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Abstract

In typical small-area studies of health and environment we wish to make inference on the rela-
tionship between individual-level quantities using aggregate, or ecological, data. Such ecological
inference is often subject to bias and imprecision, due to the lack of individual-level information in
the data. Simple regressions of area-level mean outcomes on area-level mean exposures are usually
biased. To alleviate bias, the within-area distribution of exposures should be accounted for. The
ecoreg package can be used to fit this class of models for ecological inference from aggregate data.
In addition, full outcome and covariate information from a survey of individuals within the areas
can be used to improve bias and precision. ecoreg can be used in this way to analyse ecological
and individual data simultaneously, using hierarchical related regression.

1 Ecological inference
Ecological studies analyse data defined at a group level, but aim to make inferences about the indi-
viduals within the groups. To make reliable individual-level inferences from these studies, a number
of problems must be overcome. One crucial difficulty is that the group-level exposure-response rela-
tionship may not reflect the individual-level relationship, a problem known as ecological bias, or the
ecological fallacy. See, for example, [1, 2, 3, 4] for discussion of these issues.

Denote the outcome count in area i, with population Ni, by yi. To model yi in terms of exposures
measured as aggregate-level summaries, the usual model is a simple binomial or Poisson regression
on the area-level covariate means zi. With binary covariates, zi is the proportion exposed over the
area. However, this only models the relationship between the aggregate exposures and outcomes. It
is only justified as a method of estimating individual-level relationships if all individuals in the area
have the same covariate value, or there is the same exposure-response relationship at the individual
and aggregate levels, which is generally only true for linear models. With non-linear models, such as
Binomial or Poisson models, using the same model form at both levels will lead to ecological bias
[1].

*Written while a member of the BIAS project at the Department of Epidemiology and Public Health, Imperial College
London
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Despite these problems, aggregate data can provide information about individual-level relation-
ships. As the ratio of the between-area to the within-area variability of the exposure increases, the
aggregate data summarise the true distribution of the exposure more accurately, and contain more
information about the true individual-level exposure-outcome relationship. With sufficient exposure
information, and with correctly-specified models for the mean outcome [1, 5, 6], ecological bias can
be reduced to negligible levels.

In general, successful ecological inference requires samples of individual-level data within ar-
eas. Individual exposure data are usually required to reduce ecological bias by accounting for the
within-area variability of exposures. But further improvements can also be made by using samples of
exposures and outcomes for selected individuals, as discussed by Wakefield [7] for 2 × 2 tables, and
more generally by Jackson et al.[8].

2 Models for aggregate and individual data
The models described here are also described in the papers by Jackson et al.[8] [9].

2.1 Individual data
We begin by specifying the form of the relationship between the individual-level risk of the binary
outcome and the covariates. If individual-level exposure and outcome data are available, this is used
to model them. It will also be used as the basis for an equivalent model for the aggregate data, as
described in the next section. The risk pij of the individual-level outcome yij for the jth individual in
area i is assumed to be a logit-linear function of the covariates. The most general model we consider
is

logit(pij) = µi +
∑
r

αrxir +
∑
r

βrzijr + γsij (1)

where xir are group-level covariates, and zijr are individual-level covariates. The group-level covari-
ates may include descriptions of the socio-economic status of the area, or the health service provision
in the area. Individual-level covariates might comprise individual behaviours such as smoking, de-
mographics such as ethnicity, or individual indicators of wealth and social class. Individuals may be
influenced by the overall average exposure in the area, in addition to their own, so that the group-level
variables may include the means of certain individual-level variables. γs represents an additional con-
tribution to the baseline risk for an individual occupying one of several strata s, usually defined by
age and sex.

The baseline risk µi may be fixed at µ or considered as a random effect with some distribution
across areas. This can account for any remaining overdispersion and heterogeneity between areas,
after adjusting for observed area-level variables. A random effect also allows the borrowing of infor-
mation across areas and can stabilise estimation from areas with small populations [10].

2.2 Aggregate data
2.2.1 Marginal model

Suppose the area-level exposures have been estimated from a survey. For example, in the UK census,
aggregate data on social class and education are calculated using a 10% sample to maintain confiden-
tiality. The proportion of smokers in the area might also be estimated from sales figures instead of
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a census. Then, individual outcomes can be assumed to be independent and identically distributed,
with risk equal to some marginal “group-level risk” pi. We assume

yi ∼ Bin(Ni, pi), (2)

where pi is determined by integrating the individual-level model over the joint within-area distribution
of covariates [1, 5]. Thus, pi is the average risk for an individual in group i.

pi =

∫
pij(x)fi(x)dx = Ex(pij(x)|i) (3)

For a single binary covariate, observing the proportion exposed gives us enough information to es-
timate a binomial within-area distribution. For continuous covariates the mean is not sufficient to
estimate the within-area distribution, and we generally need samples of individual covariate data to
be able to estimate the within-area variability. For multiple binary covariates the joint distribution
is estimated by the cross-classification of individuals between covariates. Typical census data do not
usually have this cross-classification, and we need individual data to estimate it.

2.2.2 Conditional model

An alternative to the marginal model was proposed by Wakefield [7]. The binomial model (2) is based
on the assumption that each individual in group i has an identical marginal probability pi of outcome,
integrating over their unknown exposures. If the binary exposure is known for all the individuals
in the area from a full population census, but not necessarily coupled with exposures for the same
individuals, then these should be conditioned on, leading to a likelihood based on a convolution of
binomial distributions. The exact likelihood is related to the extended (or non-central) hypergeometric
distribution, however, Wakefield describes a more computationally convenient normal approximation.

2.2.3 Binary covariates

For clarity we demonstrate the marginal model for 3 binary covariates, however, the framework ex-
tends immediately to any number of binary covariates. The integral to obtain the group-level risk is
equivalent to a sum. Each individual falls into one of S×23 categories, defined by the distinct combi-
nations of the 3 covariates and the S age-sex strata, and indexed by k. Let ϕik be the probability that
an individual occupies category k. Let qik be the probability of the individual outcome conditionally
on occupying category k. Rewriting the index k as {k1, k2, k3, s}, where kr (0 or 1) indicates the
presence or absence of covariate r = 1, . . . , 3.

pi =
∑
k

ϕikqik =
∑

k1,k2,k3,s

ϕ{i,k1,k2,k3,s}q{i,k1,k2,k3,s}. (4)

The outcome model conditionally on the unobserved category is

logit(q{i,k1,k2,k3,s}) = µi + logit(es) +
∑
r

αrxir +
∑
r

krβr (5)

The effect βr of the binary individual-level covariate r only enters into this equation when the co-
variate r is present. This is a generalisation of the model presented for two covariates by Lasserre et
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al.[11], except that the outcome is assumed to be non-rare and binomial instead of Poisson. logit(es)
is a fixed offset, where es is the risk of the outcome in stratum s, estimated from national population
data. This is similar in spirit to “indirect standardisation”, see, for example, [12]. If population and
outcome totals are available for strata within areas, then we could generalise this to a separate bino-
mial model for each stratum within area, with coefficients for the other covariates shared between the
models, assuming no stratum-covariate interactions. It is also important to check whether exposures
are correlated with strata. If not accounted for, this can lead to “mutual standardisation bias” [13].

We normally replace ϕik in (4) by an estimate ϕ̂ik. Ideally this probability would be estimated by
the proportion of individuals in area i occupying category k. But typical census data are not sufficient
to know the complete cross-classification of individuals between all of these covariate and strata cat-
egories. Usually, our only information is the marginal proportions of single covariates, for example,
the proportion ϕ

(1)
i of individuals who are economically inactive. If we assume that the covariates are

independent, then ϕik can be estimated by the product of the proportions of individuals occupying
each marginal category defining k. But generally, socioeconomic indicators, such as unemployment
and social class, are highly correlated. [11] demonstrated that, in a typical case, bias is negligible
when the joint covariate distribution is estimated by the product of the two marginal distributions,
even when the covariates are correlated. However, we may wish to study more than two covariates.

To estimate ϕik we can often use a combination of marginal proportions zir and individual co-
variate data zijr. In the context of the UK census, for example, these correspond to district-level
aggregate data and the Samples of Anonymised Records. Let Cik be the number of individuals in
area i in this individual-level dataset occupying category k, computed from the zijr. We use the
following two principles. Firstly, the estimated ϕ̂ik corresponding to categories k in which binary
covariate r is 1 must sum to zir. Secondly, the ratio of estimates ϕ̂ik/ϕ̂il must be the same as the
ratio Cik/Cil. This gives, for example, where R is the set of categories in which covariate r is 1,

ϕ̂ik = Cikzir/
∑
l∈R

Cil (6)

2.2.4 Continuous covariates

Suppose now the individual-level model (1) depends only on an intercept and one continuous individual-
level covariate xij : logit(pij) = µi + βxij . The ecological data consist of the within-area mean mi

of xij . In some cases, as well as the within-area mean, we may also have an estimate s2i of the
within-area variance of xij , for example, from geographical modelling of an environmental exposure
surface (e.g. Best et al.[14]). Then we suppose that these exposures are normally distributed, with
xij ∼ N(mi, s

2
i ). If an exposure is not naturally normally distributed, it can often be transformed to

normality. We can then calculate the area-specific risks (3) by integrating over fi, here the density
function of the normal distribution.

pi =

∫
expit(µi + βx)fi(x)dx (7)

Our assumed underlying model for pij(x) is logit-linear. In this case, the integral is not available in
closed form. However, if we approximate the logit by a probit link function, then (7) evaluates to

pi = expit
{
(1 + c2β2s2i )

−1/2(µi + βmi)
}

(8)
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where c = 16
√
3/(15π) (Salway and Wakefield [15]).

If, instead, we were using a Poisson model for a rare outcome, yi ∼ Pois(Nipi), and a log-linear
individual-level model log(pij) = µi + βxij , then the integrals can be evaluated explicitly without
an approximation. Instead of (8), we would have (Richardson et al.[1])

pi = exp

{
µi + βmi +

β2s2i
2

}
(9)

These methods generalise to multiple jointly normally-distributed covariates.

2.2.5 Semi-parametric approach

We have described a fully parametric model for ecological inference. Prentice and Sheppard [6]
described an alternative semi-parametric approach based on estimating functions. This is often simply
called the aggregate data method. Suppose a sample of covariates (binary or continuous) are available
from a subset of ni individuals, but not the corresponding outcomes on the same individuals. Broadly,
the mean and variance of the total disease count yi are calculated in terms of an aggregate risk
1
ni

∑
j pij . pij is the risk for individual j in area i, conditionally on their covariate values. This

method is not implemented in the ecoreg R package. This approach does not require a within-area
distribution to be specified for the covariates. It requires samples of covariate data as an explicit part
of the model. On the other hand, the parametric approaches described above, and implemented in
ecoreg, require individual covariate data implicitly to estimate an appropriate within-area distribution.

2.3 Combining aggregate and individual data
To summarise the model for the ecological data, we have a binomial model (2) for the area-level
outcome yi. The corresponding area-level risk pi is calculated explicitly in terms of the transformed
group baseline risk µi, the individual-level covariate effects, and the within-area distributions of the
covariates.

It is easy to extend this model to include information from a sample of individuals in each area
whose outcomes and exposures are known. We simply model the risk of the individual level out-
come with the logistic regression (1). Then the covariate effects α and β and the intercept µi are
shared by the models for both the aggregate and individual-level data. Thus, we can fit a joint model
which combines the information from the two sources of data. This is termed hierarchical related
regression.

Note that it is not necessary to have individual data within all of the areas i. In practice, sample
survey data will be available from varying numbers of individuals between areas.

3 Using ecoreg
The ecoreg package implements a fairly general case of the models described in Section 2. We assume
you have already downloaded and installed the ecoreg package. To apply these methods, you should
have one or both of

• An aggregate dataset with one record for each aggregate group, for example a geographical
area, or a stratum within area, for example from a population census. This contains aggregate
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outcomes and exposures, and optionally some indication of the within-area distribution of the
exposures.

• An individual-level dataset, for example from a sample survey study. There need not be the
same number of individuals per area, and there may be some areas in the aggregate dataset with
no individuals. This contains full individual-level covariate and outcome data.

First we load the ecoreg package into the working R session.

> library(ecoreg)

The main R function in ecoreg is called eco. This is used to fit a model to one of these datasets, or a
combination of the two. The R help page for eco fully describes each of the function’s arguments.

3.1 Example
The use of eco is illustrated here using a simulated dataset. We simulate aggregate data consisting of
50 groups of 100 individuals. Two contextual covariates (labelled deprivation and mean income) are
generated as standard normal variables. Two covariates which are binary at the individual level, and
available at the aggregate level as the proportion of non-white individuals and smokers in each area,
are generated from uniform distributions. The data frame sim.df contains the ecological covariate
data.

> ng <- 50
> N <- rep(100, ng)
> set.seed(31412)
> ctx <- cbind(deprivation = rnorm(ng), mean.income = rnorm(ng))
> phi <- cbind(nonwhite = runif(ng), smoke = runif(ng))
> sim.df <- as.data.frame(cbind(ctx, phi))
> sim.df[1:5,]

deprivation mean.income nonwhite smoke
1 0.81251444 -0.861417267 0.6394023 0.8004601
2 -1.02897943 -1.687661091 0.8664181 0.8016536
3 -0.04496483 -0.003495713 0.1839627 0.1202783
4 0.08924747 1.141115986 0.6579497 0.4494347
5 -1.78817352 -1.094355893 0.3637025 0.3525199

A disease outcome with approximate 5% baseline prevalence, and odds ratios of 1.01, 1.02, 1.5 and 2
respectively for the four covariates, is now simulated. The function sim.eco is provided to simulate
ecological outcome data and individual sample data, in terms of known covariates, baseline risks and
odds ratios.

> mu <- qlogis(0.05)
> alpha.c <- log(c(1.01, 1.02))
> alpha <- log(c(1.5, 2))
> sim1 <- sim.eco(N, ctx=~deprivation+mean.income, binary=~nonwhite+smoke,
+ data = sim.df, mu=mu, alpha.c=alpha.c, alpha=alpha,
+ isam=10)
> sim1$y[1:5]
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[1] 14 17 7 8 6

> aggdata <- as.data.frame(cbind(y=sim1$y, N=N, sim.df))

Format of aggregate dataset We have now got an aggregate dataset aggdata suitable for use
with the eco function. Generally, the aggregate dataset should be a data frame with a row corre-
sponding to an area or group. It should have at mininum an outcome variable. This is available either
as a proportion of individuals with the outcome, or the number of events and the population at risk in
the area. In addition, any number of aggregate covariates can be specified. Often these will be binary
covariates, expressed as proportions over the area. For covariates that are continuous at the individual
level, these should be specified as within-area means, and if possible, within-area variances, after
transformation to an approximate normal distribution. For example, we print the first ten rows of the
aggdata data.

> aggdata[1:5,]

y N deprivation mean.income nonwhite smoke
1 14 100 0.81251444 -0.861417267 0.6394023 0.8004601
2 17 100 -1.02897943 -1.687661091 0.8664181 0.8016536
3 7 100 -0.04496483 -0.003495713 0.1839627 0.1202783
4 8 100 0.08924747 1.141115986 0.6579497 0.4494347
5 6 100 -1.78817352 -1.094355893 0.3637025 0.3525199

The number of individuals with the disease, the population of the area, the deprivation index, the
mean income, the proportion of non-white individuals, the proportion of smokers, and the mean and
standard deviation of the pollution exposure are labelled y, N, deprivation, mean.income,
nonwhite and smoke, respectively.

The return value of sim.eco has a component y containing the ecological outcome data (the
number of individuals in each area with the outcome), and a component idata containing the in-
dividual sample data. Here we have specified isam=10 in the call to sim.eco, producing an
individual sample dataset with 10 individuals for each of the 50 areas.

> indivdata <- sim1$idata

Format of individual dataset We have now got an individual dataset indivdata suitable for use
with the ecoreg package. The individual dataset should be a data frame with each row corresponding
to an individual. Variables may include a binary outcome and any number of covariates. For example,
the first 15 rows of indivdata are illustrated.

> indivdata[1:15,]

group y deprivation mean.income nonwhite smoke
1 1 0 0.8125144 -0.8614173 0 1
2 1 0 0.8125144 -0.8614173 0 1
3 1 0 0.8125144 -0.8614173 1 1
4 1 1 0.8125144 -0.8614173 1 1
5 1 0 0.8125144 -0.8614173 1 1
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6 1 0 0.8125144 -0.8614173 0 0
7 1 1 0.8125144 -0.8614173 1 1
8 1 0 0.8125144 -0.8614173 1 1
9 1 0 0.8125144 -0.8614173 1 1
10 1 0 0.8125144 -0.8614173 1 1
11 2 0 -1.0289794 -1.6876611 1 1
12 2 1 -1.0289794 -1.6876611 1 1
13 2 0 -1.0289794 -1.6876611 1 1
14 2 0 -1.0289794 -1.6876611 1 1
15 2 1 -1.0289794 -1.6876611 1 1

The area indicator, the disease status of the individual, the deprivation index and the mean income
of the area in which the individual lives, indicators for non-white ethnicity and whether the individ-
ual smoked, the pollution exposure and the area indicator are labelled group, y, deprivation,
mean.income, nonwhite and smoke respectively. Binary indicators are 0 or 1 corresponding to
no and yes respectively. The area indicator is only necessary when using models with random area
effects.

3.2 Calling eco
Now we give examples of calling the eco function to fit models to the aggregate and individual
datasets.

3.2.1 Aggregate data alone

Firstly, we fit the correct model to the simulated data, with two contextual covariates and two indi-
vidual binary covariates, using the aggregate data alone.

> agg.eco <- eco(cbind(y, N) ~ deprivation + mean.income,
+ binary = ~ nonwhite + smoke, data = aggdata)

• The first argument of eco is a formula, as used in most statistical modelling functions in R
such as lm and glm. It specifies the aggregate component of the model, that is, the names of
any covariates included in xir (equation 1).

• The argument data specifies a data frame which should contain all aggregate variables speci-
fied in the call to eco.

• The binary argument to eco is a formula whose right hand side should contain the names
of any aggregate covariates considered as individual-level rather than contextual effects, here,
non-white ethnicity and smoking. These should be binary at the individual level. eco will
fit the marginal model (2–3) by default for binary covariates. To fit the convolution normal-
approximation model of Wakefield [7] specify model=conditional in the call to eco.

The eco function returns objects of class ecoreg. Printing an object of this class displays
the estimated odds ratios exp(α) associated with aggregate-level covariates, and odds ratios exp(β)
associated with individual covariates (equation 1), along with their 95% confidence intervals, and
−2× the maximised log-likelihood. In this example, the estimates are close to the true values used
for simulating the data.
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> agg.eco

Call:
eco(formula = cbind(y, N) ~ deprivation + mean.income, binary = ~nonwhite +

smoke, data = aggdata)

Aggregate-level odds ratios:
OR l95 u95

(Intercept) 0.05398074 0.03906762 0.07458659
deprivation 0.95258788 0.86821545 1.04515955
mean.income 1.00683238 0.92165889 1.09987702

Individual-level odds ratios:
OR l95 u95

nonwhite 1.575121 1.097684 2.260219
smoke 2.005530 1.432162 2.808447

-2 x log-likelihood: 238.0643

3.2.2 Combining aggregate and individual data

Next we combine the aggregate data with the information from samples of individuals, as described
in Section 2.3. Firstly, we form a reduced aggregate dataset, removing the individual outcomes and
population totals which appear in the individual data. We assume that the sampled individuals did not
contribute to the estimation of the aggregate covariates.

> aggdata.sub <- aggdata
> aggdata.sub$y <- aggdata$y - tapply(indivdata$y, indivdata$group, sum)
> aggdata.sub$N <- aggdata.sub$N - 10

Again, we fit the correct model to the simulated data, with two contextual covariates and two indi-
vidual binary covariates. The individual-level regression model is given in the iformula argument.
The name of the individual-level dataset, in which the variables in the individual-level model should
appear, is given in the idata argument.

> agg.indiv.eco <- eco(cbind(y, N) ~ deprivation + mean.income,
+ binary = ~ nonwhite + smoke,
+ iformula = y ~ deprivation + mean.income + nonwhite + smoke,
+ data = aggdata.sub, idata=sim1$idata)
> agg.indiv.eco

Call:
eco(formula = cbind(y, N) ~ deprivation + mean.income, binary = ~nonwhite +

smoke, iformula = y ~ deprivation + mean.income + nonwhite +
smoke, data = aggdata.sub, idata = sim1$idata)

Aggregate-level odds ratios:
OR l95 u95
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(Intercept) 0.05179549 0.03832877 0.06999371
deprivation 0.95121091 0.86688939 1.04373431
mean.income 1.00921302 0.92420081 1.10204505

Individual-level odds ratios:
OR l95 u95

nonwhite 1.638318 1.182613 2.269622
smoke 2.050944 1.502937 2.798767

-2 x log-likelihood: 562.3413

In this example, combining with the individual sample data does not noticeably improve the precision
of the estimates.

3.2.3 Importance of the between-area exposure contrasts

Suppose now that we simulate data with a much lower between-area exposure variance, such as a
uniform(0, 0.2) distribution for proportion of non-white ethnicity and uniform(0.1, 0.3) for proportion
of smokers. The aggregate data now contain less information about the individual-level effects. The
amount of individual-level information in ecological data decreases as the between-area to the within-
area variability of the exposure decreases. When there are low exposure contrasts between areas,
inference may be improved by combining the ecological data with individual-level data [8].

When fitting the true individual model to the aggregate data alone, we obtain highly imprecise
estimates for the individual-level effects.

> phi <- cbind(nonwhite = runif(ng, 0, 0.2), smoke = runif(ng, 0.1, 0.3))
> sim.df <- as.data.frame(cbind(ctx, phi))
> sim1 <- sim.eco(N, ctx=~deprivation+mean.income, binary=~nonwhite+smoke,
+ data = sim.df, mu=mu, alpha.c=alpha.c, alpha=alpha,
+ isam=10)
> aggdata <- as.data.frame(cbind(y=sim1$y, N=N, sim.df))
> indivdata <- sim1$idata
> agg.eco <- eco(cbind(y, N) ~ deprivation + mean.income,
+ binary = ~ nonwhite + smoke, data = aggdata)
> agg.eco

Call:
eco(formula = cbind(y, N) ~ deprivation + mean.income, binary = ~nonwhite +

smoke, data = aggdata)

Aggregate-level odds ratios:
OR l95 u95

(Intercept) 0.08322794 0.05458192 0.1269081
deprivation 0.93587832 0.83970494 1.0430667
mean.income 1.13835917 1.02762594 1.2610246

Individual-level odds ratios:
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OR l95 u95
nonwhite 0.6781861 0.04157216 11.06357
smoke 0.4947661 0.01855474 13.19304

-2 x log-likelihood: 209.9219

To be able to estimate the individual-level effects more accurately, we combine the aggregate data
with the individual-level sample data.

> aggdata.sub <- aggdata
> aggdata.sub$y <- aggdata$y - tapply(indivdata$y, indivdata$group, sum)
> aggdata.sub$N <- aggdata.sub$N - 10
> agg.indiv.eco <- eco(cbind(y, N) ~ deprivation + mean.income,
+ binary = ~ nonwhite + smoke,
+ iformula = y ~ deprivation + mean.income + nonwhite + smoke,
+ data = aggdata.sub, idata=indivdata)
> agg.indiv.eco

Call:
eco(formula = cbind(y, N) ~ deprivation + mean.income, binary = ~nonwhite +

smoke, iformula = y ~ deprivation + mean.income + nonwhite +
smoke, data = aggdata.sub, idata = indivdata)

Aggregate-level odds ratios:
OR l95 u95

(Intercept) 0.05860766 0.04638414 0.07405244
deprivation 0.91778108 0.82430940 1.02185188
mean.income 1.15270444 1.04056073 1.27693416

Individual-level odds ratios:
OR l95 u95

nonwhite 1.516919 0.7021149 3.277304
smoke 1.840635 1.0189851 3.324813

-2 x log-likelihood: 515.2852

This raises the question of whether the aggregate data do contribute any information in this case, and
whether we can do just as well by analysing the individual data alone. But we find that precision is
lower when only the individual data are included.

> indiv.eco <- eco(iformula = y ~ deprivation + mean.income + nonwhite + smoke,
+ idata=indivdata)
> indiv.eco

Call:
eco(iformula = y ~ deprivation + mean.income + nonwhite + smoke,

idata = indivdata)
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Aggregate-level odds ratios:
OR l95 u95

(Intercept) 0.0730906 0.04822698 0.1107728

Individual-level odds ratios:
OR l95 u95

deprivation 0.921286 0.6850914 1.238912
mean.income 1.015972 0.7695288 1.341338
nonwhite 1.753438 0.7300265 4.211553
smoke 2.260043 1.1906920 4.289769

-2 x log-likelihood: 294.8885

3.2.4 Normally-distributed covariates

We now add a continuous covariate to the simulated data, representing estimated exposure to air
pollution. This will have a constant within-area standard deviation of 2, and within-area means
varying around 1.24 with between-area standard deviation 0.1. A disease outcome is simulated with
an odds ratio of 1.2 for one unit of pollution exposured, and the same odds ratios as before for the
other covariates.

> phi <- cbind(nonwhite = runif(ng), smoke = runif(ng))
> sim.df <- as.data.frame(cbind(ctx, phi))
> sim.df$poll <- rnorm(ng, 1.24, 0.1)
> sim.df$poll.sd <- rep(0.2, ng)
> sim1 <- sim.eco(N, ctx=~deprivation+mean.income, binary=~nonwhite+smoke,
+ m=sim.df["poll"], S=sim.df["poll.sd"], beta=log(2),
+ data = sim.df, mu=mu, alpha.c=alpha.c, alpha=alpha,
+ isam=10)
> aggdata <- as.data.frame(cbind(y=sim1$y, N=N, sim.df))
> aggdata[1:5,]

y N deprivation mean.income nonwhite smoke
1 14 100 0.81251444 -0.861417267 0.02777653 0.39783656
2 24 100 -1.02897943 -1.687661091 0.88876150 0.97207114
3 19 100 -0.04496483 -0.003495713 0.31863619 0.52441222
4 12 100 0.08924747 1.141115986 0.31363207 0.08960427
5 29 100 -1.78817352 -1.094355893 0.94361319 0.89781284

poll poll.sd
1 1.140624 0.2
2 1.127442 0.2
3 1.302838 0.2
4 1.232604 0.2
5 1.211470 0.2

The area mean of the covariate is called poll in the aggregate dataset, and the area standard deviation
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is called poll.sd. We now model these data as before, including pollution as another individual-
level covariate in the model.

> agg.eco <- eco(cbind(y, N) ~ deprivation + mean.income,
+ normal= ~ poll, norm.var=poll.sd,
+ binary = ~ nonwhite + smoke, data = aggdata)
> agg.eco

Call:
eco(formula = cbind(y, N) ~ deprivation + mean.income, binary = ~nonwhite +

smoke, normal = ~poll, data = aggdata, norm.var = poll.sd)

Aggregate-level odds ratios:
OR l95 u95

(Intercept) 0.05495819 0.02097343 0.1440109
deprivation 0.97178935 0.90698004 1.0412297
mean.income 1.01472207 0.95137778 1.0822839

Individual-level odds ratios:
OR l95 u95

nonwhite 1.386012 1.061385 1.809927
smoke 1.866189 1.429782 2.435797
poll 2.056726 1.010721 4.185252

-2 x log-likelihood: 255.2916

The normal argument to eco is a formula whose right-hand side should contain variables de-
noting the group-level means of the normally-distributed covariates. These covariates will then be
fitted as individual-level effects, using a model of the form of equation (8) by default, or (9) if the
outcome is rare and model = “poisson” is specified. The norm.var is used to supply the
corresponding group-level variances.

The true odds ratio of 2 for pollution is fairly well estimated. Now suppose the pollution data had
a lower ratio of between-area to within-area standard deviation.

> sim.df$poll <- rnorm(ng, 1.24, 0.1)
> sim.df$poll.sd <- rep(0.2, ng)
> sim1 <- sim.eco(N, ctx=~deprivation+mean.income, binary=~nonwhite+smoke,
+ m=sim.df["poll"], S=sim.df["poll.sd"], beta=log(2),
+ data = sim.df, mu=mu, alpha.c=alpha.c, alpha=alpha, isam=10)
> aggdata <- as.data.frame(cbind(y=sim1$y, N=N, sim.df))
> agg.eco <- eco(cbind(y, N) ~ deprivation + mean.income,
+ normal= ~ poll, norm.var=poll.sd,
+ binary = ~ nonwhite + smoke, data = aggdata)
> agg.eco

Call:
eco(formula = cbind(y, N) ~ deprivation + mean.income, binary = ~nonwhite +
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smoke, normal = ~poll, data = aggdata, norm.var = poll.sd)

Aggregate-level odds ratios:
OR l95 u95

(Intercept) 0.04602726 0.01911003 0.1108585
deprivation 1.01748103 0.94960069 1.0902137
mean.income 1.05574785 0.98884361 1.1271788

Individual-level odds ratios:
OR l95 u95

nonwhite 1.164653 0.9022428 1.503382
smoke 1.524001 1.1695615 1.985854
poll 2.794900 1.4489779 5.391020

-2 x log-likelihood: 267.6655

Now the confidence interval for the pollution odds ratio estimate is much wider, as there is less
information in the aggregate data. However, the estimate is not biased. Again, to improve precision
we can incorporate the individual-level data. Remember to include pollution in the individual level
model iformula.

> indivdata <- sim1$idata
> indivdata[1:5,]

group y deprivation mean.income nonwhite smoke poll
1 1 0 0.8125144 -0.8614173 0 0 1.027011
2 1 0 0.8125144 -0.8614173 0 1 1.330753
3 1 0 0.8125144 -0.8614173 0 0 1.210724
4 1 0 0.8125144 -0.8614173 0 1 1.207985
5 1 0 0.8125144 -0.8614173 0 1 0.920614

> aggdata.sub <- aggdata
> aggdata.sub$y <- aggdata$y - tapply(indivdata$y, indivdata$group, sum)
> aggdata.sub$N <- aggdata.sub$N - 10
> agg.indiv.eco <- eco(cbind(y, N) ~ deprivation + mean.income,
+ normal= ~ poll, norm.var=poll.sd,
+ binary = ~ nonwhite + smoke, data = aggdata.sub,
+ iformula = y ~ deprivation + mean.income +
+ nonwhite + smoke + poll,
+ idata=indivdata
+ )
> agg.indiv.eco

Call:
eco(formula = cbind(y, N) ~ deprivation + mean.income, binary = ~nonwhite +

smoke, normal = ~poll, iformula = y ~ deprivation + mean.income +
nonwhite + smoke + poll, data = aggdata.sub, idata = indivdata,

14



norm.var = poll.sd)

Aggregate-level odds ratios:
OR l95 u95

(Intercept) 0.07758804 0.03774201 0.1595014
deprivation 1.04094185 0.97328210 1.1133051
mean.income 1.03721230 0.97320872 1.1054251

Individual-level odds ratios:
OR l95 u95

nonwhite 1.311123 1.041557 1.650455
smoke 1.564927 1.239671 1.975522
poll 1.756940 1.021017 3.023297

-2 x log-likelihood: 728.8903

The precision of the estimate for pollution is improved.

3.2.5 Within-area distribution of binary covariates

To build the model (3) with more than one binary covariate, by default eco assumes that the co-
variates are independent within areas. Often this assumption is not appropriate, especially when
considering, for example, socio-economically related factors.

To account for the joint within-area distribution of a set of binary or categorical covariates, use
the cross argument to eco. This should be a matrix containing the same number of rows as the
aggregate data, and number of columns equal to the distinct number of covariate categories into which
an individual can belong. For full details of how to specify cross, refer to the help page for the eco
function. The cross needs to be calculated by the user before calling eco. Individual data may be
required to estimate cross, as typical census data do not give detailed cross-classification tables.

This is now illustrated with a hypothetical example. We introduce another covariate called
soclass into the aggdata data representing the proportion of individuals in a lower social class.
This is likely to be correlated with smoking at both aggregate and individual level. Suppose that we
have an information from an individual-level survey, suggesting that an individual is twice as likely
to smoke if in a lower social class. We wish to use this information to construct a matrix with 100
rows and four columns, representing estimates of the proportion of individuals who are in each of
four categories:

1. neither smoke nor are in the lower social class (p00)

2. smoke but are not in the lower social class (p10)

3. do not smoke but are in the lower social class (p01)

4. smoke and are in the lower social class. (p11)

Let pA be the proportion of smokers, and pB be the proportion of individuals in the lower social class,
in an area. We know that p10+p11 = pA, p01+p11 = pB and, from the survey, (p11/pB)/(p10/(1−
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pB)) = 2. This leads, for example, to

p11 = 2pApB/(1 + pB)

This is enough information to construct all the estimated cross-classification probabilities, as illus-
trated by the following R code.

> aggdata$soclass <- plogis(qlogis(aggdata$smoke) + runif(ng, -1, 1))
> pa <- aggdata$smoke
> pb <- aggdata$soclass
> p11 <- pa*pb* 2 /(1 + pb)
> p10 <- pa - p11
> p01 <- pb - p11
> p00 <- 1 - (p01 + p10 + p11)
> cross <- cbind(p00, p10, p01, p11)
> cross[1:5,]

p00 p10 p01 p11
[1,] 0.514272326 0.241819040 0.08789111 0.156017524
[2,] 0.006071811 0.005809009 0.02185705 0.966262130
[3,] 0.337076166 0.185478119 0.13851162 0.338934100
[4,] 0.864384058 0.080193680 0.04601168 0.009410586
[5,] 0.063001388 0.057626100 0.03918577 0.840186744

This is the cross-classification matrix that we can supply to eco if we wanted to construct an ecolog-
ical model including both smoking and social class, for example

> eco(cbind(y, N) ~ 1, binary = ~ smoke + soclass, cross=cross, data=aggdata)

To account for the joint within-area distribution of a set of continuous covariates, use the norm.var
argument to eco to specify the joint covariance matrix of the covariates, assumed normally dis-
tributed, for each area. For further details of how to specify norm.var in this way, refer to the help
page for the eco function.

ecoreg does not support specifying the within-area covariance between binary and continuous
covariates. These are assumed to be independent in the model.

3.2.6 Stratification

Suppose that outcome data and covariate data are available by age and To account for differing disease
risks in strata defined by age and sex, using fixed offsets determined from the whole population (as
in equations 1 and 5), use the strata, pstrata and istrata arguments to eco.

• pstrata should be a vector with one element for each stratum, giving the assumed baseline
outcome probabilities for the strata.

• strata should be a matrix with the same number of rows as the aggregate data. Rows rep-
resent areas, and columns represent the strata occupancy proportions for those areas (which
are used as estimates of the observed occupancy probabilities). Alternatively, to account
for within-area correlation between strata membership and binary covariate status, the cross-
classification between strata and covariates can be specified in the cross argument. See the
help page to eco.
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• If individual data are modelled, istrata should be a variable containing the individual-level
variable indicating the stratum an individual occupies. This should be a factor, whose levels
correspond to the columns of the matrix strata.

3.2.7 Categorical covariates

As well as binary covariates, categorical covariates can also be fitted as individual-level predictors.
The aggregate data for categorical covariates must be supplied separately from the main aggregate
dataset, in the categorical argument to eco. See the help page for eco. In practice, there is not
likely to be enough information in ecological data for successful ecological inference on categorical
variables with large numbers of categories.

3.2.8 Random effects models

By default, eco assumes the baseline risk µi (equation 1) is constant µ between areas i. Optionally,
eco can also fit µi as a normally-distributed random effect. If random=TRUE is specified in the call
to eco, an area-level random intercept is included in the model. In this case the data should indicate
which area each row of the data corresponds to. In the individual data, igroups should give the
name of a variable containing the group identifiers of the individual-level data. In the aggregate data,
by default, the groups are the row numbers of the dataset. Alternatively, groups specifies a group-
level variable containing the group identifiers to be matched with the groups given in igroups.

eco uses adaptive Gauss-Hermite integration [16] to fit random effects models. The Gauss-
Hermite integration can be controlled by the arguments gh.points and iter.adapt to eco.
gh.points gives the number of points to use for quadrature, while iter.adapt gives the number
of iterations to use for the adaptive phase of the algorithm.

Random effects model fitting is relatively slow, and it may be useful to view the progress of the
model fitting by specifying a control argument, such as control=list(trace=1, REPORT=1).
This is passed from eco to optim, the R function which performs optimisation of the likelihood.
See help(optim) for further options to control optimisation.

4 Warnings and limitations
• It is easy to over-fit models, especially with several covariates. Often there is not enough

information available in aggregate data.

• When fitting many covariates, it is essential to account for their within-area distribution.

• Continuous covariates must be normally-distributed or able to be transformed to normality.

• Only limited error-checking is performed at the moment. eco may fail with an incomprehen-
sible error message if the model or data are specified wrongly or inconsistently.

5 eco reference guide
The R help page for eco gives details of all the allowed arguments and options to the eco function.
To view this online in R, type:
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> help(eco)

Similarly, all other functions in the package have help pages, which should always be consulted in
case of doubt about how to call them. The web-browser based help interface may be convenient -
type

> help.start()

and navigate to Packages . . . ecoreg, which brings up a list of all the functions in the package with
links to their documentation, and a link to this manual in PDF format.

6 Similar software
• WinBUGS (http://www.mrc-bsu.cam.ac.uk/bugs) can be used to fit these models

from a Bayesian perspective using Markov Chain Monte Carlo simulation. While computation-
ally slower, this approach is amenable to extension to account for complexities such as random
intercepts, random coefficients, spatial correlation and measurement error. WinBUGS files
containing worked examples of a range of these models, using methods described by Jackson
et al. [8] [9] are provided at http://www.bias-project.org.uk/software.

• The R package eiPack implements ecological inference for R × C contingency tables.

• The R package MCMCpack, available from CRAN, implements ecological inference for 2× 2
tables using a Bayesian hierarchical model described by Wakefield [7].

• The R package eco, available from CRAN, implements ecological inference for 2 × 2 tables,
using methods described by Imai and Lu [17].

• EI and EzI [18] by Kenneth Benoit and Gary King, implementing methods from King [19].
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