chunk by chunk. This method is
invoked when the argument chunksize is greater than 0, which specifies the size of chunks for processing
the data frame.

Most arguments in the bigglm function can be directly passed to cpglm through the ... mechanism.
When using this functionality, the users are warned that

• when factors are present, the levels of each factor must be the same across all data chunks;

• bigglm is substantially slower than glm when applied on the same data.

As an example, we can refit the previous model using bigglm with chunks of 500 data points as follows:

R> P1.big <- cpglm(CLM_AMT5 ~ CAR_USE + MARRIED + AREA + MVR_PTS,

+ data = da, chunksize = 500)

2.3. Mixed models

In the mixed model, the mean of the response is specified as

η(µ) = Xβ +Zb, (4)

b ∼ N(0,Σ), (5)

where β and b are the vector of fixed and random effects, X and Z are the associated design matrices
and Σ is the variance component. The goal is to make inference of the parameters (β, ϕ, p,Σ). The
cplm package implements maximum likelihood estimation in the mixed model, in which the underlying
marginal likelihood can be derived as:

p(y|β, ϕ, p,Σ) =

∫
p(y|β, ϕ, p, b) · p(b|Σ)db. (6)

The above integral is often intractable, but can be approximated using the Laplace method or the
adaptive Gauss-Hermite quadrature approach. The implementation of these methods is based on the old
lme4 package (version < 1.0), with changes made on the updating of the mean, the variance function
and the marginal loglikelihood. For the Laplace method, the contribution of the dispersion parameter
to the approximated loglikelihood is explicitly accounted for, which should be more accurate and more
consistent with the quadrature estimate. Indeed, both the dispersion parameter and the index parameter
are included as a part of the optimization process. In computing the marginal loglikelihood, the density
of the compound Poisson distribution is approximated using numerical methods provided by the tweedie
package (Dunn 2011). For details of the Laplace approximation and adaptive Gauss-Hermite quadrature
methods for generalized linear mixed models, see the documentation associated with lme4.
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We use the fine root data set (de Silva, Hall, Tustin, and Gandar 1999) to illustrate various features of
the cpglmm function. We are interested at how the distribution of the fine root length density [RLD] is
affected by the geometry of the structural root system and the type of the root stock.

R> head(FineRoot)

Plant Stock Spacing Zone RLD

1 1 Mark 5x3 Inner 0

2 1 Mark 5x3 Outer 0

3 1 Mark 5x3 Inner 0

4 1 Mark 5x3 Outer 0

5 1 Mark 5x3 Inner 0

6 1 Mark 5x3 Outer 0

Following Zhang (2013), we specify a model that includes both main effects of stock and zone and their
interactions, with the intercept varying by plant:

R> f0 <- cpglmm(RLD ~ Stock * Zone + (1|Plant), data = FineRoot)

R> summary(f0)

Compound Poisson linear mixed model fit by the Laplace approximation

Formula: RLD ~ Stock * Zone + (1 | Plant)

Data: FineRoot

AIC BIC logLik deviance

-172.5 -138.6 94.27 -188.5

Random effects:

Groups Name Variance Std.Dev.

Plant (Intercept) 0.0077274 0.087906

Residual 0.3286284 0.573261

Number of obs: 511, groups: Plant, 8

Fixed effects:

Estimate Std. Error t value

(Intercept) -2.09823 0.16528 -12.695

StockMM106 -0.06637 0.21888 -0.303

StockMark -0.46346 0.20234 -2.290

ZoneOuter -0.44690 0.25546 -1.749

StockMM106:ZoneOuter 0.02563 0.31241 0.082

StockMark:ZoneOuter -1.16566 0.32468 -3.590

Estimated dispersion parameter: 0.3286

Estimated index parameter: 1.4131

The output is similar to that from a call of glmer, but reports additionally the estimates of the dispersion
and the index parameters.

R> inherits(f0, "mer")

[1] TRUE

As a result, most of the methods defined in (the old) lme4 are directly applicable:

R> fixef(f0) #coefficients

(Intercept) StockMM106 StockMark

-2.09823 -0.06637 -0.46346

ZoneOuter StockMM106:ZoneOuter StockMark:ZoneOuter

-0.44690 0.02563 -1.16566
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R> ranef(f0)

$Plant

(Intercept)

1 0.024275

2 -0.052466

3 -0.043943

4 0.073502

5 -0.039262

6 0.040255

7 -0.007266

8 0.008004

attr(,"class")

[1] "ranef.mer"

R> VarCorr(f0) #variance components

$Plant

(Intercept)

(Intercept) 0.007727

attr(,"stddev")

(Intercept)

0.08791

attr(,"correlation")

(Intercept)

(Intercept) 1

attr(,"sc")

[1] 0.5733

Models with crossed and nested random effects can also be handled. We illustrate this with a slightly
different model structure (we explicitly convert plant to a factor because this is required when nested
effects are present):

R> FineRoot$Plant <- factor(FineRoot$Plant)

R> f1 <- cpglmm(RLD ~ Stock + Spacing + (1|Plant), data = FineRoot)

We can add another random effect from zone as crossed or nested within plant as follows:

R> f2 <- update(f1, . ~ . + (1|Zone))

R> f3 <- update(f1, . ~ . + (1|Plant:Zone))

R> # test the additional random effect

R> anova(f1, f2)

Data: FineRoot

Models:

f1: RLD ~ Stock + Spacing + (1 | Plant)

f2: RLD ~ Stock + Spacing + (1 | Plant) + (1 | Zone)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

f1 6 -107.78 -82.367 59.893

f2 7 -145.58 -115.924 79.789 39.794 1 2.823e-10 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R> anova(f1, f3)
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Data: FineRoot

Models:

f1: RLD ~ Stock + Spacing + (1 | Plant)

f3: RLD ~ Stock + Spacing + (1 | Plant) + (1 | Plant:Zone)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

f1 6 -107.78 -82.367 59.893

f3 7 -147.04 -117.390 80.523 41.26 1 1.333e-10 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

In addition, the cpglmm function allows users to choose alternative optimizers that may perform better
in certain circumstances. The optimizer argument determines which optimization routine is to be used.
Possible choices are "nlminb" (the default), "bobyqa" and "L-BFGS-B". We can refit the first example
with a different optimizer as follows:

R> f4 <- cpglmm(RLD ~ Stock * Zone + (1|Plant),

+ data = FineRoot, optimizer = "L-BFGS-B",

+ control = list(trace = 2, PQL.init = FALSE))

N = 9, M = 5 machine precision = 2.22045e-16

iterations 21

function evaluations 27

segments explored during Cauchy searches 23

BFGS updates skipped 0

active bounds at final generalized Cauchy point 0

norm of the final projected gradient 0.0424422

final function value -188.534

final value -188.534323

converged

By default, the cpglmm function implements a penalized quasi-likelihood procedure before optimizing the
approximated likelihood. In the above, we have specified PQL.init = FALSE to skip that step.

The default fitting method is the Laplace approximation. The quadrature method can be invoked by
setting nAGQ to be greater than 1, which specifies the number of quadrature points to be used for the
numerical evaluation. Note that this method only works when there is one single grouping factor in the
model:

R> f5 <- cpglmm(RLD ~ Stock * Zone + (1|Plant),

+ data = FineRoot, nAGQ = 10)

2.4. Additive models

Further, similar to the amer package (Scheipl 2011), we provide convenient interfaces for fitting additive
models using penalized splines (Ruppert, Wand, and Carroll 2003). All the spline constructors available
in amer or those defined by the users following the amer requirement can be directly used here.

For example, we update the auto insurance loss example by specifying a smooth effect on the continuous
covariate MVR_PTS.

R> P2 <- cpglmm(CLM_AMT5 ~ CAR_USE + MARRIED + AREA + tp(MVR_PTS), data = da)

We can extract and plot the smooth terms using the getF and plotF function from amer. For example,
plotF generates the graph of the smooth term on the linear predictor scale as in Figure 1.

R> plotF(P2, rug = FALSE)



Wayne Zhang 9

0 2 4 6 8 10 12

−
1

0
1

2
3

4

MVR_PTS

f.M
V

R
_P

T
S

 +
 c

on
st

Figure 1: Plot of the smooth term on the linear predictor scale.

2.5. Bayesian methods

The above models can also be formulated in the Bayesian setting, in which parameter inference is carried
out via Markov chain Monte Carlo [MCMC] methods.

In the Bayesian model, prior distributions have to be specified for all parameters in the model. The prior
distributions we use are

β ∼ N(0, 10000 · I); (7)

ϕ ∼ U(0, 100); (8)

p ∼ U(1.01, 1.99), (9)

where the prior mean and variance of β and the bounds for ϕ and p can be modified using the argument
prior.beta.mean, prior.beta.var, bound.phi and bound.p, respectively.

If a mixed model is specified, we specify the prior distribution of the variance component as follows. If
there is one random effect in a group, the inverse Gamma distribution is used; and if there is more than
one random effects in a group, the inverse Wishart distribution is used:

σ−2
b ∼ Gamma(0.001, 1000); (10)

Σ−1 ∼ Wishartd(I), (11)

where d is the dimension of Σ. Currently, the parameter values in these prior distributions cannot be
modified by the user.

In implementing the MCMC, we construct a Gibbs sampler in which parameters are updated one at
a time given the current values of all the other parameters. Specifically, we use the random-walk
Metropolis-Hastings algorithm in updating each parameter except for the variance components, which
can be simulated directly due to conjugacy.

There is a tuning process in the MCMC algorithm, where the variances of the proposal (truncated)
normal distributions are updated according to the sample variances computed from the simulations.
The goal is to make the acceptance rate roughly between 40% and 60% for univariate M-H updates.
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The argument tune.iter determines how many iterations are used for the tuning process, and n.tune

determines how many loops the tuning iterations should be divided into. These iterations will not be
used in the final output.

The bcplm function is used to fit both GLMs and mixed models using MCMC. We illustrate the Bayesian
GLM using the claim triangle data from Peters et al. (2009), in which the Tweedie compound Poisson
distribution is specified for a strictly positive but highly skewed response variable increLoss.

R> set.seed(10)

R> B1 <- bcplm(increLoss ~ factor(year) + factor(lag), data = ClaimTriangle,

+ n.chains = 2, n.iter = 7000, tune.iter = 4000,

+ n.burnin = 2000, n.thin = 5, bound.p = c(1.1, 1.95))

In the above, we specify the lower bound of p to be greater than 1.1. This is often a safe guard to
regions where the compound Poisson distribution is multi-modal (Dunn and Smyth 2005). By default,
the function prints out intermediate acceptance information of the M-H algorithms, which is often useful
to determine whether good proposal variances have been obtained in the tuning phase. For example, a
run of the above function prints out the following:

Tuning phase...

Acceptance rate: min(34.00%), mean(51.62%), max(63.00%)

-----------------------------------------

Start Markov chain 1

Iteration: 3500

Acceptance rate: min(41.63%), mean(48.60%), max(55.14%)

Iteration: 7000

Acceptance rate: min(42.64%), mean(48.63%), max(55.27%)

-----------------------------------------

Start Markov chain 2

Iteration: 3500

Acceptance rate: min(42.60%), mean(49.41%), max(57.60%)

Iteration: 7000

Acceptance rate: min(42.59%), mean(49.33%), max(57.31%)

-----------------------------------------

Markov Chain Monte Carlo ends!

The simulation results are saved in the sims.list slot, which is an "mcmc.list" object that works with
many methods defined in the coda package (Plummer, Best, Cowles, and Vines 2012). For example, we
can use the gelman.diag function to compute the ‘potential scale reduction factor’ (Gelman and Rubin
1992) in order to determine approximate convergence:

R> summary(gelman.diag(B1$sims.list)[[1]][, 1])

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.9992 1.0000 1.0030 1.0040 1.0080 1.0220

In addition, we can also use visual diagnostic tools such as the trace and density plots- Figure 2 and 3
are generated by the following commands:

R> xyplot(B1$sims.list[, c(1:2, 20, 21)], xlab = NULL)

R> densityplot(B1$sims.list[, c(1:2, 20, 21)], ylab = NULL)

We see that despite that all the potential scale reduction factors are very close to 1, these diagnostic
plots suggest that better mixing can be achieved if the chains are run longer.

We conclude this section with a Bayesian example on compound Poisson mixed models. We now use
MCMC methods to draw inference of the fine root mixed model (f0). The estimates of the variance com-
ponents in Bayesian models are generally less biased than those based on maximum likelihood procedures
when there are few levels in the grouping factor (Zhang 2013).
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Figure 2: Trace plot of the two chains in the claim triangle example.
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Figure 3: Density plot of the two chains in the claim triangle example.
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R> set.seed(10)

R> B2 <- bcplm(RLD ~ Stock * Zone + (1|Plant),

+ data = FineRoot, n.iter = 11000,

+ n.burnin = 1000, n.thin = 10)

The inference results can be summarized by

R> summary(B2)

Compound Poisson linear models via MCMC

3 chains, each with 11000 iterations (first 1000 discarded), n.thin = 10

n.sims = 3000 iterations saved

Formula: RLD ~ Stock * Zone + (1 | Plant)

Data: FineRoot

Random and dynamic variance components:

Groups Name Variance Std.Dev.

Plant (Intercept) 0.024784 0.15743

Residual 0.337777 0.58119

Number of obs: 511 , groups: Plant, 8

Fixed effects:

Estimate Std. Error Lower (2.5%) Upper (97.5%)

(Intercept) -2.08925 0.21928 -2.52060 -1.626

StockMM106 -0.07313 0.29603 -0.71670 0.505

StockMark -0.47743 0.27231 -1.04190 0.041

ZoneOuter -0.45524 0.25598 -0.96740 0.036

StockMM106:ZoneOuter 0.03198 0.30952 -0.56080 0.646

StockMark:ZoneOuter -1.15131 0.32381 -1.76360 -0.505

---

Estimated dispersion parameter: 0.33778

Estimated index parameter: 1.4178

These results are in line with those in Zhang (2013). We see that the estimate of the variance component
is about twice as large as that based on maximum likelihood estimation.

2.6. The Gini index

For model comparison involving the compound Poisson distribution, the usual mean squared loss function
is not quite informative for capturing the differences between predictions and observations, due to the
high proportions of zeros and the skewed heavy-tailed distribution of the positive outcomes. For this
reason, Frees, Meyers, and Cummings (2011) develop an ordered version of the Lorenz curve and the
associated Gini index as a statistical measure of the association between distributions, through which
different predictive models can be compared. The idea is that a score (model) with a greater Gini index
produces a greater separation among the observations. In the insurance context, a higher Gini index
indicates greater ability to distinguish good risks from bad risks. Therefore, the model with the highest
Gini index is preferred.

Continuing using insurance as an example, we let yi be the observed loss payment, Pi be the baseline
premium, Si be the insurance score (predictions from the model), Ri = Si/Pi be the relativity, for the ith
observation. We sort all the policies by the relativities in an increasing order, and compute the empirical
cumulative premium and loss distributions as

F̂P (s) =

∑n
i=1 Pi · 1(Ri ≤ s)∑n

i=1 Pi
, F̂L(s) =

∑n
i=1 yi · 1(Ri ≤ s)∑n

i=1 yi
. (12)
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The graph
(
F̂P (s), F̂L(s)

)
is an ordered Lorenz curve. The area between the Lorenz curve and the line

of equality (a 45 degree line) is measure of the discrepancy between the premium and loss distributions,
and twice this area is defined as the Gini index. Intuitively, the Gini index can be regarded as the average
expected profit that can be gained under the new pricing scheme defined by the score.

The function gini computes the Gini indices and their asymptotic standard errors based on the ordered
Lorenz curve. These metrics are mainly used for model comparison. Depending on the problem, there
are generally two ways to do this. Take insurance predictive modeling as an example. First, when there
is a baseline premium, we can compute the Gini index for each score (predictions from the model), and
select the model with the highest Gini index. Second, when there is no baseline premium (base = NULL),
we successively specify the prediction from each model as the baseline premium and use the remaining
models as the scores. This results in a matrix of Gini indices, and we select the model that is least
vulnerable to alternative models using a “mini-max” argument - we select the score that provides the
smallest of the maximal Gini indices, taken over competing scores.

For example, we use the Gini index to compare the three models P1, P2 and P3 in the auto insurance
example. This can be done as follows:

R> da <- transform(da, P1 = fitted(P1), P2 = fitted(P2), P3 = fitted(P3))

R> gg <- gini(loss = "CLM_AMT5", score = paste("P", 1:3, sep = ""),

+ data = da)

R> gg

Call:

gini(loss = "CLM_AMT5", score = paste("P", 1:3, sep = ""), data = da)

Gini indices:

P1 P2 P3

P1 0.000 12.028 11.880

P2 -1.085 0.000 3.345

P3 3.875 5.977 0.000

Standard errors:

P1 P2 P3

P1 0.000 2.148 2.098

P2 2.191 0.000 2.295

P3 2.106 2.275 0.000

We see that the GLM-type model is the worst, while according to the “mini-max” argument, the selected
best model is the additive model P2. The "gini" object has a slot named lorenz that stores the graph
for the underlying ordered Lorenz curve. A plot method is defined to extract and plot the graphs of the
Lorenz curve using ggplot2:

R> theme_set(theme_bw())

R> plot(gg, overlay = FALSE)
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Figure 4: Plot of the ordered Lorenz curves for the auto insurance example.
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