
Using the package crmPack:

introductory examples

Daniel Sabanés Bové

Wai Yin Yeung

4th February 2024

Package version 1.0.5

This short vignette shall introduce into the usage of the package crmPack. Hopefully
it makes it easy for you to set up your own CRM.
If you have any questions or feedback concerning the package, please write an email

to the package maintainer: sabanesd@roche.com Thank you very much in advance!

1 Installation

Many models in crmPack rely on JAGS (please click on the link for going to the webpage
of the project) for the internal MCMC computations. WinBUGS is not required or
supported anymore.

2 Getting started

Before being able to run anything, you have to load the package with

> library(crmPack)

For browsing the help pages for the package, it is easiest to start the web browser
interface with

> crmPackHelp()

This gives you the list of all help pages available for the package. The whole R-package is
built in a modular form, by using S4 classes and methods. Please have a look at the help
page "Methods" to read an introduction into the S4 object framework of R, by typing
?Methods in the R console. In the next sections we will therefore go one by one through
the important building blocks (S4 classes and corresponding methods) of CRM designs
with crmPack.

1

mailto:sabanesd@roche.com
http://mcmc-jags.sourceforge.net/

GeneralData

Data

DataDual

Figure 1: Data classes structure

3 Data

Figure 1 shows the structure of the data classes included in this package
We have three data classes for this package. The parent class is the GeneralData

class. The Data class is inheriting from the GeneralData class and the DataDual class
is inheriting from the Data class. Inheritance means that the subclass has all the slots
(attributes) of the parent class, but can also have additional slots. Methods that work
on the parent class also work the same way on the subclass, unless a specialized method
for the subclass has been de�ned.
First, we will set up the data set. If you are at the beginning of a trial, no observations

will be available. Then we can de�ne an empty data set, for example:

> emptydata <- Data(doseGrid=

c(0.1, 0.5, 1.5, 3, 6,

seq(from=10, to=80, by=2)))

The R-package crmPack uses the S4 class system for implementation of the dose-escalation
designs. There is the convention that class initialization functions have the same name
as the class, and all class names are capitalized. Note that in order to create this Data
object, we use the initialization function of the same name, and give it as parameters
the contents of the object to be constructed. At least the doseGrid parameter, which
contains all possible dose levels to be potentially used in the trial, must be speci�ed in a
call of the Data() initialization function.
If you are in the middle of a trial and you would like to recommend the next dose,

then you have data from the previous patients for input into the model. This data can
also be captured in a Data object. For example:

> data <- Data(x=c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),

y=c(0, 0, 0, 0, 0, 0, 1, 0),

cohort=c(0, 1, 2, 3, 4, 5, 5, 5),

doseGrid=

2

c(0.1, 0.5, 1.5, 3, 6,

seq(from=10, to=80, by=2)))

Most important are x (the doses) and y (the DLTs, 0 for no DLT and 1 for DLT),
and we are using the same dose grid doseGrid as before. All computations are using the
dose grid speci�ed in the Data object. So for example, except for patient number 7, all
patients were free of DLTs.
Again, you can �nd out the details in the help page Data-class. Note that you have

received a warning here, because you did not specify the patient IDs � however, automatic
ones just indexing the patients have been created for you:

> data@ID

[1] 1 2 3 4 5 6 7 8

You can get a visual summary of the data by applying plot to the object:1

> print(plot(data))

 1

 2

 3

 4

 5

 6 7 8

0.00.1

0.5

1.5

3.0

6.0

10.0

1 2 3 4 5 6 7 8
Patient

D
os

e
Le

ve
l

toxicity

No

Yes

1Note that for all plot calls in this vignette, you can leave away the wrapping print function call if

you are working interactively with R. It is only because of the Sweave production of this vignette that

the print statement is needed.

3

AllModels

GeneralModel

Model

LogisticNormal

LogisticLogNormalSub

LogisticKadane

ModelPseudo

ModelTox ModelE�

LogisticIndepBeta

E�oglog E�Flexi

Figure 2: Model classes structure

4 Structure of the model class

Figure 2 show the structure of the model class de�ned in this package. The AllModels is
the parent class, from which all model classes inherit. There are two sub-classes: First,
the GeneralModel class from which all models inherit that are using JAGS to specify
the model and the prior distribution and will then be estimated by MCMC later on.
Then, the second subclass is the ModelPseudo class for which the prior of the models
are speci�ed in terms of pseudo data and standard maximum likelihood routines from R
will be used for computational purposes. All models included in this package will have
a parent class of either the GeneralModel or the ModelPseudo classes. There are two
further classes under ModelPseudo which are the ModelTox class include all DLT (the
occurrence of a dose-limiting toxicity) class models, and class ModelEff which includes
all e�cacy class models.

5 Model setup

5.1 Logistic model with bivariate (log) normal prior

First, we will show an example of setting up of a model inheriting from the Model and
GeneralModel classes, the logistic normal model. You can click on the corresponding
help page LogisticLogNormal-class as background information for the next steps.
With the following command, we create a new model of class LogisticLogNormal,

with certain mean and covariance prior parameters and reference dose:

> model <- LogisticLogNormal(mean=c(-0.85, 1),

cov=

matrix(c(1, -0.5, -0.5, 1),

4

nrow=2),

refDose=56)

We can query the class that an object belongs to with the class function:

> class(model)

[1] "LogisticLogNormal"

attr(,"package")

[1] "crmPack"

We can look in detail at the structure of model as follows:

> str(model)

Formal class 'LogisticLogNormal' [package "crmPack"] with 11 slots

..@ mean : num [1:2] -0.85 1

..@ cov : num [1:2, 1:2] 1 -0.5 -0.5 1

..@ refDose : num 56

..@ dose :function (prob, alpha0, alpha1)

..@ prob :function (dose, alpha0, alpha1)

..@ datamodel :function ()

..@ priormodel:function ()

..@ modelspecs:function ()

..@ init :function ()

..@ sample : chr [1:2] "alpha0" "alpha1"

..@ datanames : chr [1:3] "nObs" "y" "x"

We see that the object has 11 slots, and their names. These can be accessed with the
@ operator (similarly as for lists the $ operator), for example we can extract the dose

slot:

> model@dose

function (prob, alpha0, alpha1)

{

StandLogDose <- (logit(prob) - alpha0)/alpha1

return(exp(StandLogDose) * refDose)

}

<bytecode: 0x55850b4a45e0>

<environment: 0x55850b4ab370>

This is the function that computes for given parameters alpha0 and alpha1 the dose
that gives the probability prob for a dose-limiting toxicity (DLT). You can �nd out
yourself about the other slots, by looking at the help page for Model-class in the help

5

browser, because all univariate models with JAGS speci�cation are just special cases
(subclasses) of the Model class. In the Model-class help page, you also �nd out that
there are four additional speci�c model classes that are sub-classes of the Model class,
namely LogisticLogNormalSub, LogisticNormal, LogisticKadane and DualEndpoint.
Next, we will show an example of setting up a model of the ModelPseudo class, the

LogisticIndepBeta model. More speci�cally, this is also a model in ModelTox class.
The LogisticIndepBetamodel is a two-parameter logistic regression model to describe

the relationship between the probability of the occurrence of DLT and its corresponding
log dose levels. The model parameters are φ1, for the intercept and φ2, the slope. This
is also a model for which its prior is expressed in form of pseudo data.
Here it is important that the data set has to be de�ned before de�ning any models

from ModelPseudo class. This is to ensure we obtained the updated estimates for the
model parameters using all currently available observations. Either an empty data set
or a data set that contains all currently available observations is needed.
Therefore, let's assume an empty data set is set up. For example, we will use 12 dose

levels from 25 to 300 mg with increments of 25 mg. Then we have:

> emptydata <- Data(doseGrid=

seq(from=25, to=300, by=25))

> data1 <- emptydata

Then we express our prior in form of pseudo data. The idea is as follows. First �x two
dose level d(−1) and d(0), which are usually the lowest and the highest dose level, so here
we choose 25 and 300 mg. Then we elicit from experts or clinicians the probability of
the occurrence of DLT, p(−1) and p(0) at these two dose levels. That is, assuming n(l)
subjectsare treated at each of these two dose levels, l = −1, 0, t(l) out of n(l) subjects are
expected to be observed with a DLT such that p(l) = t(l)/n(l). Let p̃(l) be the probability
of the occurrence of a DLT at dose l for dose l = −1, 0. p̃(l) will follow independent
Beta distributions and the joint probability density function of p(l) can be obtained.
Therefore, this model is called LogisticIndepBeta. We expressed the prior as if we have
some data (pseudo data) before the trial start. The prior modal estimates of φ1 and φ2,
which is also equivalent to the maximum likelihood estimators, can be obtained with the
R function glm. Please refer to Whitehead and Williamson (1998) for details about the
form of the prior and posterior density of the model parameters φ1 and φ2.
With the following commands, we create the model of class LogisticIndepBeta, with

the prior speci�ed in form of pseudo data.

> DLTmodel<-LogisticIndepBeta(binDLE=c(1.05,1.8),DLEweights=c(3,3),

DLEdose=c(25,300),data=data1)

(Note that in some functions including this initialization function, DLE instead of DLT
is used. In this vignette we use the uni�ed abbreviation DLT throughout the text and
variable names.)
For the model speci�ed, we have �xed two dose levels (25 and 300 mg) and represented

them in the DLEdose slot. Then we assume that 3 subjects are treated at each of the dose

6

levels, represented in the DLEweights slot. We have 1.05 subjects out of the 3 subjects
treated at 25 mg observed with a DLT and 1.8 subjects out of the 3 subjects treated at
300 mg observed with a DLT and this is represented in the binDLE slot. Input to the data
slot is also need to ensure the all currently available observations will be incorporated
in the model to obtain updated modal estimates of the model parameters. If an empty
data set is used in the data slot, the prior modal estimates of the model parameters, φ1
for the intercept and φ2 for the slope, can be obtained. If a data set with observations,
e.g data1 in the DLTmodel above is used, we can obtaine the posterior modal estimates
for the model parameters. In addition, the pseudo data can be expressed by using more
than 2 dose levels. On the other hand, at least two dose levels of pseudo information
are needed to obtain modal estimates of the intercept and the slope parameter. There-
fore, binDLE,DLEweights, DLEdose must be vectors of at least length 2 and with their
corresponding values speci�ed at the same position in the other two vectors.
Since the imaginary nature of the pseudo data, the value tl for the number of subjects

observed with DLT can be non-integer values. In principle, nl can also be non-integer
values.
Then we can look at the structure of this model:

> str(DLTmodel)

Formal class 'LogisticIndepBeta' [package "crmPack"] with 10 slots

..@ binDLE : num [1:2] 1.05 1.8

..@ DLEdose : num [1:2] 25 300

..@ DLEweights: num [1:2] 3 3

..@ phi1 : num -1.95

..@ phi2 : num 0.412

..@ Pcov : num [1:2, 1:2] 10.05 -2.077 -2.077 0.462

.. ..- attr(*, "dimnames")=List of 2

..$: chr [1:2] "(Intercept)" "log(x1)"

..$: chr [1:2] "(Intercept)" "log(x1)"

..@ dose :function (prob, phi1, phi2)

..@ prob :function (dose, phi1, phi2)

..@ data :Formal class 'Data' [package "crmPack"] with 9 slots

..@ x : num(0)

..@ y : int(0)

..@ doseGrid: num [1:12] 25 50 75 100 125 150 175 200 225 250 ...

..@ nGrid : int 12

..@ xLevel : int(0)

..@ placebo : logi FALSE

..@ ID : int(0)

..@ cohort : int(0)

..@ nObs : int 0

..@ datanames : chr [1:3] "nObs" "y" "x"

There are in total 10 slots and their names are given. Remember that they can be

7

accessed with the @ operator (similarly as for lists the $ operator), for example we can
extract the phi1 slot:

> DLTmodel@phi1

[1] -1.946152

This gives the updated modal estimate of the intercept parameter φ1. Please �nd out
other slots using the @ operator and looking at the help page for ModelPseudo, ModelTox
and LogisticIndepBeta classes.

5.2 Advanced model speci�cation

There are a few further, advanced ways to specify a model object in crmPack.
First, a minimal informative prior (Neuenschwander, Branson, and Gsponer, 2008) can

be computed using the MinimalInformative function. The construction is based on the
input of a minimal and a maximal dose, where certain ranges of DLT probabilities are
deemed unlikely. A logistic function is then �tted through the corresponding points on
the dose-toxicity plane in order to derive Beta distributions also for doses in-between.
Finally these Beta distributions are approximated by a common LogisticNormal (or
LogisticLogNormal) model. So the minimal informative construction avoids explicit
speci�cation of the prior parameters of the logistic regression model.
In our example, we could construct it as follows, assuming a minimal dose of 0.1 mg

and a maximum dose of 100 mg:

> coarseGrid <- c(0.1, 10, 30, 60, 100)

> minInfModel <- MinimalInformative(dosegrid = coarseGrid,

refDose=50,

threshmin=0.2,

threshmax=0.3,

control=

list(threshold.stop=0.03,

maxit=200,

max.time=0.01), # take this out for real application

seed=432)

We use a few grid points between the minimum and the maximum to guide the approx-
imation routine, which is based on a stochastic optimization method (the control argu-
ment is for this optimization routine, please see the help page for Quantiles2LogisticNormal
for details). Therefore we need to set a random number generator seed beforehand to be
able to reproduce the results in the future. Please note that currently the reproducibil-
ity is under testing� it is currently advised to save the approximation result in order to
certainly be able to use the same model later on again. The threshmin and threshmax

values specify the probability thresholds above and below, respectively, it is very unlikely

8

(only 5% probability) to have the true probability of DLT at the minimum and maximum
dose, respectively.
The result minInfModel is a list, and we can use its contents to illustrate the creation

of the prior:

> matplot(x=coarseGrid,

y=minInfModel$required,

type="b", pch=19, col="blue", lty=1,

xlab="dose",

ylab="prior probability of DLT")

> matlines(x=coarseGrid,

y=minInfModel$quantiles,

type="b", pch=19, col="red", lty=1)

> legend("right",

legend=c("quantiles", "approximation"),

col=c("blue", "red"),

lty=1,

bty="n")

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dose

pr
io

r
pr

ob
ab

ili
ty

 o
f D

LT

quantiles
approximation

In this plot we see in blue the quantiles (2.5%, 50%, and 97.5%) of the Beta distribu-
tions that we approximate with the red quantiles of the logistic normal model. We see
that the distance is still quite large, and the maximum distance between any red and
blue point is:

> minInfModel$distance

9

[1] 0.7527175

Therefore usually we would let the computations take longer (by removing the control
option from the MinimalInformative call) to obtain a better approximation. The �nal
approximating model, which has produced the red points, is contained in the model list
element:

> str(minInfModel$model)

Formal class 'LogisticNormal' [package "crmPack"] with 12 slots

..@ mean : Named num [1:2] 2.95 9.93

.. ..- attr(*, "names")= chr [1:2] "meanAlpha.(Intercept)" "meanBeta.I(log(dosegrid/refDose))"

..@ cov : num [1:2, 1:2] 12.94 -4.13 -4.13 3.93

..@ prec : num [1:2, 1:2] 0.116 0.123 0.123 0.384

..@ refDose : num 50

..@ dose :function (prob, alpha0, alpha1)

..@ prob :function (dose, alpha0, alpha1)

..@ datamodel :function ()

..@ priormodel:function ()

..@ modelspecs:function ()

..@ init :function ()

..@ sample : chr [1:2] "alpha0" "alpha1"

..@ datanames : chr [1:3] "nObs" "y" "x"

Here we see in the slots mean, cov the parameters that have been determined. At
this point a slight warning: you cannot directly change these parameters in the slots
of the existing model object, because the parameters have also been saved invisibly in
other places in the model object. Therefore, always use the class initialization function
to create a new model object, if new parameters are required. But if we want to further
use the approximation model, we can save it under a shorter name, e.g.:

> myModel <- minInfModel$model

6 Obtaining the posterior

As said before, models inheriting from the GeneralModel class rely on MCMC sampling
for obtaining the posterior distribution of the model parameters, given the data. Most
of the models, except the EffFlexi class model (please refer to 11.2 for details), inher-
iting from the ModelPseudo class do not necessarily require MCMC sampling to obtain
posterior estimates. When no MCMC sampling is involved, the prior or posterior modal
estimates of model estimates are used. But we can still obtain the full posterior distri-
bution of the model parameters via MCMC for any models speci�ed under ModelPseudo
class. The MCMC sampling can be controlled with an object of class McmcOptions,
created for example as follows:

10

> options <- McmcOptions(burnin=10, # use larger burnin and samples for real application

step=2,

samples=200)

Now the object options speci�es that you would like to have 200 parameter samples
obtained from a Markov chain that starts with a �burn-in� phase of 10 iterations that are
discarded, and then save a sample every 2 iterations. Note that these numbers are too low
for actual production use and are only used for illustrating purposes here; normally you
would specify at least the default parameters of the initialization function McmcOptions:
10 000 burn-in iterations and 10 000 samples saved every 2nd iteration. You can look
these up in help browser under the link �McmcOptions�.
After having set up the options, you can proceed to MCMC sampling by calling the

mcmc function:

> set.seed(94)

> samples <- mcmc(data, model, options)

The mcmc function takes the data object, the model and the MCMC options. By
default, JAGS is used for obtaining the samples. Use the option verbose=TRUE to show
a progress bar and detailed JAGS messages.
Finally, it is good practice to check graphically that the Markov chain has really

converged to the posterior distribution. To this end, crmPack provides an interface to
the convenient R-package ggmcmc. With the function get you can extract the individual
parameters from the object of class Samples.
For example, we extract the α0 samples: (please have a look at the help page for the

LogisticLogNormal model class for the interpretation of the parameters)

> ## look at the structure of the samples object:

> str(samples)

Formal class 'Samples' [package "crmPack"] with 2 slots

..@ data :List of 2

.. ..$ alpha0: num [1:200] 0.784 1.108 1.108 1.108 0.129 ...

.. ..$ alpha1: num [1:200] 1.866 0.963 0.963 0.963 0.86 ...

..@ options:Formal class 'McmcOptions' [package "crmPack"] with 3 slots

..@ iterations: int 410

..@ burnin : int 10

..@ step : int 2

> ## now extract the alpha0 samples (intercept of the regression model)

> alpha0samples <- get(samples, "alpha0")

alpha0samples now contains the α0 samples in a format understood by ggmcmc and
we can produce plots with it, e.g. a trace plot and an autocorrelation plot:

11

> library(ggmcmc)

> print(ggs_traceplot(alpha0samples))

alpha0

10 110 210 310 410

−1

0

1

Iteration

va
lu

e

> print(ggs_autocorrelation(alpha0samples))

12

alpha0

0 10 20 30 40 50

−1.0

−0.5

0.0

0.5

1.0

Lag

A
ut

oc
or

re
la

tio
n

So here we see that we have some autocorrelation in the samples, and might consider
using a higher thinning parameter in order to decrease it.
You can �nd other useful plotting functions in the package information:

> help(package="ggmcmc", help_type="html")

Similarly, using models from ModelPseudo class, we can also obtain the prior and
posterior samples of the model parameters via MCMC.
For example, using the DLTmodel, data1, the empty data set and options speci�ed in

earlier examples.

> DLTsamples <- mcmc(data=data1,model=DLTmodel,options=options)

The prior samples of the model parameters are now saved in the variable DLTsamples.

> data3 <-Data(x=c(25,50,50,75,100,100,225,300),

y=c(0,0,0,0,1,1,1,1),

doseGrid=seq(from=25,to=300,by=25))

> DLTpostsamples <- mcmc(data=data3,model=DLTmodel,options=options)

Similarly, DLTpostsamples now contains the posterior samples of the model parame-
ters.
This mcmc function also takes the data object, model and the MCMC options. This is

not using JAGS but just R for the computations.
Under this DLTmodel, we will obtain samples of φ1 and φ2. Using what has been

described earlier in this section , we can also look at the structure using function str,

13

extracting model parameters samples with get and produce plots with ggs_traceplot

and ggs_autocorrelation for each of the model parameters.
When no MCMC sampling is involved, the posterior modal estimates of the model

parameters can be obtained for models (except the EffFlexi class object) inheriting
from the ModelPseudo class object. First you need to put together all currently avail-
able observations in form of a Data object (when only DLT responses are modelled) or
�extttDataDual object (when both DLT and e�cacy responses are modelled) class object.
Then using the update function to update your model, the posterior modal estimates of
the model parameters will be display in the output of the model.
For example, we have some new observations speci�ed in the data set data3 and update

the DLT model:

> newDLTmodel <- update(object=DLTmodel,data=data3)

> newDLTmodel@phi1

[1] -5.070681

> newDLTmodel@phi2

[1] 1.125107

In the example, the update function is used to obtain the posterior modal estimates
of the model parameters, φ1 and φ2, which can then be extracted using the @ operator
on the updated result newDLTmodel.

7 Plotting the model �t

After having obtained the parameter samples, we can plot the model �t, by supplying
the samples, model and data to the generic plot function:

> print(plot(samples, model, data))

14

0

25

50

75

100

0 20 40 60 80
Dose level

P
ro

ba
bi

lit
y

of
 D

LT
 [%

]

Type

Estimate

95% Credible Interval

This plot shows the posterior mean curve and 95% equi-tailed credible intervals at
each point of the dose grid from the data object.
Note that you can also produce a plot of the prior mean curve and credible intervals,

i.e. from the model without any data. This works in principle the same way as with
data, just that we use an empty data object:

> ## provide only the dose grid:

> emptydata <- Data(doseGrid=data@doseGrid)

> ## obtain prior samples with this Data object

> priorsamples <- mcmc(emptydata, model, options)

> ## then produce the plot

> print(plot(priorsamples, model, emptydata))

15

0

25

50

75

100

0 20 40 60 80
Dose level

P
ro

ba
bi

lit
y

of
 D

LT
 [%

]

Type

Estimate

95% Credible Interval

This plot function can also apply to the DLTmodel when samples of the parameters
have been generated:

> print(plot(DLTsamples,DLTmodel,data1))

16

0

25

50

75

100

100 200 300
Dose level

P
ro

ba
bi

lit
y

of
 D

LT
 [%

]

Type

Estimate

95% Credible Interval

In addition, we can also plot the �tted dose-response curve using the prior or the
posterior modal estimates of the model parameters when no MCMC sampling is used.
For example, we have the DLTmodel speci�ed earlier under the ModelTox class with the
data set data1 we speci�ed earlier:

> print(plot(data1,DLTmodel))

17

0.00

0.25

0.50

0.75

1.00

100 200 300
Dose level

P
ro

ba
bi

lit
y

of
 D

LE

Type

Estimated DLE

Since no samples are involved, only the curve using the prior or posterior modal esti-
mates of the parameters are produced, without 95% credibility intervals.

8 Escalation Rules

For the dose escalation, there are four kinds of rules:

1. Increments: For specifying maximum allowable increments between doses

2. NextBest: How to derive the next best dose

3. CohortSize: For specifying the cohort size

4. Stopping: Stopping rules for �nishing the dose escalation

We have listed here the classes of these rules, and there are multiple subclasses for each of
them, which you can �nd as links in the help pages Increments-class, NextBest-class,
CohortSize-class and Stopping-class.

8.1 Increments rules

Figure 3 shows the structure of the Increments classes:
The Increments class is the basis for all maximum increments rule classes within this

package. There are three subclasses, the IncrementsRelative, the IncrementsRelativeParts
and the IncrementsRelativeDLTs classes. Let us start with looking in detail at the incre-
ments rules. Currently two speci�c rules are implemented: Maximum relative increments

18

Increments

IncrementsRelative IncrementsRelativeDLT

IncrementsRelativeParts

Figure 3: Increments classes structure

based on the current dose (IncrementsRelative and IncrementsRelativeParts, which
only works with DataParts objects), and maximum relative increments based on the
current cumulative number of DLTs that have happened (IncrementsRelativeDLT).
For example, in order to specify a maximum increase of 100% for doses up to 20 mg,

and a maximum of 33% for doses above 20 mg, we can setup the following increments
rule:

> myIncrements <- IncrementsRelative(intervals=c(0, 20),

increments=c(1, 0.33))

Here the intervals slot speci�es the left bounds of the intervals, in which the maxi-
mum relative increments (note: decimal values here, no percentages!) are valid.
The increments rule is used by the maxDose function to obtain the maximum allowable

dose given the current data:

> nextMaxDose <- maxDose(myIncrements,

data=data)

> nextMaxDose

[1] 20

So in this case, the next dose could not be larger than 20 mg.
In the following example the dose escalation will be restricted to a 3-fold (= 200%)

increase:

> myIncrements1 <- IncrementsRelative(intervals=c(25),

increments=c(2))

From all doses (since the dose grid starts at 25 mg) there is a maximum increase of 200%
here.
The IncrementsRelativeDLT class works similarly, taking the number of DLTs in the

whole trial so far as the basis for the maximum increments instead of the last dose.

19

NextBest

NextBestMTD

NextBestNCRM

NextBestThreePlusThree

NextBestDualEndpoint NextBestTD

NextBestTDSamples

NextBestMaxGain

NextBestMaxGainSamples

Figure 4: Escalation classes structure

8.2 Rules for next best dose recommendation

Figure 4 show the structure of the next best dose recommendation rules currently imple-
mented in crmPack.
All classes of escalation rules are contained in the NextBest class. There are two main

types of escalation rules: either only the binary DLT responses are incorporated into the
escalation process, or a binary DLT and a continuous e�cacy/biomarker response are
jointly incorporated into the escalation process.
There are two implemented rules for toxicity endpoint CRMs inheriting from the

GeneralModel class: NextBestMTD that uses the posterior distribution of the MTD es-
timate (given a target toxicity probability de�ning the MTD), and NextBestNCRM that
implements the N-CRM, using posterior probabilities of target-dosing and overdosing at
the dose grid points to recommend a next best dose.
For example, in order to use the N-CRM with a target toxicity interval from 20% to

35%, and a maximum overdosing probability of 25%, we specify:

> myNextBest <- NextBestNCRM(target=c(0.2, 0.35),

overdose=c(0.35, 1),

maxOverdoseProb=0.25)

Alternatively, we could use an MTD driven recommendation rule. For example, with
a target toxicity rate of 33%, and recommending the 25% posterior quantile of the MTD,
we specify

> mtdNextBest <- NextBestMTD(target=0.33,

derive=

function(mtdSamples){

20

quantile(mtdSamples, probs=0.25)

})

Note that the NextBestMTD class is quite �exible, because you can specify a function
derive that derives the next best dose from the posterior MTD samples.
There are also two further next best dose recommendation rules when the model is

inheriting from the ModelTox class. One rule is speci�ed when no samples for the model
parameters are involved and the other one is when samples of the model parameters are
generated and are incorporated into the dose-escalation procedure.
The details about these rules are as follows. First, two probabilities of the occurrence

of a DLT have to be �xed. The �rst one is called targetDuringTrial which is the
target probability of the occurrence of a DLT to be used during the trial. The second
probability is called targetEndOfTrial is the target probability of the occurrence of a
DLT to be used at the end of a trial. The above two targets always have to be speci�ed.
For cases when samples are involved, an additional argument has to be used, which is a
function to advise what we should recommend using the samples that we have. This will
be elaborated in details in the example below.

> TDNextBest <- NextBestTD(targetDuringTrial=0.35,

targetEndOfTrial=0.3)

In this example, we �xed the target probability of the occurrence of a DLT to be
used during the trial be 0.35. This means we will allow subjects to dose levels with
probability of DLT closest and less than or equal 0.35 during the trial. At the end of
the trial, we will therefore recommend a dose level which is closest and with probability
of DLT less than or equal to 0.3. This NextBestTD rule class can be only used when no
samples are involved in the escalation procedure. Next we will show an example of the
NextBestTDsamples rule class when samples are involved in the escalation process.

> TDsamplesNextBest <- NextBestTDsamples(targetDuringTrial=0.35,

targetEndOfTrial=0.3,

derive=function(TDsamples){

quantile(TDsamples,probs=0.3)})

>

The slot for targetDuringTrial and targetEndOfTrial are speci�ed in the same
way as in the last example given the value of 0.35 and 0.3, respectively. The derive

slot should always be speci�ed with a function. In this example, using the function
speci�ed in the derive slot says that we will recommend the 30% posterior quantiles of
the samples to be the estimates for the doses corresponding to the targetDuringTrial

and targetEndOfTrial doses.
During the study, in order to derive the next best dose, we supply the generic nextBest

function with the rule, the maximum dose, the posterior samples, the model and the data:

21

> doseRecommendation <- nextBest(myNextBest,

doselimit=nextMaxDose,

samples=samples, model=model, data=data)

The result is a list with two elements: value contains the numeric value of the recom-
mended next best dose, and plot contains a plot that illustrates how the next best dose
was computed. In this case we used the N-CRM rule, therefore the plot gives the target-
dosing and overdosing probabilities together with the safety bar of 25%, the maximum
dose and the �nal recommendation (the red triangle):

> doseRecommendation$value

[1] 18

> print(doseRecommendation$plot)

0

25

50

75

100

0 20 40 60 80
Dose

Ta
rg

et
 p

ro
ba

bi
lit

y
[%

]

0

25

50

75

100

0 20 40 60 80
Dose

O
ve

rd
os

e
pr

ob
ab

ili
ty

 [%
]

Similarly, we can use the the generic nextBest function for theNextBestTD and NextBestTDsamples
rules. In the example below we will use the data set data3 with DLT observations. We
can compute the next best dose to be given to the next cohort using the posterior modal
estimates of the DLT model (i.e., no MCMC sampling involved here):

> doseRecDLT <- nextBest(TDNextBest,doselimit=300,model=newDLTmodel,data=data3)

A list of numerical values and a plot showing how the next best dose was computed
will be given. This list of results will provide the numerical values for the next dose level,

22

nextdose; the target probability of DLT used during the trial, targetDuringTrial; the
estimated dose level for which its probability of DLT equals the target probability used
during the trial, TDtargetDuringTrial; the target probability of DLT used at the end of a
trial, targetEndOfTrial; the estimated dose level for which its probability of DLT equals
the target probability of DLT used at the end of a trial. TDtargetEndOfTrial; and the
dose level at dose grid closest and less than the TDtargetEndOfTrial, TDtargetEndOfTrialdoseGrid.
We can use the $ operator to obtain these values and the plot from the list. For example,

> doseRecDLT$nextdose

[1] 50

> doseRecDLT$targetDuringTrial

[1] 0.35

> doseRecDLT$TDtargetDuringTrial

[1] 52.28128

> print(doseRecDLT$plot)

TD 35 Estimate
TD 30 Estimate

MaxNext

0.00

0.25

0.50

0.75

1.00

0 100 200 300
Dose Levels

P
ro

ba
bi

lit
y

of
 D

LE

We can see that the next dose suggested to be given to the next cohort of subjects
is 50 mg. The target probability of DLT during the trial is 0.35 and the TD35 (the
tolerated dose with probability of DLT equal to 0.35) is estimated to be 52.28 mg. As

23

we are using 12 dose levels or dose grids from 25 mg to 300 mg with increments of 25
mg for this data set, data3, we can see that what is suggested for the next dose 50
mg is also the dose level closest below 52.28 mg, the estimated TDtargetDuringTrial.
Similarly, at the end of a trial we could also obtain all "End Of Trial" estimates by
using the $ operator. In addition, we also have a plot to show next dose allocation. The
red curve shows the estimated DLT curve obtained using the posterior modal estimates
of the model parameters. We also assumed the maximum allowable dose be 300 mg
which was speci�ed as the doselimit parameter of the nextBest function call and the
red vertical line denoted with "Max" shows the maximum dose level (at x-axis) that is
allowed in this case. The vertical purple line denoted with "Next" marks the dose level
to be allocated to the next cohort of subjects. In this example, the target probability
of DLT used during trial and at the end of a trial were 0.35 and 0.3, respectively. The
circle and the square on the DLT curve show where the probability of DLT is estimated
to be equal to 0.3 and 0.35, respectively. Hence, the value of the estimated TD30 and
TD35 can be checked at the x-axis vertically below these symbols.
When MCMC sampling is involved, we will use the samples of model parameters to

choose the next best dose. For example, in the following code chunk we use the data set,
data3, with some DLT observations and the posterior samples of the model parameters,
DLTpostsamples to compute the next best dose:

> doseRecDLTSamples <- nextBest(TDsamplesNextBest,doselimit=300,

samples=DLTpostsamples,model=newDLTmodel,

data=data3)

The same list of results will be produced as in the example before: The values of the
nextdose, targetDuringTrial, TDtargetDuringTrial, targetEndOfTrial, TDtargetEndOfTrial
and TDtargetEndOfTrialdoseGrid can be obtained using the $ operator. The only dif-
ference is that the plot in this example will look slightly di�erent than in the previous
example:

> print(doseRecDLTSamples$plot)

24

CohortSize

CohortSizeRange

CohortSizeDLT

CohortSizeConst CohortSizeParts

CohortSizeMax

CohortSizeMin

Figure 5: CohortSize classes structure

TD 35 Estimate

TD 30 Estimate

Max

Next

0.000

0.005

0.010

0.015

100 200 300
TD

P
os

te
rio

r
de

ns
ity

In the plot, vertical lines are given to show the value for the next dose, the TD30
estimate, the TD35 estimate and the maximum allowable dose level. Since samples of
model parameters were utilized, the density curves of the TD30 (pink) and the TD35
(grey) are plotted.

8.3 Cohort size rules

Figure 5 shows the inheritance structure of the classes inheriting from CohortSize, which
are used for implementing the cohort size rules of the dose escalation designs:
Similarly to the increments rules, you can de�ne intervals in the dose space and/or the

DLT space to de�ne the size of the cohorts. For example, let's assume we want to have
one patient only in the cohorts until we reach 30 mg or the �rst DLT is encountered, and

25

then proceed with three patients per cohort.
We start by creating the two separate rules, �rst for the dose range:

> mySize1 <- CohortSizeRange(intervals=c(0, 30),

cohortSize=c(1, 3))

Then for the DLT range:

> mySize2 <- CohortSizeDLT(DLTintervals=c(0, 1),

cohortSize=c(1, 3))

Finally we combine the two rules by taking the maximum number of patients of both
rules:

> mySize <- maxSize(mySize1, mySize2)

The CohortSize rule is used by the size function, together with the next dose and
the current data, in order to determine the size of the next cohort:

> size(mySize,

dose=doseRecommendation$value,

data=data)

[1] 3

Here, because we have one DLT already, we would go for 3 patients for the next cohort.
Moreover, if you would like to have a constant cohort size, you can use the following

CohortSizeConst class, which we will use (with three patients) for simplicity for the
remainder of this vignette:

> mySize <- CohortSizeConst(size=3)

8.4 Stopping rules

All of the stopping rules classes inherit directly from the Stopping class. There are in
total 11 stopping rules, listed as follows:

� StoppingCohortNearDose

� StoppingPatientsNearDose

� StoppingMinCohorts

� StoppingMinPatients

� StoppingTargetProb

� StoppingMTDdistribution

26

� StoppingTargetBiomarker

� StoppingTDCIRatio

� StoppingGstarCIRatio

From the names of these stopping rules, we can have an idea of what criteria have been
used for stopping decisions and we will explain brie�y here what are these criteria. For
further details please refer to examples presented later in this vignette or examples given
in the help pages. You can �nd a link to all implemented stopping rule parts in the help
page Stopping-class.
For example, StoppingCohortNearDose class objects can be used to stop the dose

escalation based on the numbers of cohorts treated near to the next best dose (where
the required proximity is given as the percentage of relative deviation from the next best
dose). Similarly, for StoppingPatientsNearDose, stopping is based on the number of pa-
tients treated near the next best dose. StoppingMinCohorts and StoppingMinPatients

rules can be used to stop the dose escalation if a minimum overall number of patients
or cohorts have been enrolled. We have also other stopping rules such that a trial
will be stopped either based on the MTD distribution (StoppingMTDdistribution), or
reached a pre-speci�ed probability of the next dose being in the target toxicity interval
(StoppingTargetProb) or or target biomarker interval (StoppingTargetBiomarker) or
when the current estimate of the quantity of interest is 'accurate' enough (StoppingTDCIRatio
and StoppingGstarCIRatio)
Stopping rules are often quite complex, because they are built from "and/or" com-

binations of multiple parts. Therefore the crmPack implementation mirrors this, and
multiple atomic stopping rules can be combined easily. For example, let's assume we
would like to stop the trial if there are at least 3 cohorts and at least 50% probability in
the target toxicity interval (20%, 35%), or the maximum sample size of 20 patients has
been reached.
Then we start by creating the three pieces the rule is composed of:

> myStopping1 <- StoppingMinCohorts(nCohorts=3)

> myStopping2 <- StoppingTargetProb(target=c(0.2, 0.35),

prob=0.5)

> myStopping3 <- StoppingMinPatients(nPatients=20)

Finally we combine these with the �and� operator & and the �or� operator |:

> myStopping <- (myStopping1 & myStopping2) | myStopping3

We can also stop the trial when the current estimate of the quantity of interest, such
as the TD30 given in earlier examples, is 'accurate' enough. The accuracy of the current
estimate of TD30 is quanti�ed by the width of the associated 95% credibility interval.
The wider the interval, the less accurate the estimate is. In particular, the ratio of the
upper to the lower limit of this 95% credibility interval is used. The smaller the ratio,
the more accurate is the estimate.

27

For example, we will stop our trial if we obtain a ratio of less than 5 for the 95%
credibility interval of the TD30 estimate in this case, deciding that we have obtained an
estimate which is 'accurate' enough. The StoppingTDCIRatio function can be used in
both cases when no DLT samples or DLT samples are involved:

> myStopping4 <- StoppingTDCIRatio(targetRatio=5,

targetEndOfTrial=0.3)

>

During the dose escalation study, any (atomic or combined) stopping rule can be used
by the function stopTrial to determine if the rule has already been ful�lled. For example
in our case:

> stopTrial(stopping=myStopping, dose=doseRecommendation$value,

samples=samples, model=model, data=data)

[1] FALSE

attr(,"message")

attr(,"message")[[1]]

attr(,"message")[[1]][[1]]

[1] "Number of cohorts is 6 and thus reached the prespecified minimum number 3"

attr(,"message")[[1]][[2]]

[1] "Probability for target toxicity is 47 % for dose 18 and thus below the required 50 %"

attr(,"message")[[2]]

[1] "Number of patients is 8 and thus below the prespecified minimum number 20"

We receive here FALSE, which means that the stopping rule criteria have not been met.
The attribute message contains the textual results of the atomic parts of the stopping
rule. Here we can read that the probability for target toxicity was just 30% for the
recommended dose 20 mg and therefore too low, and also the maximum sample size has
not been reached, therefore the trial shall continue.
In the same way the stopping rule myStopping4 (no samples and with samples) can

be evaluated:

> stopTrial(stopping= myStopping4, dose=doseRecDLTSamples$nextdose,

samples=DLTpostsamples,model=newDLTmodel,data=data3)

[1] FALSE

attr(,"messgae")

[1] "95% CI is (11.1712 , 106.2189), Ratio = 9.5083 is greater than targetRatio = 5"

> stopTrial(stopping= myStopping4, dose=doseRecDLT$nextdose,

model=newDLTmodel,data=data3)

28

RuleDesign

Design

DualDesign

TDDesign

DualResponsesDesign

TDsamplesDesign

DualResponsesSamplesDesign

Figure 6: Design classes structure

[1] FALSE

attr(,"messgae")

[1] "95% CI is (11.0662 , 164.618), Ratio = 14.8758 is greater than targetRatio = 5"

Note that at the moment the "and" operator & and the �or� operator | cannot be used
together with StoppingTDCIRatio class objects. This is still under development.

9 Simulations

In order to run simulations, we �rst have to build a speci�c design, that comprises a
model, the escalation rules, starting data, a cohort size and a starting dose.
The structure of the design classes in this package is shown in �gure 6.
It might seem strange at �rst sight that we have to supply starting data to the design,

but we will show below that this makes sense. First, we use our emptydata object that
only contains the dose grid, and a cohorts of 3 patients, starting from 0.1 mg:

> design <- Design(model=model,

nextBest=myNextBest,

stopping=myStopping,

increments=myIncrements,

cohortSize=mySize,

data=emptydata,

startingDose=3)

Another example will be given when the TDDesign class is used. The empty data set,
data1 will be used, and the starting dose will be 25 mg. The code below will be a design
de�ned when no MCMC sampling is involved. The nextBest slot under this TDDesign
class function has to be de�ned with the TDNextBest class object to ensure we will pick
the next best dose using rules as de�ned when no MCMC sampling is involved. In
addition, we de�ne here with myStopping4 that the trial will only stop when the ratio of

29

the 95% credibility interval limits of the current estimate of TD30 (TDtargetEndOfTrial)
is less than or equal to 5. In addition, we also use myIncrements1, mySize and data1

de�ned in earlier examples for the increments, cohortSize and data slots in de�ning
the TDDesign object:

> DLTdesign <-TDDesign(model=DLTmodel,

nextBest=TDNextBest,

stopping=myStopping4,

increments=myIncrements1,

cohortSize=mySize,

data=data1,

startingDose=25)

When MCMC samples are involved, we also have to specify a design to ensure our pack-
age will run the simulations using the MCMC samples of the model parameters for mod-
els speci�ed under the ModelPseudo class object. In the example, the TDsamplesDesign
class object has to be used with the TDsamplesNextBest class object in the nextBest

slot to ensure MCMC sampling is involved for this design. We also apply the stopping
rule myStopping4 or myStopping3 such that the trial will stop either when the ratio of
the 95% credibility interval limits of the current estimate of TD30 (TDtargetEndOfTrial)
is less than or equal to 5 (myStopping4) or when a maximum of 30 patients has been
enrolled in the trial (myStopping3):

> DLTsamplesDesign <- TDsamplesDesign(model=DLTmodel,

nextBest=TDsamplesNextBest,

stopping=(myStopping4|myStopping3),

increments = myIncrements1,

cohortSize=mySize,

data=data1,

startingDose=25)

9.1 Examining single trial behavior

Before looking at the �many trials� operating characteristics, it is important to look at
the �single trial� operating characteristics of the dose escalation design. For this, crmPack
provides the function examine, which generates a dataframe showing the beginning of
several hypothetical trial courses under the design. Assuming no DLTs have been seen
until a certain dose, then the consequences of di�erent number of DLTs being observed
at this dose are shown. In the current example we have

> set.seed(23)

> examine(design)

dose DLTs nextDose stop increment

1 3 0 6.0 FALSE 100

30

2 3 1 6.0 FALSE 100

3 3 2 0.1 FALSE -97

4 3 3 NA TRUE NA

5 6 0 12.0 FALSE 100

6 6 1 12.0 FALSE 100

7 6 2 3.0 FALSE -50

8 6 3 1.5 FALSE -75

9 12 0 24.0 FALSE 100

10 12 1 24.0 FALSE 100

11 12 2 14.0 FALSE 17

12 12 3 6.0 FALSE -50

13 24 0 30.0 FALSE 25

14 24 1 30.0 FALSE 25

15 24 2 26.0 FALSE 8

16 24 3 18.0 FALSE -25

17 30 0 38.0 FALSE 27

18 30 1 38.0 FALSE 27

19 30 2 34.0 FALSE 13

20 30 3 26.0 FALSE -13

21 38 0 50.0 FALSE 32

22 38 1 50.0 FALSE 32

23 38 2 42.0 FALSE 11

24 38 3 36.0 FALSE -5

25 50 0 58.0 TRUE 16

26 50 1 54.0 TRUE 8

27 50 2 50.0 TRUE 0

28 50 3 44.0 TRUE -12

Note that it is important to set a seed, since minor changes might occur due to sampling
variations. However, the mcmcOptions parameter should be chosen in order to minimize
such variation. The default setting, used implicitly in the above call, should normally
be su�cient, but checking this (by running the function twice with di�erent seeds and
comparing the results) is important.
The resulting data frame gives the dose of the cohort until which no DLTs are observed,

the number of DLTs, the resulting next dose recommendation, whether the design would
stop, and the relative increment of the next dose compared to the current dose in per-
centage. Note that cohort size rules are taken into account by examine. NA entries mean
that the design would stop without a valid dose, since all doses are considered too toxic
after observing the number of DLTs at that dose.

9.2 Simulating from a true scenario

For the �many trials� operating characteristics, we have to de�ne a true scenario, from
which the data should arise. In this case, this only requires a function that computes the

31

probability of DLT given a dose. Here we use a speci�c case of the function contained in
the model space:

> ## define the true function

> myTruth <- function(dose)

{

model@prob(dose, alpha0=7, alpha1=8)

}

> ## plot it in the range of the dose grid

> curve(myTruth(x), from=0, to=80, ylim=c(0, 1))

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

m
yT

ru
th

(x
)

In a similar way, we can also simulate trials based on a true DLT scenario using the
TDDesign and the TDsamplesDesign. First, we will speci�ed the true DLT scenario such
that

> ## define the true function

> TrueDLT <- function(dose)

{

DLTmodel@prob(dose, phi1=-53.66584, phi2=10.50499)

}

> ## plot it in the range of the dose grid

> curve(TrueDLT, from=25, to=300, ylim=c(0, 1))

32

50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

Tr
ue

D
LT

(x
)

This true DLT scenario will be used for both the TDDesign and the TDsamplesDesign
Now we can proceed to the simulations. We only generate 10 trial outcomes here for

illustration, for the actual study this should be increased of course to at least 500:

> time <- system.time(mySims <- simulate(design,

args=NULL,

truth=myTruth,

nsim=10, # increase this in real application

seed=819,

mcmcOptions=options,

parallel=FALSE))[3]

> time

elapsed

6.256

We have wrapped the call to simulate in a system.time to obtain the required time
for the simulations (about 6 seconds in this case). The argument args could contain
additional arguments for the truth function, which we did not require here and therefore
let it at the default NULL. We specify the number of simulations with nsim and the random
number generator seed with seed. Note that we also pass again the MCMC options
object, because during the trial simulations the MCMC routines are used. Finally, the
argument parallel can be used to enable the use of all processors of the computer for
running the simulations in parallel. This can yield a meaningful speedup, especially for
larger number of simulations.

33

As (almost) always, the result of this call is again an object with a class, in this case
Simulations:

> class(mySims)

[1] "Simulations"

attr(,"package")

[1] "crmPack"

From the help page

> help("Simulations-class", help="html")

we see that this class is a subclass of the �GeneralSimulations� class. By looking at
the help pages for �Simulations� and the parent class �GeneralSimulations�, we can �nd
the description of all slots of mySims. In particular, the data slot contains the list of
produced Data objects of the simulated trials. Therefore, we can plot the course of e.g.
the third simulated trial as follows:

> print(plot(mySims@data[[3]]))

 1 2 3

 4 5 6

 7 8 9

 1
0

 1
1

 1
2

 1
3

 1
4

 1
5

0

3

6

12

24

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Patient

D
os

e
Le

ve
l

toxicity

No

Yes

The �nal dose for this trial was

> mySims@doses[3]

34

[1] 36

and the stopping reason was

> mySims@stopReasons[[3]]

[[1]]

[[1]][[1]]

[1] "Number of cohorts is 5 and thus reached the prespecified minimum number 3"

[[1]][[2]]

[1] "Probability for target toxicity is 51 % for dose 36 and thus above the required 50 %"

[[2]]

[1] "Number of patients is 15 and thus below the prespecified minimum number 20"

Furthermore, with this object, we can apply two methods. First, we can plot it, i.e.
we can apply the plot method:

> print(plot(mySims))

10

20

30

0 5 10 15 20
Patient

D
os

e
Le

ve
l

Statistic

Minimum

Lower Quartile

Median

Upper Quartile

Maximum

0

5

10

15

20

0 20 40 60 80
Dose level

A
ve

ra
ge

 p
ro

po
rt

io
n

[%
]

The resulting plot shows on the top panel a summary of the trial trajectories. On the
bottom, the proportions of doses tried, averaged over the simulated trials, are shown.

35

Note that you can select the plots by changing the type argument of plot, which by
default is type = c("trajectory", "dosesTried").
Second, we can summarize the simulation results. Here again we have to supply a true

dose-toxicity function. We take the same (myTruth) as above:

> summary(mySims,

truth=myTruth)

Summary of 10 simulations

Target toxicity interval was 20, 35 %

Target dose interval corresponding to this was 19.6, 21.6

Intervals are corresponding to 10 and 90 % quantiles

Number of patients overall : mean 18 (15, 21)

Number of patients treated above target tox interval : mean 6 (3, 9)

Proportions of DLTs in the trials : mean 21 % (13 %, 28 %)

Mean toxicity risks for the patients on active : mean 24 % (18 %, 29 %)

Doses selected as MTD : mean 24.4 (21.4, 28.8)

True toxicity at doses selected : mean 53 % (35 %, 83 %)

Proportion of trials selecting target MTD: 0 %

Dose most often selected as MTD: 22

Observed toxicity rate at dose most often selected: 17 %

Fitted toxicity rate at dose most often selected : mean 24 % (18 %, 29 %)

Note that sometimes the observed toxicity rate at the dose most often selected (here
20 mg) is not available, because it can happen that no patients were actually treated
that dose during the simulations. (Here it is available.) This illustrates that the MTD
can be selected based on the evidence from the data at other dose levels � which is an
advantage of model-based dose-escalation designs.
Now we can also produce a plot of the summary results, which gives a bit more detail

than the textual summary we have just seen:

> simSum <- summary(mySims,

truth=myTruth)

> print(plot(simSum))

36

0
10
20
30
40
50

15 18 21
Number of patients in total

P
er

ce
nt

0

10

20

30

40

16 22 24 26 28 36
MTD estimate

P
er

ce
nt

0

5

10

15

20

13.3 16.7 22.223.8 27.8 33.3
Proportion of DLTs [%]

P
er

ce
nt

0

20

40

60

3 6 9
Number of patients above target

P
er

ce
nt

0

25

50

75

100

0 20 40 60 80
Dose level

P
ro

ba
bi

lit
y

of
 D

LT
 [%

]

linetype

True toxicity

Average estimated toxicity

95% interval for estimated toxicity

The top left panel shows the distribution of the sample size across the simulated trials.
In this case the trials had between 15 and 21 patients. The top right panel shows
the distribution of the �nal MTD estimate / recommended dose across the simulated
trials. The middle left panel shows the distribution across the simulations of the DLT
proportions observed in the patients dosed. Here in most trials between 20 and 30% of
the patients had DLTs. The middle right panel shows the distribution across simulations
of the number of patients treated above the target toxicity window (here we used the
default from 20% to 35%). Finally, in the bottom panel we see a comparison of the true
dose-toxicity curve (black) with the estimated dose-toxicity curves, averaged (continuous
red line) across the trials and with 95% credible interval across the trials. Here we see
that the steep true dose-toxicity curve is not recovered by the model �t.
If we �nd that e.g. the top right plot with the distribution of the �nal selected doses

is too small and shows not the right x-axis window, we can only plot this one and add
x-axis customization on top: (see the ggplot2 documentation for more information on
customizing the plots)

> dosePlot <- plot(simSum, type="doseSelected") +

scale_x_continuous(breaks=10:30, limits=c(10, 30))

> print(dosePlot)

37

0

10

20

30

40

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
MTD estimate

P
er

ce
nt

Some further examples will be given for simulations using the TDDesign and the
TDsamplesDesign classes. For illustration purpose, we will generate only 10 trial out-
comes.

> DLTSim <- simulate(DLTdesign,

args=NULL,

truth=TrueDLT,

nsim=10,

seed=819,

parallel=FALSE)

The above is an example when no MCMC sampling is involved and we have another
example below for simulation when MCMC sampling is involved:

> DLTsampSim <- simulate(DLTsamplesDesign,

args=NULL,

truth=TrueDLT,

nsim=10,

seed=819,

mcmcOptions=options,

parallel=FALSE)

The meaning of these arguments are the same as those de�ned and explained above in
the simulate example for the Design class.

38

Similarly, the results of individual simulations can be obtained graphically using the
plot function. The dose level for recommendation that is the dose levels closest below
the �nal estimated TD30 (the �nal estimates of the dose level with probability of DLT
equals to the target end of trial) was

> DLTSim@doses[3]

[1] 100

> DLTsampSim@doses[3]

[1] 125

The overall results of the 10 trials for these two simulations can also be plotted as

> print(plot(DLTSim))

50

100

150

200

250

5 10 15
Patient

D
os

e
Le

ve
l

Statistic

Minimum

Lower Quartile

Median

Upper Quartile

Maximum

0

5

10

15

20

100 200 300
Dose level

A
ve

ra
ge

 p
ro

po
rt

io
n

[%
]

> print(plot(DLTsampSim))

39

50

100

150

200

0 5 10 15 20
Patient

D
os

e
Le

ve
l

Statistic

Minimum

Lower Quartile

Median

Upper Quartile

Maximum

0

10

20

30

40

100 200 300
Dose level

A
ve

ra
ge

 p
ro

po
rt

io
n

[%
]

which show the trial trajecto-
ries and the proportion of doses level tried.
These simulation results can also be summarized using the summary function given the

truth:

> summary(DLTSim,

truth=TrueDLT)

Summary of 10 simulations

Target probability of DLE p(DLE) used at the end of a trial was 30 %

The dose level corresponds to the target p(DLE) used at the end of a trial, TDEOT, was 152.6195

TDEOT at dose Grid was 150

Target p(DLE) used during a trial was 35 %

The dose level corresponds to the target p(DLE) used during a trial, TDDT, was 155.972

TDDT at dose Grid was 150

Number of patients overall : mean 16 (15, 18)

Number of patients treated above the target p(DLE) used at the end of a trial : mean 3 (3, 3)

Number of patients treated above the target p(DLE) used during a trial : mean 3 (3, 3)

Proportions of observed DLT in the trials : mean 21 % (20 %, 22 %)

Mean toxicity risks for the patients : mean 20 % (17 %, 21 %)

Doses selected as TDEOT : mean 100 (100, 100)

True toxicity at TDEOT : mean 1 % (1 %, 1 %)

Proportion of trials selecting the TDEOT: 0 %

Proportion of trials selecting the TDDT: 0 %

40

Dose most often selected as TDEOT: 100

Observed toxicity rate at dose most often selected: 6 %

Fitted probabilities of DLE at dose most often selected : mean 24 % (24 %, 25 %)

The summary table of the final TDEOT across all simulations

Min. 1st Qu. Median Mean 3rd Qu. Max.

117.3 120.1 123.8 122.0 123.8 123.8

The summary table of the final ratios of the TDEOT across all simulations

Min. 1st Qu. Median Mean 3rd Qu. Max.

4.054 4.157 4.447 4.330 4.447 4.447

The summary table of the final TDDT across all simulations

Min. 1st Qu. Median Mean 3rd Qu. Max.

137.5 140.7 144.4 142.5 144.4 144.4

The summary table of dose levels, the optimal dose

to recommend for subsequent study across all simulations

Min. 1st Qu. Median Mean 3rd Qu. Max.

117.3 120.1 123.8 122.0 123.8 123.8

The summary table of the final ratios of the optimal dose for stopping across

all simulations

Min. 1st Qu. Median Mean 3rd Qu. Max.

4.054 4.157 4.447 4.330 4.447 4.447

> summary(DLTsampSim,

truth=TrueDLT)

Summary of 10 simulations

Target probability of DLE p(DLE) used at the end of a trial was 30 %

The dose level corresponds to the target p(DLE) used at the end of a trial, TDEOT, was 152.6195

TDEOT at dose Grid was 150

Target p(DLE) used during a trial was 35 %

The dose level corresponds to the target p(DLE) used during a trial, TDDT, was 155.972

TDDT at dose Grid was 150

Number of patients overall : mean 17 (6, 21)

Number of patients treated above the target p(DLE) used at the end of a trial : mean 1 (0, 3)

Number of patients treated above the target p(DLE) used during a trial : mean 1 (0, 3)

Proportions of observed DLT in the trials : mean 3 % (0 %, 6 %)

Mean toxicity risks for the patients : mean 4 % (0 %, 14 %)

Doses selected as TDEOT : mean 75 (0, 152.5)

True toxicity at TDEOT : mean 10 % (0 %, 30 %)

Proportion of trials selecting the TDEOT: 10 %

Proportion of trials selecting the TDDT: 10 %

Dose most often selected as TDEOT: 0

Observed toxicity rate at dose most often selected: NaN %

Fitted probabilities of DLE at dose most often selected : mean NA % (NA %, NA %)

41

The summary table of the final TDEOT across all simulations

Min. 1st Qu. Median Mean 3rd Qu. Max.

4.464 26.978 78.052 86.599 143.886 179.188

The summary table of the final ratios of the TDEOT across all simulations

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.390e+02 2.020e+10 7.968e+14 8.444e+124 1.159e+19 8.444e+125

The summary table of the final TDDT across all simulations

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.454 16.884 104.248 107.795 194.779 225.144

The summary table of dose levels, the optimal dose

to recommend for subsequent study across all simulations

Min. 1st Qu. Median Mean 3rd Qu. Max.

4.464 26.978 78.052 86.599 143.886 179.188

The summary table of the final ratios of the optimal dose for stopping across

all simulations

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.390e+02 2.020e+10 7.968e+14 8.444e+124 1.159e+19 8.444e+125

Then we can also plot the summary of these two simulations using the plot function:

> DLTsimSum <- summary(DLTSim,

truth=TrueDLT)

> print(plot(DLTsimSum))

0

20

40

60

15 18
Number of patients in total

P
er

ce
nt

0

25

50

75

100

100
MTD estimate

P
er

ce
nt

0

20

40

60

20.0 22.2
Proportion of DLE [%]

P
er

ce
nt

0

25

50

75

100

3
Number of patients above target

P
er

ce
nt

0

25

50

75

100

100 200 300
Dose level

P
ro

ba
bi

lit
y

of
 D

LE
 [%

]

linetype

True toxicity

Average estimated toxicity

and

42

> DLTsimsampSum <- summary(DLTsampSim,

truth=TrueDLT)

> print(plot(DLTsimsampSum))

0

20

40

60

3 6 15 18 21
Number of patients in total

P
er

ce
nt

0

5

10

15

20

0 25 50 75 125 150 175
MTD estimate

P
er

ce
nt

0

20

40

60

0.0 4.8 14.3
Proportion of DLE [%]

P
er

ce
nt

0

20

40

60

80

0 3
Number of patients above target

P
er

ce
nt

0

25

50

75

100

100 200 300
Dose level

P
ro

ba
bi

lit
y

of
 D

LE
 [%

]

linetype

True toxicity

Average estimated toxicity

95% interval for estimated toxicity

9.3 Predicting the future course of the trial

By simulating parameters from their current posterior distribution instead of an assumed
true scenario, it is possible to generate trial simulations from the posterior predictive
distribution at any time point during the trial. This means that we can predict the
future course of the trial, given the current data. In our illustrating example, this would
work as follows.
The rationale of the simulate call is now that we specify as the truth argument the

prob function from our assumed model, which has additional arguments (in our case
alpha0 and alpha1) on top of the �rst argument dose:

> model@prob

function (dose, alpha0, alpha1)

{

StandLogDose <- log(dose/refDose)

return(plogis(alpha0 + alpha1 * StandLogDose))

}

<bytecode: 0x55850b4a3ee0>

<environment: 0x55850b4ab370>

43

For the simulations, these arguments are internally given by the values contained in
the data frame given to simulate as the args argument. In our case, we want to supply
the posterior samples of alpha0 and alpha1 in this data frame. We take only 10 out of
the posterior samples in order to reduce the runtime for this example:

> postSamples <- as.data.frame(samples@data)[(1:2)*5,]

> postSamples

alpha0 alpha1

5 0.1290193 0.8595308

10 0.6228584 0.5126094

Therefore, each simulated trial will come from a posterior sample of our estimated
model, given all data so far.
Furthermore we have to make a new Design object that contains the current data to

start from, and the current recommended dose as the starting dose:

> nowDesign <- Design(model=model,

nextBest=myNextBest,

stopping=myStopping,

increments=myIncrements,

cohortSize=mySize,

use the current data:

data=data,

and the recommended dose as the starting dose:

startingDose=doseRecommendation$value)

Finally we can execute the simulations:

> time <- system.time(futureSims <- simulate(

supply the new design here

nowDesign,

the truth is the assumed prob function

truth=model@prob,

further arguments are the

posterior samples

args=postSamples,

do exactly so many simulations as

we have samples

nsim=nrow(postSamples),

seed=918,

this remains the same:

mcmcOptions=options,

parallel=FALSE))[3]

> time

44

elapsed

0.78

And now, exactly in the same way as above for the operating characteristics simu-
lations, we can summarize the resulting predictive simulations, for example show the
predicted trajectories of doses:

> print(plot(futureSims))

0

10

20

30

5 10 15 20
Patient

D
os

e
Le

ve
l

Statistic

Minimum

Lower Quartile

Median

Upper Quartile

Maximum

0

5

10

15

20

25

0 20 40 60 80
Dose level

A
ve

ra
ge

 p
ro

po
rt

io
n

[%
]

In the summary, we do not need to look at the characteristics involving the true dose-
toxicity function, because in this case we are not intending to compare the performance
of our CRM relative to a truth:

> summary(futureSims,

truth=myTruth)

Summary of 2 simulations

Target toxicity interval was 20, 35 %

Target dose interval corresponding to this was 19.6, 21.6

Intervals are corresponding to 10 and 90 % quantiles

Number of patients overall : mean 18 (17, 20)

Number of patients treated above target tox interval : mean 3 (1, 5)

45

Proportions of DLTs in the trials : mean 26 % (15 %, 37 %)

Mean toxicity risks for the patients on active : mean 18 % (5 %, 31 %)

Doses selected as MTD : mean 19.8 (5.2, 34.3)

True toxicity at doses selected : mean 49 % (10 %, 88 %)

Proportion of trials selecting target MTD: 0 %

Dose most often selected as MTD: 1.5

Observed toxicity rate at dose most often selected: 0 %

Fitted toxicity rate at dose most often selected : mean 13 % (4 %, 22 %)

We see here e.g. that the estimated number of patients overall is 19, so 11 more than
the current 8 patients are expected to be needed before �nishing the trial.

10 Simulating 3+3 design outcomes

While crmPack focuses on model-based dose-escalation designs, it also includes the 3+3
design in order to allow for convenient comparisons. Note that actually no simulations
would be required for the 3+3 design, because all possible outcomes can be enumerated,
however we still rely here on simulations for consistency with the overall crmPack design.
The easiest way to setup a 3+3 design is the function ThreePlusThreeDesign:

> threeDesign <- ThreePlusThreeDesign(doseGrid=c(5, 10, 15, 25, 35, 50, 80))

> class(threeDesign)

[1] "RuleDesign"

attr(,"package")

[1] "crmPack"

We have used here a much coarser dose grid than for the model-based design before,
because the 3+3 design cannot jump over doses. The starting dose is automatically
chosen as the �rst dose from the grid. The outcome is a RuleDesign object, and you
have more setup options if you directly use the RuleDesign() initialization function.
We can then simulate trials, again assuming that the myTruth function gives the true
dose-toxicity relationship:

> threeSims <- simulate(threeDesign,

nsim=100,

seed=35,

truth=myTruth,

parallel=FALSE)

As before for the model-based design, we can summarize the simulations:

> threeSimsSum <- summary(threeSims,

truth=myTruth)

> threeSimsSum

46

Summary of 100 simulations

Target toxicity interval was 20, 35 %

Target dose interval corresponding to this was 19.6, 21.6

Intervals are corresponding to 10 and 90 % quantiles

Number of patients overall : mean 16 (15, 18)

Number of patients treated above target tox interval : mean 4 (3, 6)

Proportions of DLTs in the trials : mean 16 % (13 %, 20 %)

Mean toxicity risks for the patients on active : mean 16 % (14 %, 22 %)

Doses selected as MTD : mean 14.9 (15, 15)

True toxicity at doses selected : mean 3 % (3 %, 3 %)

Proportion of trials selecting target MTD: 0 %

Dose most often selected as MTD: 15

Observed toxicity rate at dose most often selected: 3 %

Here we see that 15 mg was the dose most often selected as MTD, and this is actually
too low when comparing with the narrow target dose interval going from 19.6 to 21.6
mg. This is an inherent problem of dose-escalation designs where the dose grid has to be
coarse: you might not know before starting the trial which is the range where you need
a more re�ned dose grid. In this case we obtain doses that are too low, as one can see
from the average true toxicity of 3 % at doses selected. Graphical summaries are again
obtained by calling �plot� on the summary object:

> print(plot(threeSimsSum))

47

0

20

40

60

12 15 18 21
Number of patients in total

P
er

ce
nt

0

25

50

75

100

10 15
MTD estimate

P
er

ce
nt

0

10

20

30

40

11.1 13.3 16.7 20.0 22.223.8 26.727.8
Proportion of DLTs [%]

P
er

ce
nt

0

20

40

60

0 3 6 9
Number of patients above target

P
er

ce
nt

11 Dual-endpoint dose escalation designs

In this section, we will look into dose-escalation procedures included in this package
where two end points are incorporated into the study. The �rst endpoint is the binary
DLT response that we discussed already in the last sections. The second endpoint is the
continuous biomarker/e�cacy response. In this package, we can either model these two
responses jointly (using a single model class, assuming correlation) or separately (using
two separate model classes, assuming no correlation). Now we will �rst describe how we
model the two responses jointly.

11.1 Dual-endpoint designs with a joint model

As a disclaimer, please note that the designs in this section are still under development,
and so far we have not yet been published. Therefore please consider them as experi-
mental.
In the help page �DualEndpoint-class� the general joint model structure is described.

Basically the idea is that a (single) biomarker variable is the second endpoint of the dose-
escalation design, with the aim to maximize the biomarker response while controlling
toxicity in a safe range. This is useful when it can not be assumed that just increasing
the dose will always lead to better e�cacy.
Let's look at the data structure. Here is an example:

> data <- DataDual(

48

x=

c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10,

20, 20, 20, 40, 40, 40, 50, 50, 50),

y=

c(0, 0, 0, 0, 0, 0, 1, 0,

0, 1, 1, 0, 0, 1, 0, 1, 1),

w=

c(0.31, 0.42, 0.59, 0.45, 0.6, 0.7, 0.55, 0.6,

0.52, 0.54, 0.56, 0.43, 0.41, 0.39, 0.34, 0.38, 0.21),

doseGrid=

c(0.1, 0.5, 1.5, 3, 6,

seq(from=10, to=80, by=2)))

The corresponding plot can again be obtained with:

> print(plot(data))

 1 2 3
 4

 5
 6 7 8

 9 1
0

 1
1

 1
2

 1
3

 1
4

 1
5

 1
6

 1
7

0.00.10.5
1.5
3.0

6.0

10.0

20.0

40.0

50.0

1 2 3 4 5 6 7 8 91011121314151617
Patient

D
os

e
Le

ve
l

toxicity

No

Yes

1
2

3
4

5
6

7
8

9
10

11

12
13

14

15
16

17

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50
Dose Level

B
io

m
ar

ke
r toxicity

No

Yes

Here we see that there seems to be a maximum biomarker response at around 10 mg
already. In order to model this data, we consider a dual-endpoint model with a �rst-order
random-walk (RW1) structure for the dose-biomarker relationship:

> model <- DualEndpointRW(mu=c(0, 1),

Sigma=matrix(c(1, 0, 0, 1), nrow=2),

sigma2betaW=

0.01,

49

sigma2W=

c(a=0.1, b=0.1),

rho=

c(a=1, b=1),

smooth="RW1")

We use a smoothing parameter σ2βW = 0.01, an inverse-gamma prior IG(0.1, 0.1) on

the biomarker variance σ2W and a uniform prior (or Beta(1, 1) prior) on the correlation
ρ between the latent DLT and the biomarker variable.
As the dual-endpoint models are more complex, it is advisable to use a su�ciently long

Markov chain for �tting them. Here we just use for illustration purposes a quite small
Markov chain � again, for the real application, this would need to be at least 100 times
longer!

> options <- McmcOptions(burnin=10,

step=2,

samples=50)

Then we can obtain the MCMC samples:

> samples <- mcmc(data, model, options)

And we check the convergence by picking a few of the �tted biomarker means and
plotting their traceplots:

> data@nGrid

[1] 41

> betaWpicks <- get(samples, "betaW", c(1, 5, 10, 25))

> ggs_traceplot(betaWpicks)

50

betaW[25]

betaW[10]

betaW[5]

betaW[1]

10 30 50 70 90 110

10 30 50 70 90 110

10 30 50 70 90 110

10 30 50 70 90 110

0.2

0.4

0.6

0.2

0.4

0.6

0.8

0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.0

0.2

0.4

0.6

Iteration

va
lu

e

Here all 4 βW,j (j = 1, 5, 10, 25) means, which are the biomarker means at the �rst,
5th, 10th and 25th gridpoint, respectively, seem to have converged, as the traceplots
show. (Remember that data@nGrid gives the number of gridpoints.) So we can plot the
model �t:

> print(plot(samples, model, data, extrapolate=FALSE))

51

0

25

50

75

100

0 20 40 60 80
Dose level

P
ro

ba
bi

lit
y

of
 D

LT
 [%

]

0.0

0.4

0.8

1.2

0 10 20 30 40 50
Dose level

B
io

m
ar

ke
r

le
ve

l

We specify extrapolate = FALSE to focus the biomarker plot in the right panel on
the observed dose range, so we don't want to extrapolate the biomarker �t to higher dose
levels. We can also look at the estimated biomarker precision 1/σ2W . For that we extract
the precision �precW� and then use another ggmcmc function to create the histogram:

> ggs_histogram(get(samples, "precW"))

52

precW

10 20 30 40 50

0

1

2

3

4

value

co
un

t

For the selection of the next best dose, a special class �NextBestDualEndpoint� has
been implemented. It tries to maximize the biomarker response, under an NCRM-type
safety constraint. If we want to have at least 90% of the maximum biomarker response,
and a 25% maximum overdose probability for the next dose, we specify:

> myNextBest <- NextBestDualEndpoint(target=c(0.9,1),

overdose=c(0.35, 1),

maxOverdoseProb=0.25)

In our example, and assuming a dose limit of 50 mg given by the maximum allowable
increments, the next dose can then be found as follows:

> nextDose <- nextBest(myNextBest,

doselimit=50,

samples=samples,

model=model,

data=data)

> nextDose$value

[1] 12

A corresponding plot can be produced by printing the �plot� element of the returned
list:

> print(nextDose$plot)

53

Here the bottom panel shows (as for the NCRM) the overdose probability, and we see
that doses above 6 mg are too toxic. In the top panel, we see the probability for each
dose to reach at least 90% of the maximum biomarker response in the dose grid � this
is here our target probability. While the numbers are low, we clearly see that there is a
local maximum at 10 mg of the target probability, con�rming what we have seen in the
previous data and model �t plots.
A corresponding stopping rule exists. When we have a certain probability to be above

a relative biomarker target, then the �StoppingTargetBiomarker� rule gives back TRUE

when queried if it has been ful�lled by the stopTrial function. For example, if we require
at least 50% probability to be above 90% biomarker response, we specify:

> myStopping6 <- StoppingTargetBiomarker(target=c(0.9,1),

prob=0.5)

In this case, the rule has not been ful�lled yet, as we see here:

> stopTrial(myStopping6, dose=nextDose$value,

samples, model, data)

[1] FALSE

attr(,"message")

[1] "Probability for target biomarker is 16 % for dose 12 and thus below the required 50 %"

Again, this dual-endpoint speci�c rule can be combined as required with any other
stopping rule. For example, we could combine it with a maximum sample size of 40 pa-
tients:

> myStopping <- myStopping6 | StoppingMinPatients(40)

If one or both of the stopping rules are ful�lled, then the trial is stopped.
Let's try to build a corresponding dual-endpoint design. We start with an empty data

set, and use the relative increments rule de�ned in a previous section and use a constant
cohort size of 3 patients:

> emptydata <- DataDual(doseGrid=data@doseGrid)

> design <- DualDesign(model=model,

data=emptydata,

nextBest=myNextBest,

stopping=myStopping,

increments=myIncrements,

cohortSize=CohortSizeConst(3),

startingDose=6)

In order to study operating characteristics, we need to determine true biomarker and
DLT probability functions. Here we are going to use a biomarker function from the beta

54

family. Note that there is a corresponding �DualEndpointBeta� model class, that allows
to have dual-endpoint designs with the beta biomarker response function. Have a look
at the corresponding help page for more information on that. But let's come back to our
scenario de�nition:

> betaMod <- function (dose, e0, eMax, delta1, delta2, scal)

{

maxDens <- (delta1^delta1) * (delta2^delta2)/((delta1 + delta2)^(delta1 + delta2))

dose <- dose/scal

e0 + eMax/maxDens * (dose^delta1) * (1 - dose)^delta2

}

> trueBiomarker <- function(dose)

{

betaMod(dose, e0=0.2, eMax=0.6, delta1=5, delta2=5 * 0.5 / 0.5, scal=100)

}

> trueTox <- function(dose)

{

pnorm((dose-60)/10)

}

We can draw the corresponding curves:

> par(mfrow=c(1, 2))

> curve(trueTox(x), from=0, to=80)

> curve(trueBiomarker(x), from=0, to=80)

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

tr
ue

To
x(

x)

0 20 40 60 80

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

x

tr
ue

B
io

m
ar

ke
r(

x)

55

So the biomarker response peaks at 50 mg, where the toxicity is still low. After deciding
for a true correlation of ρ = 0 and a true biomarker variance of σ2W = 0.01 (giving a high
signal-to-noise ratio), we can start simulating trials (starting each with 6 mg):

> mySims <- simulate(design,

trueTox=trueTox,

trueBiomarker=trueBiomarker,

sigma2W=0.01,

rho=0,

nsim=10,

parallel=FALSE,

seed=3,

startingDose=6,

mcmcOptions =

McmcOptions(burnin=1000,

step=1,

samples=3000))

Note that we are having a �small� MCMC option set here, in order to reduce simulation
time � for the real application, this should be �larger�.
Plotting the result gives not only an overview of the �nal dose recommendations and

trial trajectories, but also a summary of the biomarker variance and correlation estimates
in the simulations:

> print(plot(mySims))

56

0

2

4

6

0 10 20 30 40
Patient

D
os

e
Le

ve
l

Statistic

Minimum

Lower Quartile

Median

Upper Quartile

Maximum

0

25

50

75

0 20 40 60 80
Dose levelA

ve
ra

ge
 p

ro
po

rt
io

n
[%

]

0.014 0.016 0.018 0.020
Biomarker variance estimates

−0.2 0.0 0.2 0.4
Correlation estimates

Finally, a summary of the simulations can be obtained with the corresponding function:

> sumOut <- summary(mySims,

trueTox=trueTox,

trueBiomarker=trueBiomarker)

> sumOut

Summary of 10 simulations

Target toxicity interval was 20, 35 %

Target dose interval corresponding to this was 51.6, 56.1

Intervals are corresponding to 10 and 90 % quantiles

Number of patients overall : mean 42 (42, 42)

Number of patients treated above target tox interval : mean 0 (0, 0)

Proportions of DLTs in the trials : mean 0 % (0 %, 0 %)

Mean toxicity risks for the patients on active : mean 0 % (0 %, 0 %)

Doses selected as MTD : mean 0.1 (0.1, 0.1)

True toxicity at doses selected : mean 0 % (0 %, 0 %)

Proportion of trials selecting target MTD: 0 %

Dose most often selected as MTD: 0.1

Observed toxicity rate at dose most often selected: 0 %

Fitted toxicity rate at dose most often selected : mean 2 % (2 %, 2 %)

Fitted biomarker level at dose most often selected : mean 0.2 (0.2, 0.2)

57

We see here that all trials proceeded until the maximum sample size of 40 patients
(reaching 42 because of the cohort size 3). The doses selected are lower than the toxicity
target range, because here we were aiming for a biomarker target instead, and the true
biomarker response peaked at 50 mg.
The corresponding plot looks as follows:

> print(plot(sumOut))

0
25
50
75

100

42
Number of patients in total

P
er

ce
nt

0
25
50
75

100

0
MTD estimate

P
er

ce
nt

0
25
50
75

100

0
Proportion of DLTs [%]

P
er

ce
nt

0
25
50
75

100

0
Number of patients above target

P
er

ce
nt

0

25

50

75

100

0 20 40 60 80
Dose level

P
ro

ba
bi

lit
y

of
 D

LT
 [%

]

linetype

True toxicity

Average estimated toxicity

95% interval for estimated toxicity

0.2

0.4

0.6

0.8

0 20 40 60 80
Dose level

B
io

m
ar

ke
r

le
ve

l

linetype

True biomarker

Average estimated biomarker

95% interval for estimated biomarker

We see that the average biomarker �t is not too bad in the range up to 50 mg, but the
toxicity curve �t is bad � probably a result of the very low frequency of DLTs.
Again the warning here: the dual-endpoint designs are still experimental!

11.2 Dual-endpoint designs with separate models

In this subsection, we will look into the dose-escalation designs where we model the
binary DLT responses and the continuous biomarker/e�cacy responses separately. Here
we hence assume that there is no correlation between the binary DLT and continuous
e�cacy responses.
First, we have to de�ne the data sets for the dual responses using the DataDual function

just like in the example given in the last subsection.

> data2<-DataDual(doseGrid=seq(25,300,25))

> data4<-DataDual(x=c(25,50,50,75,100,100,225,300),

y=c(0,0,0,0,1,1,1,1),

58

w=c(0.31,0.42,0.59,0.45,0.6,0.7,0.6,0.52),

doseGrid=seq(25,300,25))

>

In this example, data2 is the empty data set where 12 dose levels, from 25 to 300 mg
with increments of 25 mg are used. The variable data4 contains the data set with both
the binary DLT and continuous e�cacy responses observations. The elements in the slot
x are the dose levels where 8 subjects are treated. The elements in slot y represent the
corresponding binary DLT responses observed for these 8 subjects and the elements in
slot w represent the continuous e�cacy responses obtained for the 8 subjects.
Similarly, we can also obtain a plot of the data sets using the plot function as described

in the last subsection.
As described, we will model the two responses separately. In order to do so, we will

only use models inheriting from the ModelPseudo class.
For the binary DLT responses, we can use any of the models inheriting from the

ModelTox class. In the example below we will use models inheriting from the LogisticIndepBeta
class which is the variable DLTmodel (or newDLTmodel with observations) given in previous
examples.
For the continuous e�cacy responses, we can use any models inheriting from the

ModelEff class. In the current version of the package, there are two model classes, the
Effloglog and the EffFlexi model, inheriting from the ModelEff class. Since ModelEff
is also inheriting from the ModelPseudo class, the prior for this e�cacy model also needs
to be speci�ed in the form of pseudo data. (Please refer to 2 for the structure of model
classes de�ned in this package.)
The following commands show how we set up the Effloglog model. This is an e�cacy

model to describe the relationship between the e�cacy responses to their corresponding
dose levels on a double logarithmic ("log-log") scale. This refers to a linear model with
three unknown parameters: the intercept θ1, the slope θ2 and the precision ν (inverse of
the variance) of the e�cacy responses. Similarly to other pseudo models, the data set
has to be speci�ed before setting up the model:

> Effmodel<-Effloglog(Eff=c(1.223,2.513),Effdose=c(25,300),nu=c(a=1,b=0.025),data=data2)

For the speci�cation of the prior pseudo data, two dose levels 25 and 300 mg are �xed
and speci�ed in the Effdose slot. After eliciting the prior expected e�cacy values at
these two dose levels (e.g. by asking for experts'), these are speci�ed in the Eff slot.
Here for example, 1.223 is the expected e�cacy value for subjects treated at dose 25
mg and 2.513 is the expected e�cacy value for subjects treated at 300 mg. The slot
nu represents the prior precision of the e�cacy responses. In this example, two positive
scalars for a and b are speci�ed suggesting the prior distribution of the precision is gamma
with shape parameter a = 1 and rate parameter b = 0.025. Note here, since a gamma
distribution is used as the prior distribution of ν, the posterior distribution will again
be a gamma distribution, because the gamma prior on the precision is conjugate to the
normal likelihood. If a �xed value of the precision is preferred, a single positive scalar

59

can also be speci�ed in nu slot. Finally the data slot is speci�ed either with an empty
data set or a data set with all currently available observations.
Similarly, we can also look at the structure of the E�model by applying the str func-

tion:

> str(Effmodel)

Formal class 'Effloglog' [package "crmPack"] with 16 slots

..@ Eff : num [1:2] 1.22 2.51

..@ Effdose : num [1:2] 25 300

..@ nu : Named num [1:2] 1 0.025

.. ..- attr(*, "names")= chr [1:2] "a" "b"

..@ useFixed : logi FALSE

..@ theta1 : num -1.41

..@ theta2 : num 2.25

..@ Pcov : num [1:2, 1:2] NaN NaN NaN NaN

.. ..- attr(*, "dimnames")=List of 2

..$: chr [1:2] "(Intercept)" "log(log(x1))"

..$: chr [1:2] "(Intercept)" "log(log(x1))"

..@ vecmu : num [1:2, 1] -1.41 2.25

..@ matX : num [1:2, 1:2] 1 1 1.17 1.74

..@ matQ : num [1:2, 1:2] 2 2.91 2.91 4.4

..@ vecY : num [1:2, 1] 1.22 2.51

..@ c : num 0

..@ dose :function (ExpEff, theta1, theta2)

..@ ExpEff :function (dose, theta1, theta2)

..@ data :Formal class 'DataDual' [package "crmPack"] with 10 slots

..@ w : num(0)

..@ x : num(0)

..@ y : int(0)

..@ doseGrid: num [1:12] 25 50 75 100 125 150 175 200 225 250 ...

..@ nGrid : int 12

..@ xLevel : int(0)

..@ placebo : logi FALSE

..@ ID : int(0)

..@ cohort : int(0)

..@ nObs : int 0

..@ datanames: chr [1:3] "nObs" "w" "x"

There are 15 slots, which can be accessed with the @ operator. From this e�cacy
model, we can obtain the prior (if using an empty data set) or the posterior modal
estimates of model parameters θ1 (intercept) and θ2 (slope). In addition, if a gamma
prior distribution is used for ν and we have some observations (data) available, then we
can obtain the updated values of the shape a and the rate b parameters for the gamma

60

distribution, via the model. The joint prior and posterior density functions of θ1 and θ2
are described in details in (Yeung, Whitehead, Reigner, Beyer, Diack, and Jaki, 2015).
Next, we will describe an example when a �exible semi-parametric function is used to

describe the relationship between the e�cacy values and their corresponding dose levels.
The di�erences of the mean e�cacy responses of neighboring dose levels are modeled by
the either �rst or second order random walk models. This �exible model aims to capture
di�erent shapes of the dose-e�cacy curve. We will estimate the mean e�cacy responses
obtained at each of the dose levels by MCMC sampling.
This �exible form can be speci�ed by using the EffFlexi class object. The EffFlexi

class is inheriting from the ModelEff class and its prior is also speci�ed with pseudo
data:

> Effmodel2<- EffFlexi(Eff=c(1.223, 2.513),

Effdose=c(25,300),sigma2=c(a=0.1,b=0.1),

sigma2betaW=c(a=20,b=50),smooth="RW2",data=data2)

Here, similarly to above, we also �xed two dose levels 25 and 300 mg and supplied the
prior expected e�cacy responses 1.223 and 2.513. The variance of the e�cacy responses
σ2 under this model can be speci�ed with a single positive scalar value or two positive
scalar values for the shape a and the scale b parameters of the inverse gamma distribution
in the slot sigma2. In here, we speci�ed the variance of the e�cacy responses with the
inverse gamma distribution with shape parameter a = 0.1 and scale parameter b = 0.1.
Then, the variance of the random walk model σ2βW can also be speci�ed either with a
single positive scalar or two positive scalar for the parameters of the inverse gamma
distribution in the slot sigma2betaW. In here, we speci�ed the variance of the random
walk model with the inverse gamma distribution with shape parameter a = 20 and scale
parameter b = 50. In addition, we can also specify how we would like to smooth the
mean e�cacy response function. Either the �rst order (with RW1) or the second order
(with RW2) random walk model can be used to describe the relationship between the
neighbouring mean e�cacy responses and is speci�ed in the the slot smooth. As seen in
our example, RW2, the second order random walk model is used. Finally, we also have to
specify the data set in data to be used for the model which is data2 in this example.
The structure of the EffFlexi model object is as follows:

> str(Effmodel2)

Formal class 'EffFlexi' [package "crmPack"] with 13 slots

..@ Eff : num [1:2] 1.22 2.51

..@ Effdose : num [1:2] 25 300

..@ sigma2 : Named num [1:2] 0.1 0.1

.. ..- attr(*, "names")= chr [1:2] "a" "b"

..@ sigma2betaW: Named num [1:2] 20 50

.. ..- attr(*, "names")= chr [1:2] "a" "b"

..@ useFixed :List of 2

.. ..$ sigma2 : logi FALSE

61

.. ..$ sigma2betaW: logi FALSE

..@ useRW1 : logi FALSE

..@ designW : num [1:2, 1:12] 1 0 0 0 0 0 0 0 0 0 ...

.. ..- attr(*, "dimnames")=List of 2

..$: NULL

..$: NULL

.. ..- attr(*, "assign")= int [1:12] 1 1 1 1 1 1 1 1 1 1 ...

.. ..- attr(*, "contrasts")=List of 1

..$ I(factor(x1Level, levels = seq_len(data@nGrid))): chr "contr.treatment"

..@ RWmat : num [1:12, 1:12] 1 -2 1 0 0 0 0 0 0 0 ...

..@ RWmatRank : int 10

..@ dose :function (ExpEff)

..@ ExpEff :function (dose, data, Effsamples)

..@ data :Formal class 'DataDual' [package "crmPack"] with 10 slots

..@ w : num(0)

..@ x : num(0)

..@ y : int(0)

..@ doseGrid: num [1:12] 25 50 75 100 125 150 175 200 225 250 ...

..@ nGrid : int 12

..@ xLevel : int(0)

..@ placebo : logi FALSE

..@ ID : int(0)

..@ cohort : int(0)

..@ nObs : int 0

..@ datanames : chr [1:3] "nObs" "w" "x"

The slot and the names are shown which can be accessed with the @ operator. The
value 'FALSE' of the slot useFixed shows that both the variance of the e�cacy response
sigma2 and the variance of the random walk model sigma2betaW are not �xed, but
estimated and assigned an inverse gamma prior distribution in this model. The slot
useRW1 also gives a 'FALSE' value which means that the second order random walk
model has been used to model the smooth dose-reponse function. In addition, the (only
internally required) random walk di�erence matrix and the rank of this matrix are also
shown in the slot RWmat and RWmatRank, respectively.
As discussed, the posterior estimates for model parameters speci�ed under ModelPseudo

class (except the EffFlexi model class) can be obtained as the modal estimates or via
MCMC sampling. In here, we will �rst show how we obtain the estimates of the param-
eters via MCMC sampling. (Similarly, we can also use the mcmc function to obtain prior
and posterior samples of the Effloglog and the EffFlexi models.)

> Effsamples <- mcmc(data=data2,model=Effmodel,options)

> Effsamples2 <- mcmc(data=data2, model=Effmodel2, options)

> Effpostsamples <- mcmc(data=data2,model=Effmodel,options)

> Effpostsamples2 <- mcmc(data=data2, model=Effmodel2, options)

62

Under the Effloglog (E�model) model, samples of the intercept θ1, the slope θ2 of the
e�cacy linear log-log model and the precision ν of the e�cacy responses can be obtained.
For the EffFlexi (E�model2) model, the samples of the mean e�cacy responses at all
dose levels, the variance σ2 (sigma2) of the e�cacy responses and the variance σ2βW
(sigma2betaW) of the random walk model are obtained. It is also again possible to
look at the structure (str) and extract (get) and obtain plots (ggs_traceplot and
ggs_autocorrelation) of the samples of the parameters.
If no MCMC sampling is involved, the prior or the posterior modal estimates can

be obtained in the output of the models. If some observations for both responses are
available, they can be put in a DataDual data set, and given to the data slot under each
model. We can also do so by updating the current model with the new observations
using the update function. Then the prior or the posterior modal estimates of the model
parameters can be obtained using the @ operator of the model. For example, for the
Effloglog class model:

> newEffmodel <- update(object=Effmodel,data=data4)

> newEffmodel@theta1

[1] -2.81695

> newEffmodel@theta2

[1] 2.709524

> newEffmodel@nu

a b

3.0000000 0.2281067

The posterior modal estimates of θ1 and θ2 and the updated values of parameters of the
gamma distribution of ν can be read now from the output above.
Similarly we can update with new data for the EffFlexi class model:

> newEffmodel2 <- update(object=Effmodel2,data=data4)

> newEffmodel2@RWmat

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

[1,] 1 -1 0 0 0 0 0 0 0 0 0 0

[2,] -1 2 -1 0 0 0 0 0 0 0 0 0

[3,] 0 -1 2 -1 0 0 0 0 0 0 0 0

[4,] 0 0 -1 2 -1 0 0 0 0 0 0 0

[5,] 0 0 0 -1 2 -1 0 0 0 0 0 0

[6,] 0 0 0 0 -1 2 -1 0 0 0 0 0

[7,] 0 0 0 0 0 -1 2 -1 0 0 0 0

[8,] 0 0 0 0 0 0 -1 2 -1 0 0 0

63

[9,] 0 0 0 0 0 0 0 -1 2 -1 0 0

[10,] 0 0 0 0 0 0 0 0 -1 2 -1 0

[11,] 0 0 0 0 0 0 0 0 0 -1 2 -1

[12,] 0 0 0 0 0 0 0 0 0 0 -1 1

The plot function can also be applied to the Effloglog model class or the EffFlexi
model class objects, when samples of the parameters are generated under all these models:

> print(plot(Effpostsamples, newEffmodel,data4))

1.0

1.5

2.0

2.5

0 100 200 300
Dose level

E
xp

ec
te

d
E

ffi
ca

cy

Type

Estimate

95% Credible Interval

> print(plot(Effpostsamples2,newEffmodel2,data4))

64

−5

0

5

0 100 200 300
Dose level

E
xp

ec
te

d
E

ffi
ca

cy

Type

Estimate

95% Credible Interval

In addition, we can also plot the �tted dose-e�cacy curve using the prior or the
posterior modal estimates of the model parameters when no MCMC sampling is used.
For example, using Effmodel and data set data2 speci�ed earlier:

> print(plot(data2,Effmodel))

65

1.5

2.0

2.5

0 100 200 300
Dose Levels

E
st

im
at

ed
 E

xp
ec

te
d

E
ffi

ca
cy

Since no samples are involved, only the curves using the prior or posterior modal
estimates of the parameters are produced, and no 95% credibility intervals are provided.
Furthermore, we can also plot the estimated DLT probability and e�cacy curve side by

side using the plotDualResponses function. For example, using the DLTmodel, Effmodel
and data2 speci�ed in earlier examples:

> plotDualResponses(DLEmodel=DLTmodel,

Effmodel=Effmodel,data=data2)

66

0.00

0.25

0.50

0.75

1.00

0 100 200 300
Dose Levels

P
ro

ba
bi

lit
y

of
 D

LE

1.5

2.0

2.5

0 100 200 300
Dose Levels

E
st

im
at

im
at

ed
 E

xp
ec

te
d

E
ffi

ca
cy

When the MCMC samples are used, we have:

> plotDualResponses(DLEmodel=DLTmodel,DLEsamples=DLTsamples,

Effmodel=Effmodel,Effsamples=Effsamples,data=data2)

67

0

25

50

75

100

100 200 300
Dose Levels

P
ro

ba
bi

lit
y

of
 D

LE
 [%

]

1.0

1.5

2.0

2.5

100 200 300
Dose level

E
xp

ec
te

d
E

ffi
ca

cy

Next we will talk about the dose escalation rules when two separate models are used
for the dual responses. All Increments, CohortSize and the Stopping rules classes
described earlier can be applied here. We will now look into additional NextBest and
Stopping classes rules that we can use in this situation.
In here, the decision of choosing the next best dose for administration is based on a

gain function we de�ned (Yeung et al., 2015). This gain function represents a trade-o�
between the DLT and e�cacy responses such that we will allocate the dose which gives
the best trade-o� between these responses. In other words, the dose which gives the
maximum gain value will be the dose allocated to the next cohort of subjects. The basic
ideas of this rules are as follows. The gain value at a particular dose level is obtained
by multiplying the probability of no DLT at this dose level and the expected e�cacy
response at this dose level. As the data accumulates in the trial, the estimate of the gain
function will improve. This gain function consists of two components, one part is about
the DLT responses and the other about the e�cacy response. It depends on the values
obtained in each of the components which will a�ect the values of the gain.
For example, the most ideal case is that both the probability of no DLT and the

expected value of the e�cacy response are high. The gain value obtained will then be
very high. This is the reason why the dose which gives the maximum gain value should
be allocated to the next cohort of subjects.
We can plot the gain function given a DLT model speci�ed under the ModelTox class

and an e�cacy model speci�ed under the ModelEff class using the plotGain function.
For example, using the variables newDLTmodel, newEffmodel and the data set with ob-
servations, data4, speci�ed in earlier examples, we have:

68

> plotGain(DLEmodel=newDLTmodel,Effmodel=newEffmodel,data=data4)

p(DLE=0.3)

Max Gain
0.5

1.0

1.5

0 100 200 300
Dose Level

V
al

ue
s

curves

Expected Efficacy

Gain

p(DLE)

This is a case where no MCMC sampling is involved such that the prior and posterior
modal estimates of the model parameters are used.
There are two implemented NextBest rules for the dual responses using the gain

function: the NextBestMaxGain and the NextBestMaxGainSamples class object. The
NextBestMaxGain is used when no MCMC sampling are involved and we will use the
prior or the posterior modal estimates of the model parameters to obtain the gain val-
ues at each of the dose levels, while the NextBestMaxGainSamples is used when MCMC
sampling is involved to obtain the posterior estimates. For example, when no MCMC
sampling is involved:

> GainNextBest <-NextBestMaxGain(DLEDuringTrialtarget=0.35,

DLEEndOfTrialtarget=0.3)

To use the NextBestMaxGain, we have to specify the target probability of the occur-
rence of a DLT to be used during the trial or at the end of the trial. In this example,
the target probability of DLT to be used during the trial and at the end of the trial are
0.35 and 0.3, respectively. Therefore, under this rule we will suggest the dose level which
gives the maximum gain value and has a probability of DLT less than or equal to 0.35
to administer to the next cohort of subjects. At the end of the trial, we will recommend
the dose with maximum gain value and probability of DLT less than or equal to 0.3.
In order to derive the next best dose for administration, we have to use the nextBest

function with this NextBestMaxGain object given the doselimit, both the DLT and the
e�cacy models and the data set, which includes all currently available observations:

69

> doseRecGain <- nextBest(GainNextBest,

doselimit=max(data4@doseGrid),

model=newDLTmodel,

Effmodel=newEffmodel,

data=data4)

The results will be a list of numerical values with a plot illustrating how the next best
dose was computed. The list of numerical values include the next best dose suggested,
the values of the target probabilities of DLT used during and at the end of a trial. Fur-
thermore, the estimated doses for these two targets, as well as the "Gstar" estimated dose
(the dose with gives the maximum gain value) are provided along with the corresponding
dose level in the dose grid for the above three estimates. We can also get to see the plot
about the next best dose recommendation using the $ operator.

> doseRecGain$plot

TD 30 Estimate

Max Gain Estimate

TD 35 Estimate

Max
Next

0.5

1.0

1.5

0 100 200 300
Dose Level

V
al

ue
s

curves

Expected Efficacy

Gain

p(DLE)

As usual, we have the solid red, blue and green lines as the curves to represent the
relationship between the probability of DLT, the mean e�cacy response and gain values,
respectively, to their corresponding dose levels. The vertical line in purple shows the next
best dose suggested for administration and the vertical brown line shows the maximum
allowable dose level to be administered to the next cohort of subjects. Furthermore, the
circle and the square on the DLT curve also show the current estimate of the estimated
TD30 and TD35.
Next we will look at the NextBestMaxGainSamples class object when MCMC sampling

is involved. In the following code, we specify the target probabilities of DLT used during

70

or at the end of a trial to be 0.35 and 0.3 again, and we specify that the 30% posterior
quantile will be used as the estimate for the TD35 and TD30, while we specify the 50%
posterior quantile for the Gstar estimate:

> GainsamplesNextBest <- NextBestMaxGainSamples(DLEDuringTrialtarget=0.35,

DLEEndOfTrialtarget=0.3,

TDderive=function(TDsamples){

quantile(TDsamples,prob=0.3)},

Gstarderive=function(Gstarsamples){

quantile(Gstarsamples,prob=0.5)})

Note that the two functions, TDderive and Gstarderive have to be speci�ed to derive
the corresponding estimates from the posterior samples.
Again, the generic function nextBest will be used together with this rule object to

derive the next best dose:

> doseRecGainSamples <- nextBest(GainsamplesNextBest,

doselimit=max(data4@doseGrid),

model=newDLTmodel,

samples=DLTpostsamples,

Effmodel=newEffmodel,

Effsamples=Effpostsamples,

data=data4)

The list of numerical results given in the output will be the same as those given using
NextBestMaxGain class object which includes the next dose suggested, the current esti-
mates of TD30, TD35 and Gstar and their corresponding dose levels at dose Grid. We
can also see the plot:

> doseRecGainSamples$plot

71

TD 35 Estimate

TD 30 Estimate Gstar Estimate

Max

Next

0

25

50

75

100

0 100 200 300
Gstar

P
os

te
rio

r
de

ns
ity

In this plot, the posterior distribution of Gstar is shown as a histogram. The vertical
lines on the plot show all current estimates of TD30, TD35 and Gstar. In addition,
the next dose and the maximum allowable dose are also given in blue and red lines,
respectively.
Next, we will introduce some further Stopping rules that can be applied to the above

two classes of escalation rules. After the escalation based on two responses and two
separate pseudo DLT and e�cacy models, we will select one dose, which is the minimum
of the estimate of TD30 (TDtargetEndOfTrial) and the optimal gain dose (Gstar) as the
recommended dose for potential further clinical trials. The main feature of these stopping
rules is that the trial could be stopped if the current estimates of this selected quantity
is 'accurate' enough. In particular, we will also consider the ratio of the 95% credibility
interval bounds of its current estimate. The smaller this ratio, the more accurate is the
estimate.
For example, we would like to stop our trial if the ratio is less than or equal to 5. The

functions StoppingGstarCIRatio is used for this purpose:

> myStopping7 <- StoppingGstarCIRatio(targetRatio = 5,

targetEndOfTrial=0.3)

> myStopping8 <- myStopping7 | StoppingMinPatients(72)

>

To note here, at the moment the class StoppingGstarCIRatio cannot be used together
with other Stopping class rules with the "and" operator & and the �or� operator | (this
is still under development).

72

Similarly, the stopTrial function can then be used in order to determine if the rule
has been ful�lled:

> stopTrial(stopping=myStopping7,dose=doseRecGain$nextdose,model=newDLTmodel,

data=data4, Effmodel=newEffmodel)

[1] FALSE

attr(,"message")

[1] "Gstar estimate is 79.7805 with 95% CI (21.5588 , 295.2361) and its ratio = 13.6945"

[2] "TDtargetEndOfTrial estimate is 42.6813 with 95% CI (11.0662 , 164.618) and its ratio= 14.8758"

[3] "TDatrgetEndOfTrial estimate is smaller with ratio = 14.8758 which is greater than targetRatio = 5"

> stopTrial(stopping=myStopping7,

dose=doseRecGainSamples$nextdose,

samples=DLTpostsamples,

model=newDLTmodel,

data=data4,

TDderive=function(TDsamples){

quantile(TDsamples,prob=0.3)},

Effmodel=newEffmodel,

Effsamples=Effpostsamples,

Gstarderive=function(Gstarsamples){

quantile(Gstarsamples,prob=0.5)})

[1] FALSE

attr(,"message")

[1] "Gstar estimate is 50 with 95% CI (25 , 225.625) and its ratio = 9.025"

[2] "TDtargetEndOfTrial estimate is 30.4735 with 95% CI (11.1712 , 106.2189) and its ratio= 9.5083"

[3] "TDatrgetEndOfTrial estimate is smaller with ratio = 9.5083 which is greater than targetRatio = 5"

Next, we will now look at how to construct the design objects. We will also start with
an empty data set, the object data3 of the DataDual class introduced in earlier examples.
There are two functions which we can used. The DualResponsesDesign can be used

without MCMC samples, while DualResponsesSamplesDesign can be used when MCMC
samples are involved. For example, we use the object Effmodel of the Effloglog class
speci�ed earlier as the e�cacy model in the following code:

> design1 <- DualResponsesDesign(nextBest=GainNextBest,

model=DLTmodel,

Effmodel=Effmodel,

data=data2,

stopping=myStopping7,

increments=myIncrements1,

cohortSize=mySize,

startingDose=25)

73

> design2 <- DualResponsesSamplesDesign(nextBest=GainsamplesNextBest,

model=DLTmodel,

Effmodel=Effmodel,

data=data2,

stopping=myStopping8,

increments=myIncrements1,

cohortSize=mySize,

startingDose=25)

We can use the function DualResponsesSamplesDesign to specify a design when an
e�cacy model is speci�ed under the EffFlexi class object. For example, we use the
object Effmodel2 of the EffFlexi class speci�ed in earlier examples here:

> design3 <- DualResponsesSamplesDesign(nextBest=GainsamplesNextBest,

model=DLTmodel,

Effmodel=Effmodel2,

data=data2,

stopping=myStopping8,

increments=myIncrements1,

cohortSize=mySize,

startingDose=25)

We speci�ed the above three designs using all previous rules for nextBest (the escalation
rule), stopping, increments and cohort size.
Next, we have to specify the scenarios for simulations. For example, for simulations

using the DLT model and e�cacy model from the LogisticIndepBeta and Effloglog

objects, respectively, we can specify the scenario as below:

> myTruthDLT<- function(dose)

{ DLTmodel@prob(dose, phi1=-53.66584, phi2=10.50499)

}

> myTruthEff<- function(dose)

{Effmodel@ExpEff(dose,theta1=-4.818429,theta2=3.653058)

}

> myTruthGain <- function(dose)

{return(myTruthEff(dose) * (1-myTruthDLT(dose)))}

The true DLT, e�cacy and gain curves can be obtained. We can see the corresponding
curves as

> TruthTD<-function(prob){DLTmodel@dose(prob, phi1=-53.66584, phi2=10.50499)}

> GAIN<-function(xi){-(-4.8218429+3.653058*log(xi))/(1+exp(-53.66584+10.50499*xi))}

> Txi<-(optim(1,GAIN,method="BFGS")$par)

> maxg<-(optim(1,GAIN,method="BFGS")$value)

> gstar<-exp(Txi)

74

> td30<-TruthTD(0.3)

> td35<-TruthTD(0.35)

> DoseLevels<-seq(2,300,1)

> plot(DoseLevels,myTruthDLT(DoseLevels), col='red',type='l',lwd=3,ylab='Values',

ylim=c(0,max(1,max(myTruthEff(DoseLevels)))))

> points(td30,0.3,col='violet',pch=15,cex=2)

> points(td35,0.35,col='violet',pch=16,cex=2)

> lines(DoseLevels,myTruthEff(DoseLevels),col='blue',type='l',lwd=3)

> lines(DoseLevels,myTruthGain(DoseLevels),col='green3',type='l',lwd=3)

> points(gstar,-maxg,col='green3',pch=17,cex=2)

> legend('topright',bty='n',cex=1.2,c('p(DLT)=0.3','p(DLT)=0.35','Max gain','p(DLTs)',

'efficacy','gain'),text.col=c('violet','violet','green3','red','blue','green3'),

pch=c(15,16,17,NA,NA,NA),lty=c(NA,NA,NA,1,1,1),col=c('violet','violet','green3','red','blue','green3'))

>

0 50 100 150 200 250 300

0.
0

0.
5

1.
0

1.
5

DoseLevels

V
al

ue
s

p(DLT)=0.3
p(DLT)=0.35
Max gain
p(DLTs)
efficacy
gain

Using all the above commands, we can obtained the DLT (red), e�cacy(blue) and gain
(green) curves and also their corresponding true values for the TD30 (TDtargetEndOf-
Trial), TD35 (TDtargetDuringTrial) and the Gstar. In addition, the above scenario for
DLT and e�cacy can be used for both cases (modal estimates or MCMC samples).
If the EffFlexi class object will be used for the simulations. Using the same DLT

scenario and a new e�cacy scenario will be speci�ed such that

> myTruthEff1<- c(-0.5478867, 0.1645417, 0.5248031, 0.7604467,

0.9333009 ,1.0687031, 1.1793942 , 1.2726408 ,

75

1.3529598 , 1.4233411 , 1.4858613 , 1.5420182)

> d1 <- data2@doseGrid

> myTruthGain1 <- myTruthEff1 * (1-myTruthDLT(d1))

The corresponding curves can also be plotted as:

> maxg1<-max(myTruthGain1)

> gstar1 <- data2@doseGrid[which.max(myTruthGain1)]

> DoseLevels1<-seq(1,300,1)

> TruthTD<-function(prob)

{DLTmodel@dose(prob, phi1=-53.66584, phi2=10.50499)}

> td30<-TruthTD(0.3)

> td35<-TruthTD(0.35)

> plot(DoseLevels1,myTruthDLT(DoseLevels1), col='red',type='l',

lwd=3,ylab='Values',ylim=c(0,max(1,max(myTruthEff1))))

> points(td30,0.3,col='violet',pch=15,cex=2)

> points(td35,0.35,col='violet',pch=16,cex=2)

> lines(d1,myTruthEff1,col='blue',type='l',lwd=3)

> lines(d1,myTruthGain1,col='green3',type='l',lwd=3)

> points(gstar1,maxg1,col='green3',pch=17,cex=2)

> legend('topright',bty='n',cex=1.2,c('p(DLT)=0.3','p(DLT)=0.35',

'Max gain','p(DLTs)','efficacy','gain'),text.col=c('violet','violet',

'green3','red','blue','green3'),pch=c(15,16,17,NA,NA,NA),

lty=c(NA,NA,NA,1,1,1),col=c('violet','violet','green3','red','blue','green3'))

0 50 100 150 200 250 300

0.
0

0.
5

1.
0

1.
5

DoseLevels1

V
al

ue
s

p(DLT)=0.3
p(DLT)=0.35
Max gain
p(DLTs)
efficacy
gain

76

Similarly, we also get the DLT, e�cacy and gain values and the corresponding real
values of the TD30, TD35 and Gstar.
Then after establishing the real scenarios, we can simulate the trials. First, we will

look at two examples when the Effloglog class object is used as the e�cacy model. We
will show �rst an example when no MCMC samples are involved:

> Sim1 <- simulate(object=design1,

args=NULL,

trueDLE=myTruthDLT,

trueEff=myTruthEff,

trueNu=1/0.025,

nsim=10,

seed=819,

parallel=FALSE)

The simulate function is used in all cases to simulate trials with speci�ed scenarios.
From the above, we speci�ed the true precision (trueNu) of the e�cacy responses be
1/0.025. In other words, we used a value of 0.025 as the true variance of the e�cacy
responses in this simulation. For the arguments args,nsim, seed and parallel, please
refer to earlier examples for details for their speci�cation and description details.
When MCMC samples are used, we can also specify the simulations in a similar way

with an additional argument mcmcOptions such that we have

> Sim2 <- simulate(object=design2,

args=NULL,

trueDLE=myTruthDLT,

trueEff=myTruthEff,

trueNu=1/0.025,

nsim=10,

seed=819,

mcmcOptions=options,

parallel=FALSE)

When the EffFlexi class object is used as the e�cacy model, we will generate the
simulations as follows:

> Sim3<-simulate(object=design3,

args=NULL,

trueDLE=myTruthDLT,

trueEff=myTruthEff1,

trueSigma2=0.025,

trueSigma2betaW=1,

mcmcOptions=options,

nsim=10,

seed=819,

parallel=FALSE)

77

For the speci�cation of the arguments object, args, trueDLE, trueEff, mcmcOptions,nsim,seed,parallel
please refer to earlier examples for details. In addition, two arguments have to be used
when the EffFlexi class e�cacy model is used for the simulations: First, trueSigma2
has to be speci�ed as the true variance of the e�cacy responses and trueSigma2betaW

as the true variance of the random walk model to be used in the simulation.
Furthermore, we can also plot, summarize and plot the summary of the simulated

results using plot and summary function:

> plot(Sim1)

50

100

150

200

250

0 10 20
Patient

D
os

e
Le

ve
l

Statistic

Minimum

Lower Quartile

Median

Upper Quartile

Maximum

0

5

10

15

20

100 200 300
Dose level

A
ve

ra
ge

 p
ro

po
rt

io
n

[%
]

0.02 0.03 0.04 0.05
Efficacy variance estimates

> plot(Sim2)

78

40

80

120

0 5 10 15 20
Patient

D
os

e
Le

ve
l

Statistic

Minimum

Lower Quartile

Median

Upper Quartile

Maximum

0

20

40

60

100 200 300
Dose level

A
ve

ra
ge

 p
ro

po
rt

io
n

[%
]

0.02 0.03 0.04 0.05 0.06
Efficacy variance estimates

> plot(Sim3)

100

200

0 5 10 15 20
Patient

D
os

e
Le

ve
l

Statistic

Minimum

Lower Quartile

Median

Upper Quartile

Maximum

0

20

40

60

100 200 300
Dose levelA

ve
ra

ge
 p

ro
po

rt
io

n
[%

]

0.2 0.4 0.6 0.8 1.0
Efficacy variance estimates

2.4 2.5 2.6 2.7 2.8
Random walk model variance estimates

The plots give an overview of the �nal dose recommendations and trial trajectories.

79

In addition, they also give a summary of the e�cacy variance and also the random walk
model variance when the EffFlexi class object is used for the e�cacy model.
Then, the summary and the plot of the summary of the simulations can be obtained

by:

> Sum1 <- summary(Sim1,

trueDLE=myTruthDLT,

trueEff=myTruthEff)

> Sum1

Summary of 10 simulations

Target probability of DLE p(DLE) used at the end of a trial was 30 %

The dose level corresponds to the target p(DLE) used at the end of a trial, TDEOT, was 152.6195

TDEOT at dose Grid was 150

Target p(DLE) used during a trial was 35 %

The dose level corresponds to the target p(DLE) used during a trial, TDDT, was 155.972

TDDT at dose Grid was 150

Number of patients overall : mean 16 (15, 19)

Number of patients treated above the target p(DLE) used at the end of a trial : mean 3 (3, 3)

Number of patients treated above the target p(DLE) used during a trial : mean 3 (3, 3)

Proportions of observed DLT in the trials : mean 21 % (20 %, 23 %)

Mean toxicity risks for the patients : mean 21 % (20 %, 21 %)

Doses selected as TDEOT : mean 100 (97.5, 102.5)

True toxicity at TDEOT : mean 1 % (0 %, 1 %)

Proportion of trials selecting the TDEOT: 0 %

Proportion of trials selecting the TDDT: 0 %

Dose most often selected as TDEOT: 100

Observed toxicity rate at dose most often selected: 0 %

Fitted probabilities of DLE at dose most often selected : mean 24 % (24 %, 24 %)

The summary table of the final TDEOT across all simulations

Min. 1st Qu. Median Mean 3rd Qu. Max.

98.18 123.81 123.81 122.23 123.81 133.63

The summary table of the final ratios of the TDEOT across all simulations

Min. 1st Qu. Median Mean 3rd Qu. Max.

3.849 4.447 4.447 4.442 4.447 4.993

The summary table of the final TDDT across all simulations

Min. 1st Qu. Median Mean 3rd Qu. Max.

118.2 144.4 144.4 143.5 144.4 161.5

The summary table of dose levels, the optimal dose

to recommend for subsequent study across all simulations

Min. 1st Qu. Median Mean 3rd Qu. Max.

98.18 123.81 123.81 122.23 123.81 133.63

The summary table of the final ratios of the optimal dose for stopping across

80

all simulations

Min. 1st Qu. Median Mean 3rd Qu. Max.

3.849 4.447 4.447 4.442 4.447 4.993

Target Gstar, the dose which gives the maximum gain value was 130.0097

Target Gstar at dose Grid was 125

The summary table of the final Gstar across all simulations

Min. 1st Qu. Median Mean 3rd Qu. Max.

142.9 146.7 152.1 152.6 153.1 178.6

The summary table of the final ratios of the Gstar across all simulations

Min. 1st Qu. Median Mean 3rd Qu. Max.

6.807 6.985 7.188 7.691 7.472 10.729

The summary table of dose levels, the optimal dose

to recommend for subsequent study across all simulations

Min. 1st Qu. Median Mean 3rd Qu. Max.

98.18 123.81 123.81 122.23 123.81 133.63

The summary table of the final ratios of the optimal dose for stopping across

all simulations

Min. 1st Qu. Median Mean 3rd Qu. Max.

3.849 4.447 4.447 4.442 4.447 4.993

Fitted expected efficacy level at dose most often selected : mean 0.9 (0.9, 1)

> print(plot(Sum1))

0
20
40
60
80

15 18 27
Number of patients in total

P
er

ce
nt

0
20
40
60
80

75 100 125
MTD estimate

P
er

ce
nt

0
20
40
60
80

20.0 22.2 27.8
Proportion of DLE [%]

P
er

ce
nt

0
25
50
75

3 6
Number of patients above target

P
er

ce
nt

0

25

50

75

100

100 200 300
Dose level

P
ro

ba
bi

lit
y

of
 D

LE
 [%

]

linetype

True toxicity

Average estimated toxicity

−0.5

0.0

0.5

1.0

1.5

100 200 300
Dose level

E
xp

ec
te

d
E

ffi
ca

cy
 le

ve
l

linetype

True Expected Efficacy

Average estimated expected efficacy

81

> Sum2 <- summary(Sim2,

trueDLE=myTruthDLT,

trueEff=myTruthEff)

> Sum2

Summary of 10 simulations

Target probability of DLE p(DLE) used at the end of a trial was 30 %

The dose level corresponds to the target p(DLE) used at the end of a trial, TDEOT, was 152.6195

TDEOT at dose Grid was 150

Target p(DLE) used during a trial was 35 %

The dose level corresponds to the target p(DLE) used during a trial, TDDT, was 155.972

TDDT at dose Grid was 150

Number of patients overall : mean 9 (3, 18)

Number of patients treated above the target p(DLE) used at the end of a trial : mean 0 (0, 0)

Number of patients treated above the target p(DLE) used during a trial : mean 0 (0, 0)

Proportions of observed DLT in the trials : mean 1 % (0 %, 5 %)

Mean toxicity risks for the patients : mean 2 % (0 %, 5 %)

Doses selected as TDEOT : mean 12.5 (0, 12.5)

True toxicity at TDEOT : mean 0 % (0 %, 0 %)

Proportion of trials selecting the TDEOT: 0 %

Proportion of trials selecting the TDDT: 0 %

Dose most often selected as TDEOT: 0

Observed toxicity rate at dose most often selected: NaN %

Fitted probabilities of DLE at dose most often selected : mean NA % (NA %, NA %)

The summary table of the final TDEOT across all simulations

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.3823 3.6306 6.4581 20.9017 11.2411 146.5060

The summary table of the final ratios of the TDEOT across all simulations

Min. 1st Qu. Median Mean 3rd Qu. Max.

3.000e+00 3.135e+06 4.907e+12 2.632e+35 4.190e+20 2.632e+36

The summary table of the final TDDT across all simulations

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.1473 4.0714 6.5789 28.2227 14.6892 212.8261

The summary table of dose levels, the optimal dose

to recommend for subsequent study across all simulations

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.3823 3.6306 6.4581 20.9017 11.2411 146.5060

The summary table of the final ratios of the optimal dose for stopping across

all simulations

Min. 1st Qu. Median Mean 3rd Qu. Max.

3.000e+00 3.135e+06 4.907e+12 2.632e+35 4.190e+20 2.632e+36

Target Gstar, the dose which gives the maximum gain value was 130.0097

82

Target Gstar at dose Grid was 125

The summary table of the final Gstar across all simulations

Min. 1st Qu. Median Mean 3rd Qu. Max.

300 300 300 300 300 300

The summary table of the final ratios of the Gstar across all simulations

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.000 1.037 1.894 2.078 2.960 4.000

The summary table of dose levels, the optimal dose

to recommend for subsequent study across all simulations

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.3823 3.6306 6.4581 20.9017 11.2411 146.5060

The summary table of the final ratios of the optimal dose for stopping across

all simulations

Min. 1st Qu. Median Mean 3rd Qu. Max.

3.000e+00 3.135e+06 4.907e+12 2.632e+35 4.190e+20 2.632e+36

Fitted expected efficacy level at dose most often selected : mean NA (NA, NA)

> print(plot(Sum2))

0
20
40
60

3 15 18 21
Number of patients in total

P
er

ce
nt

0
25
50
75

0 125
MTD estimate

P
er

ce
nt

0
20
40
60
80

0.0 4.8 5.6
Proportion of DLE [%]

P
er

ce
nt

0
25
50
75

100

0
Number of patients above target

P
er

ce
nt

0

25

50

75

100

100 200 300
Dose level

P
ro

ba
bi

lit
y

of
 D

LE
 [%

]

linetype

True toxicity

Average estimated toxicity

95% interval for estimated toxicity

0

1

2

100 200 300
Dose level

E
xp

ec
te

d
E

ffi
ca

cy
 le

ve
l

linetype

True Expected Efficacy

Average estimated expected efficacy

95% interval for estimated expected efficacy

> Sum3 <- summary(Sim3,

trueDLE=myTruthDLT,

trueEff=myTruthEff1)

> Sum3

83

Summary of 10 simulations

Target probability of DLE p(DLE) used at the end of a trial was 30 %

The dose level corresponds to the target p(DLE) used at the end of a trial, TDEOT, was 152.6195

TDEOT at dose Grid was 150

Target p(DLE) used during a trial was 35 %

The dose level corresponds to the target p(DLE) used during a trial, TDDT, was 155.972

TDDT at dose Grid was 150

Number of patients overall : mean 7 (3, 13)

Number of patients treated above the target p(DLE) used at the end of a trial : mean 1 (0, 1)

Number of patients treated above the target p(DLE) used during a trial : mean 1 (0, 1)

Proportions of observed DLT in the trials : mean 2 % (0 %, 2 %)

Mean toxicity risks for the patients : mean 4 % (0 %, 4 %)

Doses selected as TDEOT : mean 5 (0, 5)

True toxicity at TDEOT : mean 0 % (0 %, 0 %)

Proportion of trials selecting the TDEOT: 0 %

Proportion of trials selecting the TDDT: 0 %

Dose most often selected as TDEOT: 0

Observed toxicity rate at dose most often selected: NaN %

Fitted probabilities of DLE at dose most often selected : mean NA % (NA %, NA %)

The summary table of the final TDEOT across all simulations

Min. 1st Qu. Median Mean 3rd Qu. Max.

3.060 7.115 10.198 16.272 16.171 69.699

The summary table of the final ratios of the TDEOT across all simulations

Min. 1st Qu. Median Mean 3rd Qu. Max.

3.000e+00 2.224e+07 5.357e+09 2.632e+35 2.715e+18 2.632e+36

The summary table of the final TDDT across all simulations

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.925 6.272 6.594 17.577 14.689 94.988

The summary table of dose levels, the optimal dose

to recommend for subsequent study across all simulations

Min. 1st Qu. Median Mean 3rd Qu. Max.

3.060 7.115 10.198 16.272 16.171 69.699

The summary table of the final ratios of the optimal dose for stopping across

all simulations

Min. 1st Qu. Median Mean 3rd Qu. Max.

3.000e+00 2.224e+07 5.357e+09 2.632e+35 2.715e+18 2.632e+36

Target Gstar, the dose which gives the maximum gain value was 125

Target Gstar at dose Grid was 125

The summary table of the final Gstar across all simulations

Min. 1st Qu. Median Mean 3rd Qu. Max.

225.0 225.0 225.0 237.5 246.9 275.0

The summary table of the final ratios of the Gstar across all simulations

84

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.000 3.721 4.557 4.434 5.393 6.000

The summary table of dose levels, the optimal dose

to recommend for subsequent study across all simulations

Min. 1st Qu. Median Mean 3rd Qu. Max.

3.060 7.115 10.198 16.272 16.171 69.699

The summary table of the final ratios of the optimal dose for stopping across

all simulations

Min. 1st Qu. Median Mean 3rd Qu. Max.

3.000e+00 2.224e+07 5.357e+09 2.632e+35 2.715e+18 2.632e+36

Fitted expected efficacy level at dose most often selected : mean NA (NA, NA)

> print(plot(Sum3))

0
20
40
60

3 9 12 21
Number of patients in total

P
er

ce
nt

0
25
50
75

0 50
MTD estimate

P
er

ce
nt

0
25
50
75

0.0 23.8
Proportion of DLE [%]

P
er

ce
nt

0
25
50
75

0 9
Number of patients above target

P
er

ce
nt

0

25

50

75

100

100 200 300
Dose level

P
ro

ba
bi

lit
y

of
 D

LE
 [%

]

linetype

True toxicity

Average estimated toxicity

95% interval for estimated toxicity

0

1

2

100 200 300
Dose level

E
xp

ec
te

d
E

ffi
ca

cy
 le

ve
l

linetype

True Expected Efficacy

Average estimated expected efficacy

95% interval for estimated expected efficacy

In the �rst simulation, Sim1 the trial will only stop when the ratio of the 95% credibility
interval bounds of the current estimate of the minimum between TD30(TDtargetEndOfTrial)
and Gstar is less than or equal to 5. The last two simulations, Sim2 and Sim3, use trials
which only stop either when a maximum of 72 patients has been treated or when the
ratio of the 95% credibility interval is less than or equal to 5. We can see that in all of
the above simulations all trials require a total of around 60 patients for a study.
As a reminder, for the dual endpoint dose escalation design which uses two separate

models to describe the dose-responses relationship, the gain function is used to determine
the next best dose and the �nal recommended dose at the end of a trial. More speci�cally
at the end of a trial, we will recommend the dose level closest below which is the minimum

85

of �nal estimate of the TD30 (TDtargetEndOfTrial) and Gstar.
The DLT and e�cacy scenario that we used for the �rst, Sim1 and the second simula-

tions, Sim2 are the same. The real TD30 (TDtargetEndOfTrial) is given in the summary
and is 152.6125 mg and the dose level at doseGrid which is closest and below this real
TD30 is 150 mg. The real Gstar is 130.0097 mg and the dose level in the dose grid closest
to this Gstar is 125 mg.
In this case, the real Gstar is less than the real TD30 and we will expect most of the

recommendations to be made at a dose level close to the real Gstar. In other words,
under this scenario, we will expect most of the recommendations made at 125 mg. We
can see that the simulated results agrees to what we are expecting. From the summaries
and the plots of the summaries, 125 mg is the dose level which is selected most often in
both of these simulations.
For the scenario of last simulation, Sim3, we have the same real TD30 and the real

Gstar is 125 mg. Since the real TD30 is greater than the real Gstar, we will also expect
recommendations should be made close to the real Gstar under this scenario. We can see
that from the simulated results in the summary or the plot of summary, the procedure also
recommends 125 mg most often in the simulations, which agrees with our real scenario.
Now, we will also look at the �tted dose-DLT and dose-e�cacy curves obtained under

all these three simulations. From the plots of summaries, we can see that in all cases, the
�tted dose-DLT curves (solid-red curve) do not approximate very well to the real dose-
DLT curve (solid-black curve). The 95% credibility interval of the DLT curve (broken-red
curves) is also given when MCMC samples are involved in the simulation. In contrast,
we can see that the �tted e�cacy curve (solid-blue curve) gives a very good �t to the
real e�cacy curve (solid-black) in all cases. The approximation to the real e�cacy curve
is better when the linear linear log-log model, Effloglog is used, compared to when the
�exible form , EffFlexi is used. In addition, we can also see the 95% credibility interval
of the e�cacy curve (broken-blue line) when MCMC sampling of the e�cacy responses
is involved.

References

Beat Neuenschwander, Michael Branson, and Thomas Gsponer. Critical aspects of the
Bayesian approach to phase I cancer trials. Statistics in Medicine, 27(13):2420�2439,
2008. URL http://onlinelibrary.wiley.com/doi/10.1002/sim.3230.

J. Whitehead and D. Williamson. Bayesian decision procedures based on logistic re-
gression models for dose-�nding studies. Journal of Biopharmaceutical Statistics, 8(3):
445�467, 1998.

W. Y. Yeung, J. Whitehead, B. Reigner, U. Beyer, C. Diack, and T. Jaki. Bayesian
adaptive dose-escalation procedure for binary and continuous responses utilizing a
gain function. Pharmaceutical Statistics, 2015. Published online ahead of print.

86

http://onlinelibrary.wiley.com/doi/10.1002/sim.3230

	Installation
	Getting started
	Data
	Structure of the model class
	Model setup
	Logistic model with bivariate (log) normal prior
	Advanced model specification

	Obtaining the posterior
	Plotting the model fit
	Escalation Rules
	Increments rules
	Rules for next best dose recommendation
	Cohort size rules
	Stopping rules

	Simulations
	Examining single trial behavior
	Simulating from a true scenario
	Predicting the future course of the trial

	Simulating 3+3 design outcomes
	Dual-endpoint dose escalation designs
	Dual-endpoint designs with a joint model
	Dual-endpoint designs with separate models

