Package ‘disaggR’

February 9, 2024
Type Package

Title Two-Steps Benchmarks for Time Series Disaggregation
Version 1.0.5.2

Description The twoStepsBenchmark() and threeRuleSmooth() functions allow you to
disaggregate a low-frequency time series with higher frequency time series,
using the French National Accounts methodology. The aggregated sum of the
resulting time series is strictly equal to the low-frequency time series within the
benchmarking window. Typically, the low-frequency time series is an annual one,
unknown for the last year, and the high frequency one is either quarterly or
monthly. See ““Methodology of quarterly national accounts", Insee Méthodes
N°126, by Insee (2012, ISBN:978-2-11-068613-

8, <https://www.insee.fr/en/information/2579410>).

Imports graphics, grDevices, methods, RColorBrewer (>= 1.1-2), stats,
utils

License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.2.3

Suggests knitr, ggplot2 (>= 3.0.0), rmarkdown (>= 2.0.0), shiny (>=
1.5.0), shinytest2 (>= 0.1.0), testthat (>= 3.0.0), vdiffr (>=
1.0.0)

Depends R (>=3.6.0)

BugReports https://github.com/InseeFr/disaggR/issues
LazyData yes

Collate 'bfiSmooth.R' 'data.R' 'disaggR.R' 'utils.R" 'in.R’
's4register.R' 'twoStepsBenchmark.R' 'methods.R' 'plot.R’
‘praislm.R' 'reView.R' 'threeRuleSmooth.R'

Config/testthat/edition 3
VignetteBuilder knitr

URL https://inseefr.github.io/disaggR/

NeedsCompilation no

https://www.insee.fr/en/information/2579410
https://github.com/InseeFr/disaggR/issues
https://inseefr.github.io/disaggR/

2 bfiSmooth
Author Arnaud Feldmann [aut] (<https://orcid.org/0000-0003-0109-7505>, Creator
and maintener of the package until the version 1.0.2),
Franck Arnaud [ctb] (barplot base graphics method for the mts class),
Pauline Meinzel [cre],
Institut national de la statistique et des études économiques [cph]
(https://www.insee.fr/)
Maintainer Pauline Meinzel <pauline.meinzel@insee.fr>
Repository CRAN
Date/Publication 2024-02-09 13:10:02 UTC
R topics documented:
bfiSmooth 2
distance e e e 3
IN_disaggr e e e 4
IN_TEVISIONS o v i it e e e e e e e e e e e e 5
in_sample e 6
IN_SCAET . . . o o o o o o e e e e e 7
plot.twoStepsBenchmark oL 8
rePort . . .o 11
reUseBenchmark 12
TEVIEW . . . o o e e e e 13
threeRuleSmooth 14
twoStepsBenchmark oL 16
Index 20
bf1lSmooth Smooth a time series
Description

bflSmooth smoothes a time series into a time series of a higher frequency that exactly aggregates
into the higher one. The process followed is Boot, Feibes and Lisman, which minimizes the squares

of the variations.

Usage

bflSmooth(1fserie, nfrequency, weights = NULL, 1fserie.is.rate = FALSE)

Arguments
1fserie a time series to be smoothed
nfrequency the new high frequency. It must be a multiple of the low frequency.
weights NULL or a time series of the same size than the expected high-frequency serie.

lfserie.is.rate
TRUE or FALSE. Only taken into account if weights isn’t NULL.

https://orcid.org/0000-0003-0109-7505

distance 3

Details
If weights isn’t NULL the results depends of 1fserie.is.rate:

* if FALSE the rate output/weights is smoothed with the constraint that the aggregated output is
equal to the input Ifserie.

* if TRUE the input Ifserie is the rate to be smoothed, with the constraint that the low-frequency
weighted means of the output are equal to Ifserie.

Value

A time series of frequency nfrequency

distance Distance computation for disaggregations

Description
This function distance computes the Minkowski distance of exponent p, related to a tscomparison
object, produced with in_sample, in_disaggr or in_revisions

Usage

distance(x, p = 2)

Arguments
X an object of class tscomparison
p an integer greater than 1L, or Inf.
Details

The meaning depends on the tscomparison function :

* in_sample will produce the low-frequency distance between the predicted value and the re-
sponse, on the coefficient calculation window.

* in_disaggr will produce the high-frequency distance between the inputs (eventually, the sum
of its contributions) and the benchmarked series.

* in_revisions will produce the high-frequency distance between the two benchmarked series
(contributions distance isn’t permitted).

Value

a numeric of length 1, the distance.

See Also

in_sample in_disaggr in_revisions

4 in_disaggr

Examples

benchmark <- twoStepsBenchmark(turnover,construction,include.rho = TRUE)
distance(in_sample(benchmark, type="changes"))
distance(in_disaggr(benchmark, type="contributions”),p=1L)
distance(in_disaggr(benchmark, type="changes"),p=Inf)

in_disaggr Comparing a disaggregation with the high-frequency input

Description

The function in_disaggr takes a twoStepsBenchmark or a threeRuleSmooth object as an input. It
produces a comparison between the benchmarked time series and the high-frequency input.

Usage

in_disaggr(object, type = "changes")

Arguments
object an object of class "twoStepsBenchmark” or "threeRuleSmooth”.
type "levels”,"levels-rebased”, "changes"” or "contributions”. This defines
the type of output.
Details

The functions plot and autoplot can be used on this object to produce graphics.

Value

a named matrix time series of two columns, one for the response and the other for the input. A
tscomparison class is added to the object.

See Also

in_sample in_revisions in_scatter plot.tscomparison

Examples

benchmark <- twoStepsBenchmark(turnover,construction,include.rho = TRUE)
plot(in_disaggr(benchmark))

in_revisions 5

in_revisions Comparing two disaggregations together

Description

The function in_revisionstakes two inputs, twoStepsBenchmark or a threeRuleSmooth, and pro-
duces a comparison between those.

Usage
in_revisions(object, object_old, type = "changes")
Arguments
object an object of class "twoStepsBenchmark” or "threeRuleSmooth”.
object_old an object of class "twoStepsBenchmark” or "threeRuleSmooth".
type "levels”,"levels-rebased”, "changes"” or "contributions”. This defines
the type of output.
Details

The functions plot and autoplot can be used on this object to produce graphics.

Value

a named matrix time series of two columns, one for the response and the other for the predicted
value. A tscomparison class is added to the object.

See Also

in_sample in_disaggr in_scatter plot.tscomparison

Examples

benchmark <- twoStepsBenchmark(turnover,construction,include.rho = TRUE)
benchmark2 <- twoStepsBenchmark(turnover,construction,include.differenciation = TRUE)
plot(in_revisions(benchmark,benchmark2))

6 in_sample

in_sample Producing the in sample predictions of a prais-lm regression

Description

The function in_sample returns in-sample predictions from a praislm or a twoStepsBenchmark
object.

Usage

in_sample(object, type = "changes")

Arguments

object an object of class "praislm” or "twoStepsBenchmark”.

type "changes” or "levels". The results are either returned in changes or in levels.
Details

The functions plot and autoplot can be used on this object to produce graphics.

The predicted values are different from the fitted values :

* they are eventually reintegrated.

* they contain the autocorrelated part of the residuals.

Besides, changes are relative to the latest benchmark value, not the latest predicted value.

Value

a named matrix time series of two columns, one for the response and the other for the predicted
value. A "tscomparison” class is added to the object.

See Also

in_disaggr in_revisions in_scatter plot.tscomparison

Examples

benchmark <- twoStepsBenchmark(turnover,construction,include.rho = TRUE)
plot(in_sample(benchmark))

in_scatter 7

in_scatter Comparing the inputs of a praislm regression

Description

The function in_scatter returns low-frequency comparisons of the inputs from a praislm, a twoSteps-
Benchmark or threeRuleSmooth.

Usage

in_scatter(
object,
type = if (model.list(object)$include.differenciation) "changes" else "levels”

)

Arguments
object an object of class "praislm”, "twoStepsBenchmark” or "threeRuleSmooth".
type "levels” or "changes". This defines the type of output. A differencied model
can’t have a scatterplot in levels.
Details

The functions plot and autoplot can be used on this object to produce graphics.

Value

a named matrix time series of two or three columns, one for the low-frequency serie and the others
for the high-frequency series (eventually differentiated if include.differenciation is TRUE). A
tscomparison class is added to the object. For a twoStepsBenchmark object, this matrix has three
columns, for the low-frequency series, the high-frequency on the regression span and the high-
frequency series on the benchmark span.

If outlier effects are estimated, the contributions of the outliers are substracted from the low-
frequency series.
See Also

in_sample in_disaggr in_revisions plot.tscomparison

Examples

benchmark <- twoStepsBenchmark(turnover,construction,include.rho = TRUE)
plot(in_scatter(benchmark))

8 plot.twoStepsBenchmark

plot.twoStepsBenchmark
Plotting disaggR objects

Description

Plot methods for objects of class "tscomparison”, threeRuleSmooth and twoStepsBenchmark. :

* plot draws a plot with base graphics
* autoplot produces a ggplot object

Objects of class tscomparison can be produced with the functions in_sample, in_scatter, in_revisions,
in_disaggr.

Usage
S3 method for class 'twoStepsBenchmark'
plot(
X,
xlab = NULL,
ylab = NULL,
start = NULL,
end = NULL,

col = default_col_pal(x),

1ty = default_lty_pal(x),

show.legend = TRUE,

main = NULL,

mar = default_margins(main, xlab, ylab),

) e

S3 method for class 'threeRuleSmooth'
plot(

X,

xlab = NULL,

ylab = NULL,

start = NULL,

end = NULL,

col = default_col_pal(x),

1ty = default_lty_pal(x),

show.legend = TRUE,

main = NULL,

mar = default_margins(main, xlab, ylab),

)

S3 method for class 'tscomparison'

plot.twoStepsBenchmark 9

plot(
X,
xlab = NULL,
ylab = NULL,
start = NULL,
end = NULL,

col = default_col_pal(x),

1ty = default_lty_pal(x),

show.legend = TRUE,

main = NULL,

mar = default_margins(main, xlab, ylab),

)

autoplot. twoStepsBenchmark(
object,
xlab = NULL,
ylab = NULL,
start = NULL,
end = NULL,
col = default_col_pal(object),

1ty = default_lty_pal(object),
show.legend = TRUE,

main = NULL,

mar = NULL,

theme = default_theme_ggplot(object, start, end, show.legend, xlab, ylab, mar),

)

autoplot. threeRuleSmooth(
object,
xlab = NULL,
ylab = NULL,
start = NULL,
end = NULL,
col = default_col_pal(object),

1ty = default_lty_pal(object),

show.legend = TRUE,

main = NULL,

mar = NULL,

theme = default_theme_ggplot(object, start, end, show.legend, xlab, ylab, mar),

)

autoplot.tscomparison(
object,
xlab = NULL,
ylab = NULL,

10 plot.twoStepsBenchmark

start = NULL,
end = NULL,
col = default_col_pal(object),

1ty = default_lty_pal(object),

show.legend = TRUE,

main = NULL,

mar = NULL,

theme = default_theme_ggplot(object, start, end, show.legend, xlab, ylab, mar),

)
Arguments
X (for the plot method) a tscomparison, a twoStepsBenchmark or a threeRuleSmooth.
xlab the title for the x axis
ylab the title for the y axis
start a numeric of length 1 or 2. The start of the plot.
end a numeric of length 1 or 2. The end of the plot.
col the color scale applied on the plot. Could be a vector of colors, or a function
from n to a color vector of size n.
1ty the linetype scales applied on the plot. Could be a vector of linetypes, or a

function from n to a linetypes vector of size n.
show. legend TRUE or FALSE. Should an automatic legend be added to the plot.
main a character of length 1, the title of the plot

mar a numeric of length 4, the margins of the plot specified in the form c(bottom,
left, top, right).

other arguments passed either to ggplot or plot

object (for the autoplot method) a tscomparison, a twoStepsBenchmark or a three-
RuleSmooth.
theme a ggplot theme object to replace the default one (only for autoplot methods)
Value

NULL for the plot methods, the ggplot object for the autoplot methods

Examples

benchmark <- twoStepsBenchmark(turnover,construction,include.rho = TRUE)
plot(benchmark)
plot(in_sample(benchmark))
if(require("ggplot2"”)) {
autoplot (in_disaggr(benchmark, type="changes"),
start=c(2015,1),
end=c(2020,12))
3
plot(in_scatter(benchmark),xlab="title x",ylab="title y")

rePort 11

rePort Producing a report

Description

This function takes an output of the reView shiny application and produces an html report with the
same outputs than in shiny.

Usage

rePort(
object,
output_file = NULL,
launch.browser = if (is.null(output_file)) TRUE else FALSE,
hfserie_name = NULL,
1fserie_name = NULL,

Arguments

object a twoStepsBenchmark with an univariate hfserie, a re ViewOutput, or a character
of length 1 with the path of their RDS file. If a reViewOutput is chosen, the
former new benchmark is taken as the old one.

output_file The file in which the html should be saved. If NULL the file is temporary, and
opened in a tab of the default browser.

launch.browser TRUE or FALSE. If TRUE, the output is opened in the browser. Defaults to TRUE
if output_file is NULL.

hfserie_name alanguage object or a character of length 1. The name of the hfserie, eventually
its expression.

1fserie_name a language object or a character of length 1. The name of the Ifserie, eventually
its expression.

other arguments passed to rmarkdown::render

Details

It can also directly take a twoStepsBenchmark as an input.

See Also

reView

12 reUseBenchmark

reUseBenchmark Using an estimated benchmark model on another time series

Description

This function reapplies the coefficients and parameters of a benchmark on new time series.

Usage

reUseBenchmark(hfserie, benchmark, reeval.smoothed.part=FALSE)

Arguments
hfserie the bended time series. If it is a matrix time series, it has to have the same
column names than the hfserie used for the benchmark.
benchmark a twoStepsBenchmark object, from which the parameters and coefficients are

taken.

reeval.smoothed.part
a boolean of length 1. If TRUE, the smoothed part is reevaluated, hence the
aggregated benchmarked series is equal to the low-frequency series.

Details

reUseBenchmark is primarily meant to be used on a series that is derived from the previous one,
after some modifications that would bias the estimation otherwise. Working-day adjustment is
a good example. Hence, by default, the smoothed part of the first model isn’t reevaluated ; the
aggregated benchmarked series isn’t equal to the low-frequency series.

Value

reUseBenchmark returns an object of class twoStepsBenchmark.

Examples

benchmark <- twoStepsBenchmark(turnover,construction)
turnover_modif <- turnover

turnover_modif[2] <- turnover[2]+2

benchmark2 <- reUseBenchmark(turnover_modif,benchmark)

reView 13

reView A shiny app to reView and modify twoStepsBenchmarks

Description

reView allows the user to easily access diverse outputs in order to review a benchmark object, made
with twoStepsBenchmark.

The hfserie_name and 1fserie_name define :

Usage

reView(object, hfserie_name = NULL, 1fserie_name = NULL, compare = TRUE)

Arguments

object a twoStepsBenchmark with an univariate hfserie, a reViewOutput, or a character
of length 1 with the path of their RDS file. If a reViewOutput is chosen, the
former new benchmark is taken as the old one.

hfserie_name alanguage object or a character of length 1. The name of the hfserie, eventually
its expression.

1fserie_name a language object or a character of length 1. The name of the Ifserie, eventually
its expression.

compare a boolean of length 1, that tells if the outputs of the old benchmark should be
displayed.

Details

¢ the default file name of the RDS file
* the names of the series in the output call element
By default, these are set as defined in their call element.

The app is made of shiny modules in order to make it easy to integrate it into a wider application.
In the module part, every input are defined as reactive variables.
Value

a list, of class reViewOutput, containing the new benchmark, the old one, the names of the series
and the boolean compare. This object can also be saved in RDS format through the app. The
reViewOutput object can be displayed as a html report with the same informations than in shiny,
with the rePort method.

See Also

rePort

14 threeRuleSmooth

Examples

Not run:
reView(twoStepsBenchmark(turnover,construction))

End(Not run)

threeRuleSmooth Bends a time series with a lower frequency one by smoothing their rate

Description

threeRuleSmooth bends a time series with a time series of a lower frequency. The procedure in-
volved is a proportional Denton benchmark.

Therefore, the resulting time series is the product of the high frequency input with a smoothed rate.
This latter is extrapolated through an arithmetic sequence.

The resulting time series is equal to the low-frequency series after aggregation within the benchmark
window.

Usage

threeRuleSmooth(
hfserie,
1fserie,
start.benchmark = NULL,
end.benchmark = NULL,
start.domain = NULL,
end.domain = NULL,
start.delta.rate = NULL,
end.delta.rate = NULL,
set.delta.rate = NULL,

)
Arguments
hfserie the bended time series. It can be a matrix time series.
1fserie a time series whose frequency divides the frequency of hfserie.

start.benchmark

an optional start for 1fserie to bend hfserie. Should be a numeric of length
1 or 2, like a window for 1fserie. If NULL, the start is defined by Ifserie’s
window.

end.benchmark an optional end for 1fserie to bend hfserie. Should be a numeric of length
1 or 2, like a window for 1fserie. If NULL, the start is defined by Ifserie’s
window.

threeRuleSmooth 15

start.domain an optional start of the output high-frequency series. It also defines the smooth-
ing window : The low-frequency residuals will be extrapolated until they contain
the smallest low-frequency window that is around the high-frequency domain
window. Should be a numeric of length 1 or 2, like a window for hfserie. If
NULL, the start is defined by hfserie’s window.

end.domain an optional end of the output high-frequency series. It also defines the smoothing
window : The low-frequency residuals will be extrapolated until they contain
the smallest low-frequency window that is around the high-frequency domain
window.

start.delta.rate
an optional start for the mean of the rate difference. It is required as a common
difference for the arithmetical extrapolation of the rate. Should be a numeric
of length 1 or 2, like a window for 1fserie. If NULL, the start is defined by
Ifserie’s window.

end.delta.rate an optional end for the mean of the rate difference. It is required as a common
difference for the arithmetical extrapolation of the rate. Should be a numeric
of length 1 or 2, like a window for 1fserie. If NULL, the end is defined by
Ifserie’s window.

set.delta.rate an optional double, that allows the user to set the delta mean instead of using a
mean.

if the dots contain a cl item, its value overwrites the value of the returned call.
This feature allows to build wrappers.

Details

In order to smooth the rate, threeRuleSmooth calls blSmooth and uses a modified and extrapolated
version of hfserie as weights :
* only the full cycles are kept

* the first and last full cycles are replicated respectively backwards and forwards to fill the
domain window.

Value

threeRuleSmooth returns an object of class "threeRuleSmooth”.

The functions plot and autoplot (the generic from ggplot2) produce graphics of the benchmarked
series and the bending series. The functions in_disaggr, in_revisions, in_scatter produce various
comparisons on which plot and autoplot can also be used.

The generic accessor functions as. ts, model.list, smoothed. rate extract various useful features
of the returned value.

An object of class "threeRuleSmooth" is a list containing the following components :
benchmarked.serie

a time series, that is the result of the benchmark.
1frate a time series, that is the low-frequency rate of the threeRuleSmooth.

smoothed.rate the smoothed rate of the threeRuleSmooth.

16 twoStepsBenchmark

hfserie.as.weights
the modified and extrapolated hfserie (see details).

delta.rate the low-frequency delta of the rate, used to extrapolate the low-frequenccy rate
time series. It is estimated as the mean value in the specified window.
model.list a list containing all the arguments submitted to the function.
call the matched call.
Examples

How to use threeRuleSmooth

smooth <- threeRuleSmooth(hfserie = turnover,
1fserie = construction)

as. ts(smooth)

coef (smooth)

summary (smooth)

library(ggplot2)

autoplot(in_disaggr(smooth))

twoStepsBenchmark Regress and bends a time series with a lower frequency one

Description

twoStepsBenchmark bends a time series with a time series of a lower frequency. The procedure
involved is a Prais-Winsten regression, then an additive Denton benchmark.

Therefore, the resulting time series is the sum of a regression fit and of a smoothed part. The
smoothed part minimizes the sum of squares of its differences.

The resulting time series is equal to the low-frequency series after aggregation within the benchmark
window.

Usage

twoStepsBenchmark (hfserie,lfserie,include.differenciation=FALSE, include.rho=FALSE,
set.coeff=NULL,set.const=NULL,
start.coeff.calc=NULL,end.coeff.calc=NULL,
start.benchmark=NULL,end.benchmark=NULL,
start.domain=NULL,end.domain=NULL,outliers=NULL,
L)

annualBenchmark(hfserie,1fserie,
include.differenciation=FALSE, include.rho=FALSE,
set.coeff=NULL,set.const=NULL,
start.coeff.calc=start(1lfserie)[1L],

twoStepsBenchmark 17

end.coeff.calc=end(1fserie)[1L],
start.benchmark=start(1fserie)[1L],
end.benchmark=end.coeff.calc[1L]+1L,
start.domain=start(hfserie),
end.domain=c(end.benchmark[1L]+2L, frequency(hfserie)),
outliers=NULL)

Arguments
hfserie the bended time series. It can be a matrix time series.
1fserie a time series whose frequency divides the frequency of hfserie.

include.differenciation
a boolean of length 1. If TRUE, 1fserie and hfserie are differentiated before
the estimation of the regression.

include.rho a boolean of length 1. If TRUE, the regression includes an autocorrelation param-
eter for the residuals. The applied procedure is a Prais-Winsten estimation.

set.coeff an optional numeric, that allows the user to set the regression coefficients in-
stead of evaluating them. If hfserie is not a matrix, set.coeff can be an unnamed
numeric of length 1. Otherwise, set.coeff has to be a named numeric, which
will set the corresponding coefficients instead of evaluating them. Each column
name of hfserie and each outlier set with the outlier arg initialize a coefficient
with the same name, that can be set through set.coeff. The default name for a
non-matrix time series is then "hfserie”, By example, a LS2003 and the time
series can be set using set.coeff=c(hfserie=3,L52003=1).

set.const an optional numeric of length 1, that sets the regression constant. The constant
is actually an automatically added column to hfserie. Using set.constant=3
is equivalent to using set.coeff=c(constant=3).

start.coeff.calc
an optional start for the estimation of the coefficients of the regression. Should
be a numeric of length 1 or 2, like a window for 1fserie. If NULL, the start is
defined by Ifserie’s window.

end.coeff.calc an optional end for the estimation of the coefficients of the regression. Should
be a numeric of length 1 or 2, like a window for 1fserie. If NULL, the end is
defined by Ifserie’s window.

start.benchmark
an optional start for 1fserie to bend hfserie. Should be a numeric of length
1 or 2, like a window for 1fserie. If NULL, the start is defined by Ifserie’s
window.

end.benchmark an optional end for 1fserie to bend hfserie. Should be a numeric of length
1 or 2, like a window for 1fserie. If NULL, the start is defined by Ifserie’s
window.

start.domain an optional for the output high-frequency series. It also defines the smoothing
window : The low-frequency residuals will be extrapolated until they contain
the smallest low-frequency window that is around the high-frequency domain
window. Should be a numeric of length 1 or 2, like a window for hfserie. If
NULL, the start is defined by hfserie’s window.

18 twoStepsBenchmark

end.domain an optional end for the output high-frequency series. It also defines the smooth-
ing window : The low-frequency residuals will be extrapolated until they contain
the smallest low-frequency window that is around the high-frequency domain
window. Should be a numeric of length 1 or 2, like a window for hfserie. If
NULL, the start is defined by hfserie’s window.

outliers an optional named list of numeric vectors, whose pattern is like 1ist (A02008T2=c (0,0, 3,2),LS2002=c(
where :

* "AQ" stands for additive outlier or "LS" for level shift

* The integer that follows stands for the outlier starting year

* an optional integer, preceded by the letter T, stands for the low-frequency
cycle of the outlier start.

* The numeric vector values stands for the disaggregated value of the outlier
and its length must be a multiple of hf / If

The outliers coefficients are evaluated though the regression process, like any
coefficient. Therefore, if any outlier is outside of the coefficient calculation
window, it should be fixed using set.coeff.

if the dots contain a cl item, its value overwrites the value of the returned call.
This feature allows to build wrappers.

Details

annualBenchmark is a wrapper of the main function, that applies more specifically to annual se-
ries, and changes the default window parameters to the ones that are commonly used by quarterly
national accounts.

Value

twoStepsBenchark returns an object of class "twoStepsBenchmark".

The function summary can be used to obtain and print a summary of the regression used by the
benchmark. The functions plot and autoplot (the generic from ggplot2) produce graphics of
the benchmarked serie and the bending serie. The functions in_disaggr, in_revisions, in_scatter
produce comparisons on which plot and autoplot can also be used.

The generic accessor functions as. ts, prais, coefficients, residuals, fitted.values, model.list,
se, rho extract various useful features of the returned value.

An object of class "twoStepsBenchmark" is a list containing the following components :

benchmarked.serie
a time series, that is the result of the benchmark. It is equal to fitted.values
+ smoothed.part.

fitted.values a time series, that is the high-frequency series as it is after having applied the
regression coefficients. Compared to the fitted values of the regression, which
can be retrieved inside the regression component, it has a high-frequency time
series and can eventually be integrated if include.differenciation is TRUE.

regression an object of class praislm, it is the regression on which relies the benchmark. It
can be extracted with the function prais

twoStepsBenchmark 19

smoothed.part the smoothed part of the two-steps benchmark. It is the smoothed difference
between the fitted.values and Ifserie.

model.list a list containing all the arguments submitted to the function.
call the matched call (either of twoStepsBenchmark or annualBenchmark)
Examples

How to use annualBenchmark or twoStepsBenchark

benchmark <- twoStepsBenchmark(hfserie = turnover,
1fserie = construction,
include.differenciation = TRUE)

as. ts(benchmark)

coef (benchmark)

summary (benchmark)

library(ggplot2)

autoplot(in_sample(benchmark))

How to manually set the coefficient

benchmark2 <- twoStepsBenchmark(hfserie = turnover,
1fserie = construction,
include.differenciation = TRUE,
set.coeff = 0.1)

coef (benchmark?)

Index

annualBenchmark (twoStepsBenchmark), 16
autoplot.threeRuleSmooth
(plot. twoStepsBenchmark), 8
autoplot.tscomparison
(plot.twoStepsBenchmark), 8
autoplot.twoStepsBenchmark
(plot.twoStepsBenchmark), 8

bflSmooth, 2, 15
distance, 3

in_disaggr, 4, 5-8, 15, 18
in_revisions, 4,5, 6-8, 15, 18
in_sample, 4, 5,6,7, 8
in_scatter,4-6,7,8, 15,18

plot.threeRuleSmooth
(plot.twoStepsBenchmark), 8
plot.tscomparison, 4-7
plot.tscomparison
(plot. twoStepsBenchmark), 8
plot.twoStepsBenchmark, 8
prais, 18
praislm, 6, 7

rePort, 11, 13
reUseBenchmark, 12
reView, /7,13

threeRuleSmooth, 4, 5,7, 8, 14
twoStepsBenchmark, 4-8, 11-13, 16

20

	bflSmooth
	distance
	in_disaggr
	in_revisions
	in_sample
	in_scatter
	plot.twoStepsBenchmark
	rePort
	reUseBenchmark
	reView
	threeRuleSmooth
	twoStepsBenchmark
	Index

