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Abstract

This paper describes several methods that are currently available in the hts package,
for forecasting hierarchical time series. The methods included are: top-down, buttom-up,
middle-out and optimal combination. The implementation of these methods is illustrated by
using regional infant mortality counts in Australia.
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Introduction

Advances in data collection and storage have resulted in large numbers of time series that are
hierarchical in structure, and clusters of which may be correlated. In many applications the
related time series can be organized in a hierarchical structure based on dimensions such as
gender, geography or product type. This has led to the problem of hierarchical time series
modeling and forecasting. The aim of this article is to describe the R functions that are available
in the hts package (Hyndman, Ahmed, Shang, and Wang 2014), for modeling and forecasting
hierarchical and grouped time series.

Forecasting hierarchical time series has been the subject of increasing attention recently (e.g.,
Athanasopoulos, Ahmed, and Hyndman 2009), and has application in diverse fields. In macroe-
conomic forecasting, the national economic account is disaggregated into production, income
and outlay, and capital transactions. Production is further classified into production in Britain
and production in the rest of world; income and outlay and capital transactions are each further
classified into persons, companies, public corporations, general government, and rest of world.
In demographic forecasting, the mortality counts in Australia can be disaggregated by gender;
within each gender, mortality counts can be further disaggregated by different states in Australia.
The first example is referred to as a hierarchical time series, in which the order of disaggregation
is unique. By contrast, the second example is a grouped time series, which can be thought of as
hierarchical time series without a unique hierarchical structure. In other words, the order by
which the series can be grouped is not unique — the mortality counts in Australia can be first
disaggregated by states and then by gender, or they can be disaggregated by gender first, and
then by states.

Hierarchical forecasting methods allow the forecasts at each level to be summed giving the
forecasts at the level above. When the data are grouped, the forecasts of each group must be
equal to the forecasts of the individual series making up the group.

In the current statistical literature, existing approaches to hierarchical time-series forecasting
usually involve either a top-down method or a bottom-up method or a combination of both
methods often referred to as the “middle-out” approach. The top-down method involves forecast-
ing the aggregated series, then disaggregating the forecasts based on the historical or forecast
proportions (see Gross and Sohl 1990; Athanasopoulos et al. 2009, for possible ways of choosing
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these proportions). The bottom-up method involves forecasting each of the disaggregated series
at the lowest level of the hierarchy, and then using aggregation to obtain forecasts at higher
levels of the hierarchy (Kahn 1998). The middle-out method starts at an intermediate level of
the hierarchy chosen by the user, and then aggregation is used to obtain forecasts at higher
levels and disaggregation is used to obtain forecasts at lower levels. However, none of these
methods takes the correlation among the series at each level into account. To address this issue,
Hyndman, Ahmed, Athanasopoulos, and Shang (2011) proposed a statistical method for optimal
hierarchical forecasting.

This article proceeds as follows. Techniques for modeling and forecasting hierarchical time
series are first reviewed and their implementations using the hts package are then described.
Conclusions are given at the end.

Hierarchical forecasting methods

Notation

Figure 1 shows a K = 2-level hierarchy. At the top of the hierarchy, level 0, is the “Total”, the
most aggregate level of the data. We denote as yt the tth observation of the “Total” series for
t = 1, . . . , T . Below this level we denote as yj,t the tth observation of the series which corresponds
to node j of the hierarchical tree. The “Total” is disaggregated into two series at level 1 and
each of these into three and two series respectively at the bottom level of the hierarchy (level 2).
A denotes series A at level 1; AB denotes series B at level 2 within series A at level 1, and so on.

The total number of series in a hierarchy is given by n = 1 + n1 + · · · + nK where ni is the
number of series at level i of the hierarchy. In this case n = 1 + 2 + 5 = 8.

Figure 1: A two level hierarchical tree diagram
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or in more compact notation
yt = SyK,t,

where yt is a vector of all the observations in the hierarchy at time t, S is the summing matrix
as defined above, and yK,t is a vector of all the observation in the bottom level of the hierarchy
at time t.

We are interested in generating forecasts for each series in the hierarchy. We denote as ŷj,h the
h-step-ahead forecast generated for the series at node j having observed the time series up to
observation T and as ŷh the h-step-ahead forecast generated for the “Total” series.1 We refer
to these as “base” forecasts. They are independent forecasts generated for each series in the
hierarchy using a suitable forecasting method. These base forecasts are then combined to produce
final forecasts for the whole hierarchy that aggregate in a manner that is consistent with the
structure of the hierarchy. We refer to these as revised forecasts and denote them as ỹj,h and ỹh

respectively.

There are a number of ways of combining the base forecasts in order to obtain revised forecasts.
The following sections discuss some of the possible combining approaches.

Bottom-up method

A commonly applied method for hierarchical forecasting is the bottom-up approach. This
approach involves first generating base independent forecasts for each series at the bottom level
of the hierarchy and then aggregating these upwards to produce revised forecasts for the whole
hierarchy.

For example, for the hierarchy of Figure 1 we first generate h-step-ahead base forecasts for the
bottom level series: ŷAA,h, ŷAB,h, ŷAC,h, ŷBA,h and ŷBB,h. Aggregating these up the hierarchy
we get h-step-ahead forecasts for the rest of the series: ỹA,h = ŷAA,h + ŷAB,h + ŷAC,h, ỹB,h =
ŷBA,h + ŷBB,h and ỹh = ỹA,h + ỹB,h. Note that for the bottom-up approach the revised forecasts
for the bottom level series are equal to the base forecasts.

Using matrix notation we can again employ the summing matrix and write

ỹh = SŷK,h.

The greatest advantage of this approach is that no information is lost due to aggregation. On
the other hand bottom level data can be quite noisy and more challenging to model and forecast
(Shlifer and Wolff 1979; Schwarzkopf, Tersine, and Morris 1988).

Top-down method

Top-down approaches involve first generating base forecasts for the “Total” series yt on the
top of the hierarchy and then disaggregating these downwards. We let p1, . . . , pmK

be a set of
proportions which dictate how the base forecasts of the “Total” series are to be distributed to
revised forecasts for each series at the bottom level of the hierarchy. Once the bottom level
forecasts have been generated we can use the summing matrix to generate forecasts for the rest
of the series in the hierarchy. Note that for top-down approaches the top level revised forecasts
are equal to the top level base forecasts, that is ỹh = ŷh.

When the bottom-level series are noisy, the forecasts of the top-down approach can be more
accurate than the bottom-up approach (Grunfeld and Griliches 1960; Fliedner 1999). The
performance of the top-down approach depends on three factors: (1) the accuracy of the total
series forecasts; (2) the accuracy of the disaggregate proportions; (3) the degree of accuracy

1We have simplified the usual notation of ŷT +h|T for brevity.
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in the base forecasts. Gross and Sohl (1990) studied the top-down approach extensively, and
put forward 21 disaggregation methods. Furthermore, they found two promising methods that
are also simple to use, namely average historical proportion and proportions of the historical
averages.

Average historical proportions

The average historical proportions can be expressed as

pj =
1

T

T
∑

t=1

yj,t

yt

for j = 1, . . . , mK . Each proportion pj reflects the average of the historical proportions of the
bottom level series yj,t over the period t = 1, . . . , T relative to the total aggregate yt.

Proportions of the historical averages

The proportions of the historical averages are expressed by

pj =
T
∑

t=1

yj,t

T

/

T
∑

t=1

yt

T

for j = 1, . . . , mK . Each proportion pj captures the average historical value of the bottom level
series yj,t relative to the average value of the total aggregate yt.

The greatest attribute of such top-down approaches is their simplicity to apply. One only needs to
model and generate forecasts for the most aggregated top level series. In general these approaches
seem to produce quite reliable forecasts for the aggregate levels and they are very useful with
low count data. On the other hand, their greatest disadvantage is the loss of information due to
aggregation. With these top-down approaches, we are unable to capture and take advantage of
individual series characteristics such as time dynamics, special events, etc.

Forecasted proportions

An alternative approach that improves on the historical and static nature of the proportions
specified above is to use forecasted proportions (Athanasopoulos et al. 2009).

To demonstrate the intuition of this method, consider a one level hierarchy. We first generate
h-step-ahead base forecasts for all the series independently. At level 1 we calculate the proportion
of each h-step-ahead base forecast to the aggregate of all the h-step-ahead base forecasts at this
level. We refer to these as the forecasted proportions and we use these to disaggregate the top
level forecast and generate revised forecasts for the whole of the hierarchy.

For a K-level hierarchy this process is repeated for each node going from the top to the very
bottom level. Applying this process leads to the following general rule for obtaining the forecasted
proportions

pj =
K−1
∏

ℓ=0

ŷ
(ℓ)
j,h

Ŝ
(ℓ+1)
j,h

for j = 1, 2, . . . , mK . These forecasted proportions disaggregate the h-step-ahead base forecast

of the “Total” series to h-step-ahead revised forecasts of the bottom level series. ŷ
(ℓ)
j,h is the

h-step-ahead base forecast of the series that corresponds to the node which is ℓ levels above j.

Ŝ
(ℓ)
j,h is the sum of the h-step-ahead base forecasts below the node that is ℓ levels above node j

and are directly connected to that node.
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We will use the hierarchy of Figure 1 to explain this notation and to demonstrate how this
general rule is reached. Assume we have generated independent base forecasts for each series in
the hierarchy. Remember that for the top level “Total” series, ỹh = ŷh. Here are some example
using the above notation:

• ŷ
(1)
A,h = ŷ

(1)
B,h = ỹh

• ŷ
(1)
BA,h = ŷ

(1)
BB,h = ŷB,h

• ŷ
(2)
AA,h = ŷ

(2)
AB,h = ŷ

(2)
AC,h = ŷ

(2)
BA,h = ŷ

(2)
BB,h = ỹh

• Ŝ
(1)
BA,h = Ŝ

(1)
BB,h = ŷBA,h + ŷBB,h

• Ŝ
(2)
BA,h = Ŝ

(2)
BB,h = Ŝ

(1)
A,h = Ŝ

(1)
B,h = Ŝh = ŷA,h + ŷB,h

Moving down the farthest left branch of the hierarchy the final revised forecasts are

ỹA,h =

(

ŷA,h

Ŝ
(1)
A,h

)

ỹh =

(

ŷ
(1)
AA,h

Ŝ
(2)
AA,h

)

ỹh

and

ỹAA,h =

(

ŷAA,h

Ŝ
(1)
AA,h

)

ỹA,h =

(

ŷAA,h

Ŝ
(1)
AA,h

)(

ŷ
(1)
AA,h

Ŝ
(2)
AA,h

)

ỹh.

Consequently,

p1 =

(

ŷAA,h

Ŝ
(1)
AA,h

)(

ŷ
(1)
AA,h

Ŝ
(2)
AA,h

)

ỹh

The other proportions can be similarly obtained. The greatest disadvantage of the top-down
forecasted proportions approach, which is a disadvantage of any top-down approach, is that they
do not produce unbiased revised forecasts even if the base forecasts are unbiased.

Middle-out approach

The middle-out approach combines bottom-up and top-down approaches. First the “middle level”
is chosen and base forecasts are generated for all the series of this level and the ones below. For
the series above the middle level, revised forecasts are generated using the bottom-up approach
by aggregating the “middle-level” base forecasts upwards. For the series below the “middle level”,
revised forecasts are generated using a top-down approach by disaggregating the “middle level”
base forecasts downwards.

Optimal forecast combination

This approach involves first generating independent base forecast for each series in the hierarchy.
As these base forecasts are independently generated they will not be “aggregate consistent” (i.e.,
they will not add up according to the hierarchical structure). The optimal combination approach,
due to Hyndman et al. (2011), optimally combines the independent base forecasts and generates a
set of revised forecasts that are as close as possible to the univariate forecasts but also aggregate
consistently with the hierarchical structure.

Unlike any other existing method, this approach uses all the information available within a
hierarchy. It allows for correlations and interactions between series at each level of the hierarchy,
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it accounts for ad hoc adjustments of forecasts at any level, and, provided the base forecasts are
unbiased, it produces unbiased revised forecasts.

The general idea is derived from the representation of the h-step-ahead base forecasts for the
whole of the hierarchy by a linear regression model. We write

ŷh = Sβh + εh

where ŷh is a vector of the h-step-ahead base forecasts for the whole hierarchy, βh is the unknown
mean of the future values of the bottom level K, and εh has zero mean and covariance matrix
Σh. Note that εh represents the error in the above regression and should not be confused with
the h-step-ahead forecast error.

In general Σh in unknown. However, it can be shown that the correlations between series are
not important when calculating point forecasts.

Provided the base forecasts approximately satisfy the hierarchical aggregation structure, (which
should occur for any reasonable set of forecasts), then the errors should also approximately satisfy
the hierarchical aggregation structure. That is, εh ≈ SεK,h where εK,h contains the forecast
errors in the bottom level. Under this assumption, Hyndman et al. (2011) show that the best
linear unbiased estimator for βh is β̂h = (S′S)−1S′ŷn(h). This leads to a set of revised forecasts
given by

ỹh = S(S′S)−1S′ŷh,

which does not depend on Σh. However, prediction intervals for these forecasts will depend on
Σh as

Var(ỹh) = S(S′
Σ

−1
h S)−1S.

The hts package

Hierarchical time series forecasting methods described previously can be implemented in the hts

package (Hyndman et al. 2014) for R (R Core Team 2013).

The hts function creates a hierarchical time series. The required inputs are the bottom-level
time series, and information about the hierarchical structure. For example, the structure shown
in Figure 1 is specified as follows:

# bts is a time series matrix containing the bottom-level series

# The first three series belong to one group, and the last two

# series belong to a different group

# nodes is a list containing the number of child nodes at each level.

bts <- ts(5 + matrix(sort(rnorm(500)), ncol=5, nrow=100))

y <- hts(bts, nodes=list(2, c(3, 2)))

For a grouped but non-hierarchical time series, the gts function can be used. If there are more
levels, the groups argument should be a matrix where each row contains the grouping structure
for each level.

The aggts function is used to extract time series either across the whole hierarchy or at the
selected levels, while the smatrix function is used to show the summing matrix as defined in
Hyndman et al. (2011).

ally <- aggts(y) # Returns all series in the hierarchy

somey <- aggts(y, levels = c(0, 2)) # Returns time series at levels 0 and 2

S <- smatrix(y) # Returns the summing matrix
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The plot.gts function allows users to display the historical time series for both an hts or gts

object. By default, it displays time series across all hierarchical levels, although users can restrict
the plot to the selected levels. For example, we plot the top two levels of an hts object in
Figure 2.

Figure 2: Hierarchical time-series plots
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Forecasts are obtained with the forecast function. By default, it produces forecasts using the
optimal combination approach with exponential smoothing (ETS) models used for the base
forecasts. But other forecasting models and disaggregation methods can be specified via the
following arguments:

fmethod The forecasting method to be used for the base forecasts. Possible values are "ets",
"arima" and "rw".

method The method used for reconciling the base forecasts. It can take the following values:
comb Optimal combination forecasts;
bu Bottom-up forecasts;
mo Middle-out forecasts where the level used is specified by the

level argument;
tdgsa Top-down forecasts based on the average historical propor-

tions (Gross-Sohl method A);
tdgsf Top-down forecasts based on the proportion of historical

averages (Gross-Sohl method F);
tdfp Top-down forecasts using forecast proportions.

Forecasting regional infant mortality counts in Australia

We consider the infant mortality counts for eight states and territories of Australia: New South
Wales (NSW), Victoria (VIC), Queensland (QLD), South Australia (SA), Western Australia
(WA), Northern Territory (NT), Australian Capital Territory (ACTOT), and Tasmania (TAS).
For each series, we have yearly observations on the number of infant deaths. The available data,
from 1901 to 2003, were obtained from the Australian Social Science Data Archive. This data set
is also publicly available in the addb package (Hyndman 2010) for R. Due to missing values, we
use the data from 1933 to 2003 in our analysis. Based on these observations, we are interested in
forecasting regional infant mortality counts from 2004 to 2013.

The data are grouped by gender and state, with two genders, eight states, and 16 series at the
bottom level.

Figure 3 shows the forecasts of regional infant mortality counts across Australia. The forecasts
indicate a continuing decline in infant mortality counts, due to improved health services. Moreover,
male mortality counts are higher than female mortality counts. Figure 3 was produced using the
following commands.

library(hts)

# Forecast 10-step-ahead using the bottom-up method

infantforecast <- forecast(infantgts, h=10, method="bu")

# plot the forecasts including the last ten historical years

plot(infantforecast, include=10)

While Figure 3 was produced using the forecast.gts function, there is alternative approach to
produce forecasts which may give users extra flexibility.
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Figure 3: Hierarchical time-series forecasts using the bottom-up approach
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allts_infant <- aggts(infantgts)

allf <- matrix(, nrow=10, ncol=ncol(allts_infant))

# Users can select their preferred time-series forecasting method

# for each time series

for(i in 1:ncol(allts_infant))

allf[,i] <- forecast(auto.arima(allts_infant[,i]), h=10, PI=FALSE)$mean

allf <- ts(allf, start=2004)

# combine the forecasts with the group matrix to get a gts object

g <- matrix(c(rep(1, 8), rep(2, 8), rep(1:8, 2)), nrow = 2, byrow = T)

y.f <- combinef(allf, groups = g)

In order to test the forecast accuracy, the accuracy.gts function can be used.
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# set up the training sample and testing sample

data <- window(infantgts, start=1933, end=1993)

test <- window(infantgts, start=1994, end=2003)

forecast <- forecast(data, h=10, method="bu")

# calculate ME, RMSE, MAE, MAPE, MPE and MASE

accuracy.gts(forecast, test)

Changes from the hts package version 3

Every function in hts version 4 has been rewritten in order to improve its efficiency and flexibility.
In addition, there are a few new features and changes which will affect users. The most important
user-level changes are listed below.

hts Argument g is replaced with nodes, providing information about the hierarchical structure.
This is a simpler and more efficient way of representing the hierarchical structure. The new
argument nodes requires a list class containing the number of child nodes associated with
the level rather than using the old gmatrix concept. The hierarchy presented in Figure 1
requires nodes specified as list(2, c(3, 2)) referring to 2 nodes at level 1, with 3 and 2
nodes respectively at level 2.

A new argument characters has also been added, which allows users to customize names for
labelling but in a limited way. To illustrate the usage, we use the Anatomical Therapeutic
Chemical (ATC) classification system. As shown in Table 1, the hierarchy has six levels
including level 0 and one of the bottom series is named “A10BA02”. In order to construct
the labels according to Table 1, we use characters = c(1, 2, 1, 1, 2). This indicates
that the bottom level names can be read in segments of 1, 2, 1, 1 and 2 characters. The
function can then construct the appropriate names for the upper levels.

A Alimentary tract and metabolism (1st level, anatomical main group);
A10 Drugs used in diabetes (2nd level, therapeutic subgroup);
A10B Blood glucose lowering drugs, excl. insulins (3rd level, pharmacological subgroup);
A10BA Biguanides (4th level, chemical subgroup);
A10BA02 metformin (5th level, chemical substance);

Table 1: ATC classification system

aggts This is a new more flexible version of allts which allows the extraction of specific
levels of the hierarchy. For instance, we are interested in observing the regional infant
mortality counts across the states and they are obtained by specifying levels = "State"

or levels=2. All time series in the hierarchy are returned if levels is omitted. The
specification of levels now also works in the plot function in the same way.

# Return time series aggregated for each state.

statets <- aggts(infantgts, levels = "State")

# Plot time series aggregated for each state.

plot(infantgts, levels = "State")

forecast Fitted values and residuals at the bottom level are made available to users. These are
reconciled in the same way as the forecasts, as long as users set keep.fitted = TRUE and
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keep.resid = TRUE. Furthermore, the parallel package has been imported for the support
of parallel computing. The forecast function generates independent forecasts for each
time series and it can take a long time to model and forecast these time series. Producing
forecasts in parallel (with parallel = TRUE) enables users to save a significant amount of
computing time.

Another major change is the new argument weights, associated with the optimal combina-
tion approach. The function uses ordinary least squares for the unscaled forecasts in the
case of weights = "none" (as it did in previous versions). But when weights = "sd", it
will use weighted least squares for the forecasts scaled by the standard deviation of the
forecast errors. A third possibility is weights = "nseries"; this case is useful when the
bottom level series are on the same scale and the weights are then equal to the inverse of
the row sums of S.

fcasts <- forecast(htseg1, h = 10, method = "comb", fmethod = "arima",

weights = "sd", keep.fitted = TRUE, parallel = TRUE)

accuracy.gts now returns in-sample error measures at the bottom level, if keep.fitted =

TRUE in the forecast function and the argument test is missing.

accuracy.gts(fcasts) # In-sample error measure
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