Package ‘crfsuite’

September 17, 2023
Type Package

Title Conditional Random Fields for Labelling Sequential Data in
Natural Language Processing

Version 0.4.2
Maintainer Jan Wijffels <jwijffels@bnosac.be>

Description
Wraps the 'CRFsuite' library <https://github.com/chokkan/crfsuite> allowing users
to fit a Conditional Random Field model and to apply it on existing data.
The focus of the implementation is in the area of Natural Language Process-
ing where this R package allows you to easily build and apply models
for named entity recognition, text chunking, part of speech tagging, intent recognition or classifi-
cation of any category you have in mind. Next to training, a small web application
is included in the package to allow you to easily construct training data.

License BSD_3_clause + file LICENSE

URL https://github.com/bnosac/crfsuite
Depends R (>=2.10)

Imports Rcpp, data.table (>= 1.9.6), utils, tools, stats
Suggests udpipe, knitr, rmarkdown

LinkingTo Rcpp

RoxygenNote 7.1.2

VignetteBuilder knitr

NeedsCompilation yes

Author Jan Wijffels [aut, cre, cph] (R wrapper),

BNOSAC [cph] (R wrapper),

Naoaki Okazaki [aut, ctb, cph] (CRFsuite library (BSD licensed),
libLBFGS library (MIT licensed), Constant Quark Database software
(BSD licensed)),

Bob Jenkins [aut, ctb] (File src/cqdb/src/lookup3.c (Public Domain)),

Jorge Nocedal [aut, ctb, cph] (libLBFGS library (MIT licensed)),

Jesse Long [aut, ctb, cph] (RumAVL library (MIT licensed))

Repository CRAN
Date/Publication 2023-09-17 00:00:07 UTC

https://github.com/chokkan/crfsuite
https://github.com/bnosac/crfsuite

2 airbnb

R topics documented:
airbnb . . L L e 2
airbnb_chunks L e 3
as.Crf . . e 3
I o e 4
crf caretmethod L e 7
crf_cbind_attributes L e 8
crf_evaluation L e e e 9
crf_OptioNS e e e 11
merge.chunkrange 12
ner_download_modeldata 13
predicterf . . . oL L. 15
tXt_feature e e e 16
txt_sprintf 17

Index 19

airbnb Dutch reviews of AirBnB customers on Brussels address locations
available at www.insideairbnb.com
Description

The data contains 500 reviews in Dutch of people who visited an AirBnB appartment in Brussels.
The data frame contains the fields

Source

doc_id: a unique identifier of the review
listing_id: the airbnb address identifier

text: text with the feedback of a customer on his visit in the AirBnB appartment

http://insideairbnb.com/brussels: information of 2015-10-03

See Also

airbnb_chunks

Examples

data(airbnb)
str(airbnb)
head(airbnb)

http://insideairbnb.com/brussels

airbnb_chunks 3

airbnb_chunks Dutch reviews of AirBnB customers on Brussels address locations

manually tagged with entities

Description

The airbnb dataset was manually annotated with the shiny app inside this R package. The an-
notation shows chunks of data which have been flagged with the following categories: PERSON,
LOCATION, DISTANCE. The dataset is an object of class chunkrange and of type data.frame
which contains the following fields:

See Also

doc_id: a unique identifier of the review, which is also available in airbnb
listing_id: the airbnb address identifier

text: text with the feedback of a customer on his visit in the AirBnB appartment
chunk_id: a chunk identifier

chunk_entity: a chunk entity label

chunk: the text of the chunk which is a substring of text

start: the starting position in text where the chunk is found

end: the end position in text where the chunk is found

airbnb_chunks

Examples

data(airbnb_chunks)
str(airbnb_chunks)
head(airbnb_chunks)

as.crf Convert a model built with CRFsuite to an object of class crf

Description

If you have a model built with CRFsuite either by this R package or by another software library
which wraps CRFsuite (e.g. Python/Java), you can convert it to an object of class crf which this
package can use to inspect the model and to use it for prediction (if you can mimic the way the
attributes are created).

This is for expert use only.

Usage

as.crf(file, ...)

4 crf

Arguments
file the path to a file on disk containing the CRFsuite model
other arguments which can be set except the path to the file, namely method,
type, options, attribute_names, log (expert use only)
Value

an object of class crf

crf Linear-chain Conditional Random Field

Description

Fits a Linear-chain (first-order Markov) CRF on the provided label sequence and saves it on disk in
order to do sequence labelling.

Usage

crf(
XI
Y,
group,
method = c("1bfgs"”, "12sgd"”, "averaged-perceptron”, "passive-aggressive”, "arow”),
options = crf_options(method)$default,
embeddings,
file = "annotator.crfsuite”,
trace = FALSE,
FUN = identity,

)
Arguments

X a character matrix of data containing attributes about the label sequence y or an
object which can be coerced to a character matrix. It is important to note that an
attribute which has the same value in a different column is considered the same.

y a character vector with the sequence of labels to model

group an integer or character vector of the same length as y indicating the group the
sequence y belongs to (e.g. a document or sentence identifier)

method character string with the type of training method. Either one of:

¢ Ibfgs: L-BFGS with L1/L2 regularization
* 12sgd: SGD with L2-regularization

* averaged-perceptron: Averaged Perceptron
* passive-aggressive: Passive Aggressive

crf

options

embeddings

file

trace
FUN

Value

e arow: Adaptive Regularization of Weights (AROW)

a list of options to provide to the training algorithm. See crf_options for pos-
sible options and the example below on how to provide them.

a matrix with the same number of rows as x and in the same order with numeric
information used in model building (experimental)

a character string with the path to the file on disk where the CRF model will be
stored.

a logical indicating to show the trace of the training output. Defaults to FALSE.

a function which can be applied on raw text in order to obtain the attribute matrix
used in predict.crf. Currently not used yet.

arguments to FUN. Currently not used yet.

an object of class crf which is a list with elements

* method: The training method

* type: The type of graphical model which is always set crf1d: Linear-chain (first-order Markov)

CRF

* labels: The training labels

* options: A data.frame with the training options provided to the algorithm

* file_model: The path where the CRF model is stored

e attribute_names: The column names of x

* log: The training log of the algorithm

e FUN: The argument passed on to FUN

* Idots: A list with the arguments passed on to ...

References

More details about this model is available at http://www.chokkan.org/software/crfsuite/.

See Also

predict.crf

Examples

Download modeldata (conll 2002 shared task in Dutch)

X <- ner_download_modeldata(”conll2002-nl")

for CRAN only - word on a subset of the data
x <- ner_download_modeldata(”conll2002-nl", docs = 10)
if(is.data.frame(x)){

#it

Build Named Entity Recognition model on conll2002-nl

http://www.chokkan.org/software/crfsuite/

crf

#H#

x$pos <- txt_sprintf("Parts of Speech: %s", x$pos)
x$token <- txt_sprintf(”"Token: %s", x$token)
crf_train <- subset(x, data == "ned.train")

crf_test <- subset(x, data == "testa")

model <- crf(y = crf_train$label,
x = crf_train[, c("token”, "pos")1,
group = crf_train$doc_id,
method = "lbfgs”,
options = list(max_iterations = 3, feature.minfreq = 5,
cl =0, c2 =1))
model
weights <- coefficients(model)
head(weights$states, n = 20)
head(weights$transitions, n = 20)
stats <- summary(model, "modeldetails.txt")
stats
plot(stats$iterations$loss)

Use the CRF model to label a sequence

scores <- predict(model,
newdata = crf_test[, c("token"”, "pos")],
group = crf_test$doc_id)

head(scores)

crf_test$label <- scores$label

cleanup for CRAN

if(file.exists(model$file_model)) file.remove(model$file_model)

if(file.exists("modeldetails.txt"”)) file.remove("modeldetails.txt")
}

#H#

More detailed example where text data was annotated with the webapp in the package
This data is joined with a tokenised dataset to construct the training data which
is further enriched with attributes of upos/lemma in the neighbourhood

##

library(udpipe)
data(airbnb_chunks, package = "crfsuite”)
udmodel <- udpipe_download_model ("dutch-lassysmall”)
if (tudmodel$download_failed){
udmodel <- udpipe_load_model (udmodel$file_model)
airbnb_tokens <- udpipe(x = unique(airbnb_chunks[, c("doc_id", "text")1),
object = udmodel)
x <- merge(airbnb_chunks, airbnb_tokens)
x <- crf_cbind_attributes(x, terms = c("upos”, "lemma"”), by = "doc_id")
model <- crf(y = x$chunk_entity,
x = x[, grep("upos|lemma”, colnames(x), value = TRUE)],
group = x$doc_id,
method = "1lbfgs", options = list(max_iterations = 5))
stats <- summary(model)
stats

crf_caretmethod 7

plot(stats$iterations$loss, type = "b", xlab = "Iteration”, ylab = "Loss")
scores <- predict(model,

newdata = x[, grep("upos|lemma”, colnames(x))],

group = x$doc_id)
head(scores)

}

crf_caretmethod Functionality allowing to tune a crfsuite model using caret

Description

The object crf_caretmethod contains functionality to tune a crf model using caret. Each list
elment of crf_caretmethod is a list of functions which can be passed on to the method argument
of caret: :train to tune the hyperparameters of the crfsuite model.

Usage

crf_caretmethod

Format

see details

Details

If you want to tune the hyperparameters of a crfsuite model (see crf_options and the options
argument of crf), you can use the caret package.

In order to facilitate this tuning, an object called crf_caretmethod has been made available. The
object crf_caretmethod is a list with 6 elements, where each of these 6 elements can be used in
tuning the CRF hyperparemeters by passing it on to the method argument of the train function of
the caret package.

The list has elements ’default’, ’1bfgs’, ’12sgd’, *averaged_perceptron’, *passive_aggressive’ and
arow’. Each list element corresponds to arguments that you need to tune for each method as used
in crf.

For crf_caretmethod

1. Ibfgs: Tuning across all hyperparameters for method lbfgs: L-BFGS with L1/L2 regularization
2. 12sgd: Tuning across all hyperparameters for method 12sgd: SGD with L2-regularization

3. averaged_perceptron: Tuning across all hyperparameters for method averaged-perceptron:
Averaged Perceptron

4. passive_aggressive: Tuning across all hyperparameters for method passive-aggressive: Pas-
sive Aggressive

5. arow: Tuning across all hyperparameters for method arow: Adaptive Regularization of Weights
(AROW)

8 crf_cbind_attributes

6. default: Tune over the hyperparameters feature.minfreq, feature.possible_states, feature.possible_transitions,
max_iterations. While tuning these, it uses the default hyperparameters for each method. This
tuning allows you to compare the 5 methods.

For details on the hyperparameter definitions: see crf_options

crf_cbind_attributes Enrich a data.frame by adding frequently used CRF attributes

Description

The CRF attributes which are implemented in this function are merely the neighbouring information
of a certain field. For example the previous word, the next word, the combination of the previous 2
words. This function cbinds these neighbouring attributes as columns to the provided data.frame.

By default it adds the following columns to the data.frame

* the term itself (term[t])

e the next term (term[t+1])

e the term after that (term[t+2])

* the previous term (term[t-1])

* the term before the previous term (term[t-21)

* as well as all combinations of these terms (bigrams/trigrams/...) where up to ngram_max num-

ber of terms are combined.

See the examples.

Usage

crf_cbind_attributes(
data,
terms,
by,
from = -2,
to = 2,
ngram_max = 3,
sep = "=-"

Arguments

data a data.frame which will be coerced to a data.table (cbinding will be done by
reference on the existing data.frame)

terms a character vector of column names which are part of data for which the func-
tion will look to the preceding and following rows in order to cbind this infor-
mation to the data

crf_evaluation 9

by a character vector of column names which are part of data indicating the fields
which define the sequence. Preceding/following terms will be looked for within
data of by. Typically this will be a document identifier or sentence identifier in
an NLP context.

from integer, by default set to -2, indicating to look up to 2 terms before the current
term

to integer, by default set to 2, indicating to look up to 2 terms after the current term

ngram_max integer indicating the maximum number of terms to combine (2 means bigrams,
3 trigrams, ...)

sep character indicating how to combine the previous/next/current terms. Defaults
to t’

Examples

X <- data.frame(doc_id = sort(sample.int(n = 10, size = 1000, replace = TRUE)))
X$pOS <_ Sample(c(HArt“, UNH’ HPrep”’ HVH, HAdVU, UAdj”’ ”COnj”,

"Punc”, "Num”, "Pron”, "Int", "Misc"),
size = nrow(x), replace = TRUE)
x <- crf_cbind_attributes(x, terms = "pos”, by = "doc_id",
from = -1, to = 1, ngram_max = 3)

head(x)

Example on some real data
x <- ner_download_modeldata(”conl12002-nl1")

x <- crf_cbind_attributes(x, terms = c("token"”, "pos"),
by = c¢("doc_id", "sentence_id"),
ngram_max = 3, sep = "|")
crf_evaluation Basic classification evaluation metrics for multi-class labelling
Description

The accuracy, precision, recall, specificity, F1 measure and support metrics are provided for each
label in a one-versus the rest setting.

Usage

crf_evaluation(
pred,
obs,
labels = na.exclude(unique(c(as.character(pred), as.character(obs)))),
labels_overall = setdiff(labels, "0")

10

Arguments

pred
obs
labels

labels_overall

Value

crf_evaluation

a factor with predictions
a factor with gold labels

a character vector of possible values that pred and obs can take. Defaults to the
values in the data

a character vector of either labels which is either the same as 1abels or a subset
of labels in order to compute a weighted average of the by-label statistics

a list with 2 elements:

* bylabel: data.frame with the accuracy, precision, recall, specificity, F1 score and support
(number of occurrences) for each label

* overall: a vector containing

— the overall accuracy

— the metrics precision, recall, specificity and F1 score which are weighted averages of
these metrics from list element bylabel, where the weight is the support

— the metrics precision, recall, specificity and F1 score which are averages of these metrics
from list element bylabel giving equal weight to each label

Examples

pred <- sample(LETTERS, 1000, replace = TRUE)
gold <- sample(LETTERS, 1000, replace = TRUE)
crf_evaluation(pred = pred, obs = gold, labels = LETTERS)

x <- ner_download_modeldata(”conll2002-nl1")

x <- crf_cbind_attributes(x, terms = c("token", "pos"),
by = c("doc_id", "sentence_id"))

crf_train <- subset(x, data == "ned.train")

crf_test <- subset(x, data == "testa")

attributes <- grep(”token|pos”, colnames(x), value=TRUE)
model <- crf(y = crf_train$label,

X =

crf_train[, attributes],

group = crf_train$doc_id,
method = "1bfgs")

Use the model to score on existing tokenised data
scores <- predict(model,

newdata = crf_test[, attributes],
group = crf_test$doc_id)

crf_evaluation(pred = scores$label, obs = crf_test$label)
crf_evaluation(pred = scores$label, obs = crf_test$label,

labels = c("0",

”B_ORG”, ”I_ORG”, ”B_PER“, ”I_PER”,
"B-LOC", "I-LOC", "B-MISC", "I-MISC"))

crf_options 11

library(udpipe)
pred <- txt_recode(scores$label,
from = c("B-ORG", "I-ORG", "B-PER", "I-PER",
"B-LOC", "I-LOC", "B-MISC", "I-MISC"),
to = c("ORG", "ORG", "PER", "PER",
"Loc", "Loc", "MISC", "MISC"))
obs <- txt_recode(crf_test$label,
from = c("B-ORG", "I-ORG", "B-PER", "I-PER",
"B-LOC", "I-LOC", "B-MISC", "I-MISC"),
to = c("ORG”, "ORG", "PER", "PER",
"Loc", "Loc", "MISC", "MISC"))
crf_evaluation(pred = pred, obs = obs,
labels = c("ORG", "LOC", "PER", "MISC”", "0"))

crf_options Conditional Random Fields parameters

Description

Conditional Random Fields parameters

Usage

crf_options(
method = c("1bfgs”, "12sgd"”, "averaged-perceptron”, "passive-aggressive”, "arow")

)

Arguments
method character string with the type of training method. Either one of:

¢ Ibfgs: L-BFGS with L1/L2 regularization
* 12sgd: SGD with L2-regularization
* averaged-perceptron: Averaged Perceptron
* passive-aggressive: Passive Aggressive
» arow: Adaptive Regularization of Weights (AROW)

Value

a list with elements

* method: The training method

* type: The type of graphical model which is always set crf1d: Linear-chain (first-order Markov)
CRF

e params: A data.frame with fields arg, arg_default and description indicating the possible hy-
perparameters of the algorithm, the default values and the description

o default: A list of default values which can be used to pass on to the options argument of crf

12 merge.chunkrange

Examples

L-BFGS with L1/L2 regularization
opts <- crf_options(”lbfgs")
str(opts)

SGD with L2-regularization
crf_options("12sgd")

Averaged Perceptron
crf_options("averaged-perceptron”)

Passive Aggressive
crf_options("passive-aggressive")

Adaptive Regularization of Weights (AROW)
crf_options("arow")

merge.chunkrange CRF Training data construction: add chunk entity category to a to-
kenised dataset

Description

Chunks annotated with the shiny app in this R package indicate for a chunk of text of a document
the entity that it belongs to. As text chunks can contains several words, we need to have a way in
order to add this chunk category to each word of a tokenised dataset. That’s what this function is
doing.

If you have a tokenised data.frame with one row per token/document which indicates the start and
end position where the token is found in the text of the document, this function allows to assign the
chunk label to each token of the document.

Usage

S3 method for class 'chunkrange'

merge(x, y, by.x = "doc_id", by.y = "doc_id", default_entity = "0", ...)
Arguments

X an object of class chunkrange. A chunkrange is just a data.frame which con-

tains one row per chunk/doc_id. It should have the columns doc_id, text, chunk_id,
chunk_entity, start and end.

The fields start and end indicate in the original text where the chunks of
words starts and where it ends. The chunk_entity is a label you have assigned
to the chunk (e.g. ORGANISATION / LOCATION / MONEY / LABELXYZ /
o)

y a tokenised data.frame containing one row per doc_id/token It should have the
columns doc_id, start and end where the fields start and end indicate the
positions in the original text of the doc_id where the token starts and where it
ends. See the examples.

ner_download_modeldata 13

by.x a character string of a column of x which is an identifier which defines the se-
quence. Defaults to ’doc_id’.

by.y a character string of a column of y which is an identifier which defines the se-
quence. Defaults to ’doc_id’.

default_entity character string with the default chunk_entity to be assigned to the token if the
token is not part of any chunk range. Defaults to "O’.

not used

Value

the data.frame y where 2 columns are added, namely:

* chunk_entity: The chunk entity of the token if the token is inside the chunk defined in x. If
the token is not part of any chunk, the chunk category will be set to the default value.

e chunk_id: The chunk identifier of the chunk for which the token is inside the chunk.

Examples

library(udpipe)
udmodel <- udpipe_download_model("dutch-lassysmall”)
if (packageVersion("udpipe”) >= "0.7"){
data(airbnb_chunks, package = "crfsuite")
airbnb_chunks <- head(airbnb_chunks, 20)
airbnb_tokens <- unique(airbnb_chunks[, c("doc_id", "text")])

airbnb_tokens <- udpipe(airbnb_tokens, object = udmodel)
head(airbnb_tokens)
head(airbnb_chunks)

Add the entity of the chunk to the tokenised dataset
x <- merge(airbnb_chunks, airbnb_tokens)
x[, c("doc_id", "token", "chunk_entity")]
table(x$chunk_entity)

3

cleanup for CRAN
file.remove(udmodel$file_model)

ner_download_modeldata

CRF Training data: download training data for doing Named Entity
Recognition (NER)

14 ner_download_modeldata

Description

Download training data for doing Named Entity Recognition (NER)

Usage

ner_download_modeldata(
type = c("conll2002-nl1", "conll2002-es", "GermanNER", "wikiner-de-wp2",
"wikiner-de-wp3"”, "wikiner-en-wp2", "wikiner-en-wp3", "wikiner-es-wp2",
"wikiner-es-wp3", "wikiner-fr-wp2", "wikiner-fr-wp3"”, "wikiner-it-wp2",
"wikiner-it-wp3", "wikiner-nl-wp2", "wikiner-nl-wp3", "wikiner-pl-wp3”,
"wikiner-pt-wp3"”, "wikiner-ru-wp2"”, "wikiner-ru-wp3"),
docs = -Inf

Arguments

type a character string with the type of data to download. See the function usage for
all possible values. These data will be downloaded from either:

* NLTK-data forked repository: https://github.com/bnosac-dev/nltk_
data/blob/gh-pages/packages/corpora/conll2002.zip

» FOX forked repository of GermanNER: https://github.com/bnosac-dev/
FOX/tree/master/input/GermanNER

» FOX forked repository of WikiNER: https://github.com/bnosac-dev/
FOX/tree/master/input/Wikiner

Please visit the information on these repositories first before you use these data
in any commercial product.

docs integer indicating how many documents to sample from the data (only used for
data from the NLTK repository). This is only used to reduce CRAN R CMD
check training time in the examples of this R package.

Value

a data.frame with training data for a Named Entity Recognition task or an object of try-error in case
of failure of downloading the data

Examples

Not run:

<- ner_download_modeldata("”conl12002-n1")
<- ner_download_modeldata("”conll2002-es")
<- ner_download_modeldata("GermanNER")

<- ner_download_modeldata("wikiner-en-wp2")
<- ner_download_modeldata("wikiner-nl-wp3")
<- ner_download_modeldata("wikiner-fr-wp3")

X X X X X X

End(Not run)
reduce number of docs
x <- ner_download_modeldata(”conll2002-es"”, docs = 10)

https://github.com/bnosac-dev/nltk_data/blob/gh-pages/packages/corpora/conll2002.zip
https://github.com/bnosac-dev/nltk_data/blob/gh-pages/packages/corpora/conll2002.zip
https://github.com/bnosac-dev/FOX/tree/master/input/GermanNER
https://github.com/bnosac-dev/FOX/tree/master/input/GermanNER
https://github.com/bnosac-dev/FOX/tree/master/input/Wikiner
https://github.com/bnosac-dev/FOX/tree/master/input/Wikiner

predict.crf

15

predict.crf

Predict the label sequence based on the Conditional Random Field

Description

Predict the label sequence based on the Conditional Random Field

Usage
S3 method for class 'crf'
predict(
object,
newdata,
embeddings,
group,
type = c("marginal”, "sequence"),
trace = FALSE,
)
Arguments
object an object of class crf as returned by crf
newdata a character matrix of data containing attributes about the label sequence y or an
object which can be coerced to a character matrix. This data should be provided
in the same format as was used for training the model
embeddings a matrix with the same number of rows as x and in the same order with numeric
information used to predict
group an integer or character vector of the same length as nrow newdata indicating the
group the sequence y belongs to (e.g. a document or sentence identifier)
type either “'marginal’ or ’sequence’ to get predictions at the level of newdata or a the
level of the sequence group. Defaults to 'marginal’
trace a logical indicating to show the trace of the labelling output. Defaults to FALSE.
not used
Value

If type is 'marginal’: a data.frame with columns label and marginal containing the viterbi decoded
predicted label and marginal probability.

If type is ’sequence’: a data.frame with columns group and probability containing for each se-
quence group the probability of the sequence.

See Also

crf

16 txt_feature

Examples

library(udpipe)
data(airbnb_chunks, package = "crfsuite”)
udmodel <- udpipe_download_model("dutch-lassysmall”)
udmodel <- udpipe_load_model(udmodel$file_model)
airbnb_tokens <- unique(airbnb_chunks[, c("doc_id", "text")])
airbnb_tokens <- udpipe_annotate(udmodel,
X = airbnb_tokens$text,
doc_id = airbnb_tokens$doc_id)
airbnb_tokens <- as.data.frame(airbnb_tokens)
x <- merge(airbnb_chunks, airbnb_tokens)
x <- crf_cbind_attributes(x, terms = c("upos”, "lemma"), by = "doc_id")
model <- crf(y = x$chunk_entity,
x = x[, grep("upos|lemma”, colnames(x))],
group = x$doc_id,
method = "lbfgs”, options = list(max_iterations = 5))
scores <- predict(model,
newdata = x[, grep("upos|lemma”, colnames(x))],
group = x$doc_id, type = "marginal”)

head(scores)
scores <- predict(model,
newdata = x[, grep("upos|lemma”, colnames(x))],
group = x$doc_id, type = "sequence")
head(scores)

cleanup for CRAN
file.remove(model$file_model)
file.remove("modeldetails.txt")
file.remove(udmodel$file)

txt_feature Extract basic text features which are useful for entity recognition

Description

Extract basic text features which are useful for entity recognition

Usage

txt_feature(
X)
type = c("is_capitalised”, "is_url”, "is_email”, "is_number”, "prefix", "suffix”,
"shape"),
n=4

txt_sprintf 17

Arguments
X a character vector
type a character string, which can be one of ’is_capitalised’, ’is_url’, ’is_email’,
’is_number’, ’prefix’, ’suffix’, ’shape’
n for type *prefix’ or ’suffix’, the number of characters of the prefix/suffix
Value

For type ’is_capitalised’, ’is_url’, ’is_email’, ’is_number’: a logical vector of the same length as x,
indicating if x is capitalised, a url, an email or a number

For type ’prefix’, ’suffix’: a character vector of the same length as x, containing the prefix or suffix
n number of characters of x

For type ’shape’: a character vector of the same length as x, where lowercased elements are replaced
with x and uppercased elements with X

Examples

txt_feature(”"Red Devils”, type = "is_capitalised”)
txt_feature("red devils”, type = "is_capitalised”)
txt_feature("http://www.bnosac.be”, type = "is_url")
txt_feature("info@google.com”, type = "is_email”)

txt_feature("hi there”, type = "is_email")

txt_feature(”1230000", type = "is_number")

txt_feature(”123.15", type = "is_number")

txt_feature(”123,15", type = "is_number")

txt_feature(”123abc”, type = "is_number")
txt_feature(”abcdefghijklmnopgrstuvwxyz", type = "prefix”, n = 3)
txt_feature("abcdefghijklmnopgrstuvwxyz", type = "suffix”, n = 3)
txt_feature(”"Red Devils”, type = "shape")

txt_feature(”"red devils”, type = "shape")

txt_sprintf NA friendly version of sprintf

Description

Does the same as the function sprintf except that if in ... NA values are passed, also NA values are
returned instead of being replaced by the character string 'NA'.

Usage
txt_sprintf(fmt, ...)
Arguments
fmt a character vector of format strings, which will be fed on to sprintf

values to be passed into fmt, the . .. will be passed on to sprintf

18 txt_sprintf

Value

The same as what sprintf returns: a character vector of length that of the longest inputin
Except, in case any of the values passed on to . .. are NA, the corresponding returned value will be
set to NA for that element of the vector.

See the examples to see the difference with sprintf

See Also

sprintf

Examples

sprintf("(w-1):%s", c("xyz", NA, "abc"))

txt_sprintf("(w-1):%s", c("xyz", NA, "abc"))

sprintf (" (w=-1):%s_%s", c("xyz", NA, "abc"), c(NA, "xyz", "abc"))
txt_sprintf("(w-1):%s_%s", c("xyz", NA, "abc"), c(NA, "xyz", "abc"))

Index

x datasets
crf_caretmethod, 7

airbnb, 2, 3
airbnb_chunks, 2, 3, 3
as.crf,3

crf,4,7,11,15
crf_caretmethod, 7
crf_cbind_attributes, 8
crf_evaluation, 9
crf_options, 5,7, 8,11

merge.chunkrange, 12
ner_download_modeldata, 13
predict.crf, 5, 15
sprintf, 17, 18

txt_feature, 16
txt_sprintf, 17

19

	airbnb
	airbnb_chunks
	as.crf
	crf
	crf_caretmethod
	crf_cbind_attributes
	crf_evaluation
	crf_options
	merge.chunkrange
	ner_download_modeldata
	predict.crf
	txt_feature
	txt_sprintf
	Index

