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1 Introduction

This R package implements dynamic slicing method for dependency detection between a categor-

ical variable and a continuous variable, with applications in non-parametric hypothesis testing,

quantitative traits loci (QTLs) study and gene set analysis. Functions to illustrate slicing result

and load data for gene set analysis are also provided.

Core functions for testing dependence in dslice are implemented in the Cpp language and

are integrated in R through the Rcpp package (Eddelbuettel et al., 2011). Slicing result is

illustrated via a ggplot object. dslice requires package Rcpp and ggplot2.

2 Running dslice

First, we need to install package Rcpp and ggplot2 before we install dslice. To load dslice,

type:

> library(dslice)

Loading required package: Rcpp

Loading required package: ggplot2

Loading required package: scales

2.1 A running example of dynamic slicing

To see how dynamic slicing detect the dependency between categorical and continuous variables,

let’s generate 200 observations of them:
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> n <- 100

> mu <- 0.5

> y <- c(rnorm(n, -mu, 1), rnorm(n, mu, 1))

> x <- c(rep("G1", n), rep("G2", n))

Please note that the type of x could be either integer or character. dslice provides a function

named “relabel” to convert categorical x to integers started from 0, which is the standard input

of ds_k and ds_eqp_k:

> x <- relabel(x)

Following the relabeling step, we can see how many different values the categorical variable

have (notice that x started with 0, just like the value of array index in C language):

> xdim <- max(x) + 1

As will be shown in Section 3, to preform dynamic slicing, categorical variables should be

sorted according to values of continuous variable:

> x <- x[order(y)]

With these preparations, we can run dynamic slicing by ds_k:

> lambda <- 1.0

> dsres <- ds_k(x, xdim, lambda, slice = TRUE)

> dsres

$dsval

[1] 6.454711

$slices

0 1 total

s1 50 18 68

s2 50 82 132

where lambda is the penalty for adding one more slice.

Dynamic slicing treats the investigated categorical and continuous variables to be indepen-

dent if the value of dynamic slicing statistic (“DS-statistic”) is 0 (or a very small value, e.g., less
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than 1e-6), otherwise dynamic slicing treats there exists dependency between them. For this

example, we can see that the value of DS-statistic is larger than 0, which means the x and y

here are not independent.

The value of lambda is related to a Type-I error rate, which measures the possibility that

dynamic slicing misinforms the two variable are not independence in the actual scenario that

them are. Currently there are not close form relationship between the value of slicing penalty

and Type-I error rate of dynamic slicing. For how to select a proper lambda in slicing, please

refer to dataset ds_type_one_error in this package. The indicator slice indicates whether to

report slice strategy with DS-statistic or not. If slice=TRUE, then we could see the slicing result

in a plot (Figure 1):

> colnames(dsres$slices) <- c("G1", "G2", "total")

> slice_show(dsres$slices)
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Figure 1: Illustration of slicing result.

2.2 A faster version

Jiang et al. (2015) showed that the worst case computational complexity of the dynamic slicing

algorithm is O(n2) based on the naive implementation. Though we speed up the computation

with additional restriction on splitting clumps of the same x values, the computational complex-

ity is still proportional to O(n2). This order of computational complexity will be embarrassing

for problem with large sample size, e.g., all genes of human.

To handle with large number of sample size, we introduce a faster strategy, which is named

to dynamic slicing with O(n1/2)-resolution. The basic idea is almost the same as ds_k. The

only different is that ds_eqp_k groups samples into approximate O(n1/2) groups which contain
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approximate O(n1/2) samples and performs dynamic slicing on their boundaries. The computa-

tional complexity is O(n). This much faster version could reduce computation time substantially

without too much power loss (Jiang et al., 2015). Based on the strategy of ds_eqp_k, we rec-

ommend to apply it in large sample size problem and use ds_k for ordinary problem. Here is an

example to use ds_eqp_k (almost the same as ds_k):

> n <- 100

> mu <- 0.5

> y <- c(rnorm(n, -mu, 1), rnorm(n, mu, 1))

> x <- c(rep("1", n), rep("2", n))

> x <- relabel(x)

> x <- x[order(y)]

> xdim <- max(x) + 1

> lambda <- 1.0

> dsres <- ds_eqp_k(x, xdim, lambda, slice = TRUE)

2.3 Dynamic slicing for K -sample (K g 2) test

One will be aware of the fact that a K -sample (K g 2) test problem could be viewed as a

dependence test of a continuous variable and a categorical variable. Consider the following

hypotheses:

H0 : the distributions of Y given X = j (1 f j f K) are the same

v.s. H1 : the distributions of Y given X = j (1 f j f K) are not the same.

Dynamic slicing can be used for testing these hypotheses based on independent observations.

dsclice provides a function ds_test to perform K -sample hypothesis testing:

> n <- 100

> y <- c(rnorm(n, -mu, 1), rnorm(n, mu, 1))

> ## generate x in this way:

> x <- c(rep(0, n), rep(1, n))

> x <- as.integer(x)

> ## or in this way:

> x <- c(rep("G1", n), rep("G2", n))

> x <- relabel(x)

> lambda <- 1.0

> dsres <- ds_test(y, x, type = "eqp", lambda = 1, rounds = 100)

One may find ds_test does not require the sorting step of x according to y. If you do not

want to do the rank, this fuction is a good choice. dslice still keep functions ds_k and ds_eqp_k
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so that users can also use them if they have a large number of X and do not want to repetitively

rank individuals according to Y . For instance, in the eQTL (expression quantitative trait loci)

study.

The omnibus function provide ds_k (default, type="ds") and ds_eqp_k (type="eqp") for K -

sample hypothesis testing. Sicne there is not theoretical relationship between lambda (penalty of

slicing) and Type-I error rate, ds_test requires an argument rounds to specify the total number

of permutations for obtaining an empirical p-value.

2.4 Dynamic slicing for one-sample test

ds_test can deal with an one-sample test as well. Assuming that Y ∈ R be a univariate

continuous variable with unknown cumulative distribution function (CDF) F (y) and probability

density function (PDF) f(y). Based on independent observations of Y , {yi}
n
i=1, we want to test

whether the random variable Y follows a distribution with a given CDF F0(y) and PDF f0(y).

Consider the following hypotheses:

H0 : F (y) = F0(y) v.s. H1 : F (y) ̸= F0(y).

As K -sample test problem, ds_test also contains two versions of slicing methods for one-sample

test. The usage of ds_test is ds_test(y, x, ..., type = c("ds", "eqp"), lambda = 1,

alpha = 1, rounds = 0). Examples are here:

> ## One-sample test

> n <- 100

> mu <- 0.5

> y <- rnorm(n, mu, 1)

> lambda <- 1.0

> alpha <- 1.0

> dsres <- ds_test(y, "pnorm", 0, 1, lambda = 1, alpha = 1, rounds = 100)

> dsres <- ds_test(y, "pnorm", 0, 1, type = "ds", lambda = 1, alpha = 1)

> dsres <- ds_test(y, "pnorm", 0, 1, type = "eqp", lambda = 1, rounds = 100)

> dsres <- ds_test(y, "pnorm", 0, 1, type = "eqp", lambda = 1)

type="ds" (default) corresponds to use ds_1 in one-sample test and type="eqp" corresponds

to use ds_eqp_1 in one-sample test. Argument alpha is required for type="ds" (ds_1). To

specify a null distribution, we need to give a valid cumulative disbribution function name and

its corresponded valid number of parameters. Please refer to Distributions in package stats

for more information. Above examples used the cumulative distribution function of normal

distribution. The criterion is the same as K -sample test, i.e., we reject the null hypothesis

if ds_test gives a DS-statistic larger than 0 (or a preassigned small positive value, 1e-6 for

instance).
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Here are examples for using ds_1 and ds_eqp_1:

> n <- 100

> mu <- 0.5

> x <- rnorm(n, mu, 1)

> y <- pnorm(sort(x), 0, 1)

> lambda <- 1.0

> alpha <- 1.0

> dsres <- ds_1(y, lambda, alpha)

> dsres <- ds_eqp_1(y, lambda)

Both these two functions need to sort samples and map them according to a given null

cumulative distribution function. The difference between them is that ds_eqp_1 considers an

equal partition on [0, 1] but ds_1 does not. Candidate slicing boundaries in ds_eqp_1 only

depend on the total number of samples and are unrelated to sample quantiles. In ds_1 they

are immediately to the left or right of sample quantile so that the additional argument alpha is

needed to avoid two slicing events occur immediately to both sides of one samples at the same

time.

2.5 Gene set analysis

Subramanian et al. (2005) introduced gene set enrichment analysis (GSEA) to the aggregate

effect of genes in unit of “gene set”. Specifically, gene set enrichment analysis attempts to

determine whether the distribution of biological phenotypes are different between genes in a

gene set and the other genes, which can be formulated as a non-parametric two-sample testing

problem.

dslice provides functions for doing gene set analysis and loading standard format files

for gene set analysis (.cls, .gct, .gmt and .gmt). We demonstrate the use of dynamic slicing

method on a well studied data set P53 NCI-60, which is available on the GSEA website (http:

//www.broadinstitute.org/gsea/) after register. The data files we use are P53.cls, P53.gct

and C2.gmt. We also include this data set in dslice package. To see data sets in R packge, one

can use

> data()

There are three data sets in dslice: gsa_exp, gsa_label and gsa_set. We can load data

for gene set analysis by typing:

> data(gsa_exp)
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> data(gsa_label)

> data(gsa_set)

This data set assays 10,100 gene expression levels and consists of 17 normal samples and 33

samples with mutated p53. The C2 gene set contains 308 predefined functional gene sets (with

gene set size between 15 and 500).

Function ds_gsa is designed for doing gene set analysis by dynamic slicing method. Its usage

is:

ds_gsa(expdat, geneset, label, generank, ..., lambda = 1, bycol = FALSE, minsize =

15, maxsize = 500, randseed = 11235, rounds = 1000)

The first three arguments can be either file path or data loaded by api functions load_gct,

load_gmt and load_cls. generank could be ither an integer vector of rank of each gene ac-

cording to some statistic, or a character string naming a function which takes gene expression

matrix as input and returns a vector of gene rank. We can genrate our rank list from our own

rank function. ... are parameters of the function specified (as a character string) by generank.

Here is an example to define function used as generank:

> fc <- function(mat, label)

+ {

+ d0 <- apply(x[,which(label == 0)], 1, mean)

+ d1 <- apply(x[,which(label == 1)], 1, mean)

+ d <- d1 / d0

+ return(order(d))

+ }

lambda is the penalty in dynamic slicing. bycol indicates whether we shuffling gene rank

or sample labels to generate background distribution. rounds specifies the total number of

permutation, which is related to the resolution of empirical p-values.

Function export_res exports the object generated by ds_gsa to a file.

3 Dynamic slicing model

In this section, we briefly give the theoretical part of dynamic slicing methods. For more details,

please refer to Jiang et al. (2015).
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3.1 Model and theory under ds_k and ds_eqp_k

Let’s go back to the K -sample hypothesis testing problem that ds_k and ds_eqp_k deal with:

H0 : the distributions of Y given X = j (1 f j f K) are the same

v.s. H1 : the distributions of Y given X = j (1 f j f K) are not the same.

In traditional ways, testing started with analyzing Y grouped by values of X, which is

Y |X = j. Instead of directly modeling the distribution of Y given X, we model the conditional

distribution of X given Y. To group X according to Y , all observations are sorted by their

values of Y at first. Then we attempt to group X around the rank list. We call the procedure

of grouping X according to Y “slicing”.

Under H0, the conditional distribution of X does not depend on slices of Y and

X ∼ Multinomial (1, (p1, . . . , pK)) ,

K∑

j=1

pj = 1.

Under H1, the distribution of X conditional on slices is given by

X|S(Y ) = h ∼ Multinomial
(
1, (p

(h)
1 , . . . , p

(h)
K )
)
,

K∑

j=1

p
(h)
j = 1.

We have

pj = Pr(X = j) =

|S|∑

h=1

P (S(Y ) = h)p
(h)
j , for j = 1, . . . ,K.

and without loss of generality, we assume that 0 < p1 f . . . f pK < 1.

Given a fixed slicing scheme S(Y ), the log-likelihood ratio of H1 versus H0 can be written

as

nM̂I (X,S(Y )) =

|S|∑

h=1

K∑

j=1

n
(h)
j log

(
n
(h)
j

n(h)

)
−

K∑

j=1

nj log
(nj

n

)
, (1)

where M̂I (X,S(Y )) is the plug-in estimator of the mutual information between X and S(Y )

based on observations {(xi, yi)}
n
i=1, nj is the number of observations with xi = j (i = 1, . . . , n

and j = 1, . . . ,K), n(h) is the number of observations in slice sh (h = 1, . . . , |S|) and n
(h)
j is

the number of observations with xi = j and S(yi) = h. In a word, our goal is to test whether

p
(h) = (p

(h)
1 , . . . , p

(h)
K ) is invariant with respect to h, i.e., slicing strategies. Figure 2 shows the

likelihood ratio test in a given slicing strategy.

The choice of the slicing scheme S(Y ) is important in detecting the dependence between

a pair of X and Y in the K -sample testing problem. As shown by Figure 3, different slicing

schemes gives distinct results. What’s more, unless the number of slices grows with sample size

n, it is possible that MI(X,T (Y )) = 0 when MI(X,Y ) > 0 under H1. On the other hand, if we

divide observations into too many slices (in the most extreme case each slice only contains one
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Figure 2: Illustration of likelihood ratio test in dynamic slicing.

observation), there will not enough power to distinguish the alternative and the null hypothesis.

To solve this dilemma, we assign a prior on slicing schemes and choose the “optimal” slicing

scheme under this prior. The final result is that we use a regularized log-likelihood ratio:

nD̂K = max
S

[
nM̂I (X,S(Y ))− λ(n)(|S| − 1)

]
, (2)

where the maximum is taken over all possible slicing schemes. Furthermore, we assume that the

penalty term in (2) takes the form of λ(n) = λ0 log(n), where λ0 > 0 is to be specified.
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Figure 3: Illustration of different slicing schemes. X is a binary indicator for samples from

two populations and Y is a continuous variable. Left panel: by dividing the observations into

two slices according to Y, we are not able to reject the null hypothesis since the number of

observations with X=1 and X=2 are almost equal in two slices. Right panel: by dividing the

observations into three slices according to Y, we can detect the dependence between Y and X.

The searching of optimal slicing strategy follows a dynamic programming procedure, which

is a variant of the Viterbi algorithm. Under the optimal slicing strategy, Jiang et al. (2015) have

proofed that D̂K = 0 almost surely under the null hypothesis and is larger than a given positive

number almost surely under the alternative hypothesis as sample size n goes to infinite.

When n is extremely large, the above procedure may be time consuming, we can first divide

ranked observations into O(n1/2) bins such that each bin contains approximately n1/2 obser-
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vations. Then, we can define a test statistic to have the same form as (2) except that the

maximization is taken over slicing schemes restricted on the fixed O(n1/2) bins (slicing is not

allowed within a bin). The corresponding statistics D̂∗
K has similar theoretical properties with

D̂K . For more details, please refer to Jiang et al. (2015). Although lower resolution may decrease

the power of the test, it can reduce the computational complexity of the dynamic slicing algo-

rithm from O(n2) to O(n). Figure 4 shows the possible slicing positions (ti, i = {1, 2, 3, 4, 5, 6})

in O(n1/2)-resolution version:

0000110110011001001100010110111100001001000010101101111011101110

t1 t2 t3 t4 t5 t6

Figure 4: Illustration of possible slicing positions of ds_eqp_k

3.2 Model and theory under ds_1 and ds_eqp_1

One-sample testing problem differs from the K -sample problem in our setup, as it can no longer

be recast as a test of independence. But a similar slicing idea may apply. As we map the

observations to the given cumulative distribution function, the hypothesis testing problem is

converted into testing whether their corresponding quantiles are uniformly distributed on [0, 1].

Given a fixed slicing scheme S(Y ), the log-likelihood ratio of alternative versus null can be

written as

nKL
(
P̂n(S(Y ))||P0(S(Y ))

)
=

|S|∑

h=1

nh log

(
nh

nwh

)
, (3)

where wh = |sh| is the width of slice sh and nh is the number of observations in slice sh.

KL
(
P̂n(S(Y ))||P0(S(Y ))

)
is the Kullback-Leibler divergence between the empirical distribution

of S(Y ), P̂n(S(Y )), and the null distribution of S(Y ), P0(S(Y )).

To avoid having too many slices or slices that are arbitrarily small, we introduce a prior on

slicing schemes. It gives us the following statistic:

nD̂1 (α0) = max
S


nKL

(
P̂n(S(Y ))||P0(S(Y ))

)
− λ(n)(|S| − 1) + α0

|S|∑

h=1

log (wh)


 , (4)

where the penalty term λ(n) = − log (θn) and is assumed to take the form of λ(n) = λ0 log(n).

The parameter λ0 penalizes the number of slices, while the parameter α0 penalizes both the

width and the number of slices. A larger value of α0 gives rise to a heavier penalization on small

slices and α0 can be viewed as a prior on the “smoothness” of the estimated densities under the

alternative hypothesis.

An variant version of the above procedure is to divide interval [0, 1] into n equal size slices,

which avoid the arbitrarily small slices (slicing immediately to the both sides of sample at the
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same time). The candidate slicing positions are only depends on the sample size. Let’s denote

the statistic of this version as D̂∗
1(0).

As K -sample test, the optimal slicing strategy could be obtained via a dynamic programming

procedure. Under the optimal slicing strategy, Jiang et al. (2015) have proofed that D̂1 (α0) and

D̂∗
1(0) have similar theoretical properties with D̂K when n goes to infinite. For more details,

please refer to Jiang et al. (2015).
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