
Building a Gibbs Sampler with dbarts

Vincent Dorie

12/21/2020

For users who are comfortable with writing their own posterior samplers, dbarts makes it easy to incorporate
a linear BART component in a Gibbs sampler. In the example below, we fit a functional mixture model,
where observations may have come from one of two underlying functions and class membership is unobserved.

Model
Performing inference conditional on x, we assume that:

Y | Z = z ∼ N
(
f(x, z), σ2) ,

Z ∼ Bern(p),

and that Z is unobserved. To make the model fully Bayesian, we impose a Beta(1, 1) prior on p. f and σ2

have implicit priors defined by BART.

Conditonal Posteriors
To implement a Gibbs sampler, we will have to produce updates for Z and p. After writing down the joint
distribution of Z, Y , p, f , and σ2, we have:

• P (Z = 1 | Y = y, p, f, σ2) ∝ φ(y, f(x, 1), σ) · p
• P (Z = 0 | Y = y, p, f, σ2) ∝ φ(y, f(x, 0), σ) · (1− p)
• p | Z = z ∼ Beta(1 +

∑
zi, 1 +

∑
(1− zi))

where φ is the density of a normal distribution. This yields an overall strategy of:

1. Draw a sample from BART
1. Draw samples of f(x, 1) and f(x, 0)
2. Draw a sample of σ2

2. Use f(x, 1), f(x, 0), and p to draw a sample of Z
3. Use Z to draw a sample of p

Simulated Data
To illustrate, we create some toy data. The simulated data is visualized later, together with the fitted model.
Underlying functions
f0 <- function(x) 90 + exp(0.06 * x)
f1 <- function(x) 72 + 3 * sqrt(x)

set.seed(2793)

Generate true values.
n <- 120
p.0 <- 0.5

1

z.0 <- rbinom(n, 1, p.0)
n1 <- sum(z.0); n0 <- n - n1

In order to make the problem more interesting, x is confounded with both
y and z.
x <- numeric(n)
x[z.0 == 0] <- rnorm(n0, 20, 10)
x[z.0 == 1] <- rnorm(n1, 40, 10)
y <- numeric(n)
y[z.0 == 0] <- f0(x[z.0 == 0])
y[z.0 == 1] <- f1(x[z.0 == 1])
y <- y + rnorm(n)

data_train <- data.frame(y = y, x = x, z = z.0)
data_test <- data.frame(x = x, z = 1 - z.0)

Implementing a Gibbs Sampler
For this specific model, the sampler needs to be updated with new predictor variables/covariates. This can be
done with a dbartsSampler reference class object by calling the sampler$setPredictor function. As, given
any Z = z, the sampler also needs to evaluate f(x, 1− z), we utilize the test slot of the sampler and keep it
up-to-date with the “counterfactual” predictor using the sampler$setTestPredictor function. Models that
instead modify the response variable can use the sampler$setResponse or sampler$setOffset functions.

One complication in updating the predictor matrix while the sampler runs is that new values of z must
leave the sampler in an internally consistent state. During warmup this constraint is ignored, however, after
warmup is complete rejection sampling is used to guarantee that no leaf nodes are empty. This is accomplished
by using the forceUpdate argument to setPredictor and checking that the logical response is TRUE.
n_warmup <- 100
n_samples <- 500
n_total <- n_warmup + n_samples

Allocate storage for result.
samples_p <- rep.int(NA_real_, n_samples)
samples_z <- matrix(NA_real_, n_samples, n)
samples_mu0 <- matrix(NA_real_, n_samples, n)
samples_mu1 <- matrix(NA_real_, n_samples, n)

library(dbarts, quietly = TRUE)

We only need to draw one sample at a time, although for illustrative purposes
a small degree of thinning is done to the BART component.
control <- dbartsControl(updateState = FALSE, verbose = FALSE,

n.burn = 0L, n.samples = 1L, n.thin = 3L,
n.chains = 1L)

We create the sampler with a z vector that contains at least one 1 and one 0,
so that all of the cut points are set correctly.
sampler <- dbarts(y ~ x + z, data_train, data_test, control = control)

Sample from prior.
p <- rbeta(1, 1, 1)
z <- rbinom(n, 1, p)

2

Ignore result of this sampler call
invisible(sampler$setPredictor(x = z, column = 2, forceUpdate = TRUE))
sampler$setTestPredictor(x = 1 - z, column = 2)
sampler$sampleTreesFromPrior()

for (i in seq_len(n_total)) {
Draw a single sample from the posterior of f and sigmaˆ2.
samples <- sampler$run()

Recover f(x, 1) and f(x, 0).
mu0 <- ifelse(z == 0, samples$train[,1], samples$test[,1])
mu1 <- ifelse(z == 1, samples$train[,1], samples$test[,1])

p0 <- dnorm(y, mu0, samples$sigma[1]) * (1 - p)
p1 <- dnorm(y, mu1, samples$sigma[1]) * p
p.z <- p1 / (p0 + p1)
z <- rbinom(n, 1, p.z)

if (i <= n_warmup) {
sampler$setPredictor(x = z, column = 2, forceUpdate = TRUE)

} else while (sampler$setPredictor(x = z, column = 2) == FALSE) {
z <- rbinom(n, 1, p.z)

}
sampler$setTestPredictor(x = 1 - z, column = 2)

n1 <- sum(z); n0 <- n - n1
p <- rbeta(1, 1 + n0, 1 + n1)

Store samples if no longer warming up.
if (i > n_warmup) {

offset <- i - n_warmup
samples_p[offset] <- p
samples_z[offset,] <- z
samples_mu0[offset,] <- mu0
samples_mu1[offset,] <- mu1

}
}

Saveing the sampler
If it desired to use save and load on the sampler, it is required to instruct sampler stored using the reference
class to write its state out as an R object:
sampler$storeState()

Visualizing the Result
Finally, we visualize the results. In the graph below, the estimated label of observations encircles the true
labels, both of which are represented by point color. We see that, beyond the range of the observed data, the
estimated functions regress towards each other and points start to be mislabeled.
mean_mu0 <- apply(samples_mu0, 2, mean)
mean_mu1 <- apply(samples_mu1, 2, mean)

3

ub_mu0 <- apply(samples_mu0, 2, quantile, 0.975)
lb_mu0 <- apply(samples_mu0, 2, quantile, 0.025)

ub_mu1 <- apply(samples_mu1, 2, quantile, 0.975)
lb_mu1 <- apply(samples_mu1, 2, quantile, 0.025)

curve(f0(x), 0, 80, ylim = c(80, 110), ylab = expression(f(x)),
main = "Mixture Model")

curve(f1(x), add = TRUE)

points(x, y, pch = 20, col = ifelse(z.0 == 0, "black", "gray"))

lines(sort(x), mean_mu0[order(x)], col = "red")
lines(sort(x), mean_mu1[order(x)], col = "red")

Add point-wise confidence intervals.
lines(sort(x), ub_mu0[order(x)], col = "gray", lty = 2)
lines(sort(x), lb_mu0[order(x)], col = "gray", lty = 2)

lines(sort(x), ub_mu1[order(x)], col = "gray", lty = 3)
lines(sort(x), lb_mu1[order(x)], col = "gray", lty = 3)

Without constraining z for an observation to 0/1, its interpretation may be
flipped from that which generated the data.
mean_z <- ifelse(apply(samples_z, 2, mean) <= 0.5, 0L, 1L)
if (mean(mean_z != z.0) > 0.5) mean_z <- 1 - mean_z

points(x, y, pch = 1, col = ifelse(mean_z == 0, "black", "gray"))
legend("topright", c("true func", "est func", "group 0", "group 1",

"est group 0", "est group 1"),
lty = c(1, 1, NA, NA, NA, NA), pch = c(NA, NA, 20, 20, 1, 1),
col = c("black", "red", "black", "gray", "black", "gray"),
cex = 0.8, box.col = "white", bg = "white")

4

0 20 40 60 80

80
85

90
95

10
0

11
0

Mixture Model

x

f(x
)

true func
est func
group 0
group 1
est group 0
est group 1

Multiple Threading
When implementing a Gibbs sampler using dbarts in R, it is most often the case that multiple threads will
need to handled by creating separate copies of the sampler and data. While dbartsSamplers are natively
multithreaded, few of their slots are stored independently across chains. For an example of this approach and
a more complete implementation of the principles in this document, consult the implementation of rbart_vi.

5

https://github.com/vdorie/dbarts/blob/master/R/rbart.R

	Model
	Conditonal Posteriors
	Simulated Data
	Implementing a Gibbs Sampler
	Saveing the sampler
	Visualizing the Result
	Multiple Threading

