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The data set and source file of this vignette are available at hyperSpec’s github page at
https://github.com/cbeleites/hyperSpec/blob/master/Vignettes/chondro/chondro.Rnw

and https://github.com/cbeleites/hyperSpec/tree/master/Vignettes/fileio/txt.

Renishaw/chondro.txt (ca. 31 MB). The .Rnw looks for rawdata/chondro.txt, so please
save the data file in subdirectory rawdata of your working directory.
In order to reproduce the examples by typing in the commands, have a look at the definitions of
color palettes used in this document are defined in vignettes.defs. Also, the package hyperSpec

needs to be loaded first via library (hyperSpec).
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Figure 1 Microphotograph of the cartilage section. The frame indicates the measurement area (35 × 25 µm).
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1 Introduction

This vignette describes the chondro data set. It shows a complete data analysis work flow on a
Raman map demonstrating frequently needed preprocessing methods

• baseline correction
• normalization
• smoothing / interpolating spectra
• preprocessing the spatial grid

and other basic work techniques

• plotting spectra
• plotting false color maps
• cutting the spectral range,
• selecting (extracting) or deleting spectra, and
• aggregating spectra (e.g. calculating cluster mean spectra).

The chemometric methods used are

• Principal Component Analysis (PCA) and
• Hierarchical Cluster Analysis,

showing how to use data analysis procedures provided by R and other packages.

2 The Data Set

Raman spectra of a cartilage section were measured on each point of a grid, resulting in a so-called
Raman map. Figure 1 shows a microscope picture of the measured area and its surroundings.

The measurement parameters were:
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Excitation wavelength: 633 nm
Exposure time: 10 s per spectrum
Objective: 100×, NA 0.85
Measurement grid: 35 × 25 µm, 1 µm step size
Spectrometer: Renishaw InVia

3 Data Import

Renishaw provides a converter to export their proprietary data in a so-called long format ASCII file.
Raman maps are exported having four columns, y, x, raman shift, and intensity. hyperSpec comes
with a function to import such files, read.txt.Renishaw. The function assumes a map as default,
but can also handle single spectra (data = "spc"), time series (data = "ts"), and depth profiles
(data = "depth"). In addition, large files may be processed in chunks. In order to speed up the
reading read.txt.Renishaw does not allow missing values, but it does work with NA.

> chondro <- read.txt.Renishaw ("rawdata/chondro.txt", data = "xyspc")

> chondro

hyperSpec object

875 spectra

4 data columns

1272 data points / spectrum

wavelength: Delta * tilde(nu)/cm^-1 [numeric] 601.62 602.66 ... 1802.2

data: (875 rows x 4 columns)

1. y: y/(mu * m) [numeric] -4.77 -4.77 ... 19.23

2. x: x/(mu * m) [numeric] -11.55 -10.55 ... 22.45

3. spc: I / a.u. [matrix, array1272] 501.72 518.53 ... 151.92 + NA

4. filename: filename [character] rawdata/chondro.txt rawdata/chondro.txt ... rawdata/chondro.txt

To get an overview of the spectra (figure 2a):

> plot (chondro, "spcprctl5")

A mean intensity map (figure 2b) is produced by:

> plotmap (chondro, func.args = list (na.rm = TRUE), col.regions = seq.palette (20))

plotmap applies a function to squeeze all spectral intensities into a summary characteristic for the
whole spectrum. This function defaults to the mean. Further arguments that should be handed to
this function can be given in list func.args. As the raw data contains NAs due to deleting cosmic ray
spikes, this argument is needed here.

4 Preprocessing

As usual in Raman spectroscopy of biological tissues, the spectra need some preprocessing.

4.1 Aligning the Spatial Grid

The spectra were acquired on a regular square grid of measurement positions over the sample.
hyperSpec however does not store the data on this grid but rather stores the position where the spectra
were taken. This allows more handling of irregular point patterns, and of sparse measurements where
not a complete (square) is retained but only few positions on this grid.

Occasionally, numeric or rounding errors will lead to seemingly irregular spacing of the data points.
This is most obvious in false-colour maps of the sample (fig. fig:raw:b), as plotmap by default uses
panel.levelplot.raster which assumes a regular grid is underlying the data. The symptoms are
warnings “’x’ values are not equispaced; output may be wrong” and white stripes in the false colour
map (fig 3a) which occur even thought the points are almost at their correct place (fig 3b)

3



600 700 800 900 1000 1200 1400 1600 1800

5
0
0

1
0
0
0

1
5
0
0

∆ν~ cm
−1

I 
/ 
a
.u

.

(a) The raw spectra: median, 16th and 84th, and 5th and

95th percentile spectra.

x µm

y
µm

0

5

10

15

−10 −5 0 5 10 15 20

400

450

500

550

600

650

700

750

800

850

(b) The sum intensity of the raw spectra.

Figure 2 The raw spectra.

> ## disturb a few points

> chondro$x [500] <- chondro$x [500] + rnorm (1, sd = 0.01)

> chondro$y [660] <- chondro$y [660] + rnorm (1, sd = 0.01)

> plotmap (chondro, col.regions = seq.palette (20))

> require ("latticeExtra")

> plotmap (chondro, col.regions = seq.palette (20), panel = panel.levelplot.points,

+ col = NA, pch = 22, cex = 1.9)

Such slight rounding errors can be corrected by fitraster or makeraster. fitraster needs the
step size of the raster and a starting coordinate, whereas makeraster tries to guess these parameters
for fitraster. As long as just a few points are affected by rounding errors, makeraster works fine:

> chondro$x <- fitraster (chondro$x)$x

> chondro$y <- fitraster (chondro$y)$x

the result is shown in figure 3c.

> plotmap (chondro, col.regions = seq.palette (20))
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(a) Off-grid points cause stripes
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(b) Slightly wrong coordinages
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(c) Corrected grid

Figure 3 Rounding erros in the point coordinates of lateral measurement grid.

4.2 Spectral Smoothing

As the overview shows that the spectra contain NAs (from cosmic spike removal that was done
previously), the first step is to remove these. Also, the wavelength axis of the raw spectra is not
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evenly spaced (the data points are between 0.85 and 1 cm−1 apart from each other). Furthermore,
it would be good to trade some spectral resolution for higher signal to noise ratio. All three of
these issues are tackled by interpolating and smoothing of the wavelength axis by spc.loess. The
resolution is to be reduced to 8 cm−1, or 4 cm−1 data point spacing.

> chondro <- spc.loess (chondro, seq (602, 1800, 4))

> chondro

hyperSpec object

875 spectra

4 data columns

300 data points / spectrum

wavelength: Delta * tilde(nu)/cm^-1 [numeric] 602 606 ... 1798

data: (875 rows x 4 columns)

1. y: y [numeric] -4.77 -4.77 ... 19.23

2. x: x [numeric] -11.55 -10.55 ... 22.45

3. spc: I / a.u. [matrix, array300] 517.03 499.77 ... 168.04

4. filename: filename [character] rawdata/chondro.txt rawdata/chondro.txt ... rawdata/chondro.txt

The spectra are now the same as in the data set chondro. However, the data set also contains the
clustering results (see at the very end of this document). They are stored for saving as the distributed
demo data:

> spectra.to.save <- chondro

4.3 Baseline Correction

The next step is a linear baseline correction. spc.fit.poly.below tries to automatically find appro-
priate support points for polynomial baselines. The default is a linear baseline, which is appropriate
in our case:

> baselines <- spc.fit.poly.below (chondro)

> chondro <- chondro - baselines

600 700 800 900 1000 1200 1400 1600 1800

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

∆ν~ cm
−1

I 
/ 
a
.u

.

(a) The spectra after smoothing, baseline cor-
rection, and normalization.
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(b) The spectra after subtracting the 5th per-
centile spectrum.

Figure 4 The preprocessed spectra.

4.4 Normalization

As the spectra are quite similar, area normalization should work well:.

> chondro <- chondro / rowMeans (chondro)

> plot (chondro, "spcprctl5")
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Note that normalization effectively cancels the information of one variate (wavelength), it introduces
a collinearity. If needed, this collinearity can be broken by removing one of the variates involved in the
normalization. Note that the chondro object shipped with hyperSpec set has multiple collinearities
as only the first 10 principal components are shipped (see below).

For the results of these preprocessing steps, see figure 4a.

4.5 Subtracting the Overall Composition

The spectra are very homogeneous, but I’m interested in the differences between the different regions
of the sample. Subtracting the minimum spectrum cancels out the matrix composition that is
common to all spectra. But the minimum spectrum also picks up a lot of noise. So instead, the 5th

percentile spectrum is subtracted:

> chondro <- chondro - quantile (chondro, 0.05)

> plot (chondro, "spcprctl5")

The resulting data set is shown in figure 4b. Some interesting differences start to show up: there are
distinct lipid bands in some but not all of the spectra.

4.6 Outlier Removal by Principal Component Analysis (PCA)

PCA is a technique that decomposes the data into scores and loadings (virtual spectra). It is known
to be quite sensitive to outliers. Thus, I use it for outlier detection. The resulting scores and loadings
are put again into hyperSpec objects by decomposition:

> pca <- prcomp (chondro, center = TRUE)

> scores <- decomposition (chondro, pca$x, label.wavelength = "PC",

+ label.spc = "score / a.u.")

> loadings <- decomposition (chondro, t(pca$rotation), scores = FALSE,

+ label.spc = "loading I / a.u.")

Plotting the scores of each PC against all other gives a good idea where to look for outliers.

> pairs (scores [[,,1:20]], pch = 19, cex = 0.5)

Now the spectra can be found either by plotting two scores against each other (by plot) and iden-
tifying with identify, or they can be identified in the score map by map.identify. There is also
a function to identify spectra in a spectra plot, spc.identify, which could be used to identify
principal components that are heavily influenced e. g. by cosmic ray spikes.

> ## omit the first 4 PCs

> out <- map.identify (scores [,,5])

> out <- c (out, map.identify (scores [,,6]))

> out <- c (out, map.identify (scores [,,7]))

> out

[1] 105 140 216 289 75 69

> outcols <- c ("red", "blue", "#800080", "orange", "magenta", "brown")

> cols <- rep ("black", nrow(chondro))

> cols [out] <- outcols

We can check our findings by comparing the spectra to the bulk of spectra (figure 5a):
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> plot(chondro[1], plot.args = list (ylim = c (1, length (out) + .7)),

+ lines.args = list( type = "n"))

> for (i in seq (along = out)){

+ plot(chondro, "spcprctl5", yoffset = i, add = TRUE, col = "gray")

+ plot (chondro [out[i]], yoffset = i, col = outcols[i] , add = TRUE,

+ lines.args = list (lwd = 2))

+ text (600, i + .33, out [i])

+ }

and also by looking where these spectra appear in the scores pairs plot (figure 5b):

> png ("chondro-fig--pca-pairs2.png", width = 500, height = 500)

> pch <- rep (46L, nrow (chondro))

> pch [out] <- 19L

> pairs (scores [[,,1:7]], pch = pch, cex = 1, col = cols)

> dev.off ()

Finally, the outliers are removed:

> chondro <- chondro [- out]
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(a) The suspected outlier spectra. (b) pairs plot of the first 7 scores.

5 Hierarchical Cluster Analysis (HCA)

HCA merges objects according to their (dis)similarity into clusters. The result is a dendrogram, a
graph stating at which level two objects are similar and thus grouped together.

The first step in HCA is the choice of the distance. The R function dist offers a variety of distance
measures to be computed. The so-called Pearson distance D

2
Pear son

=
1−COR(X )

2
is popular in data

analysis of vibrational spectra and is provided by hyperSpec’s pearson.dist function.

Also for computing the dendrogram, a number of choices are available. Here we choose Ward’s
method, and, as it uses Euclidean distance for calculating the dendrogram, Euclidean distance
also for the distance matrix :
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> dist <- dist (chondro)

> dendrogram <- hclust (dist, method = "ward.D")

> plot (dendrogram)

In order to get clusters, the dendrogram is cut at a level specified either by height or by the number
of clusters.

> chondro$clusters <- as.factor (cutree (dendrogram, k = 3))

> cols <- c ("dark blue", "orange", "#C02020")

The result for k= 3 clusters is plotted as a map (figure 5b). If the color-coded variate (left hand
side of the formula) is a factor, the legend bar does not show intermediate colors, and hyperSpec’s
levelplot method uses the levels of the factor for the legend.

Thus meaningful names are assigned

> levels (chondro$clusters) <- c ("matrix", "lacuna", "cell")

and the cluster membership map is plotted:

> print (plotmap (chondro, clusters ~ x * y, col.regions = cols))

The cluster membership can also be marked in the dendrogram:

> par (xpd = TRUE) # allow plotting the markers into the margin

> plot (dendrogram, labels = FALSE, hang = -1)

> mark.dendrogram (dendrogram, chondro$clusters, col = cols)

Figure 5a shows the dendrogram and 5b the resulting cluster map. The three clusters correspond to
the cartilage matrix, the lacuna and the cells. The left cell is destroyed and its contents are leaking
into the matrix, while the right cells looks intact.

We can plot the cluster mean spectra ± 1 standard deviation using aggregate (see figure 6):

> cluster.means <- aggregate (chondro, chondro$clusters, mean_pm_sd)

> plot (cluster.means, stacked = ".aggregate", fill = ".aggregate", col = cols)
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Figure 5 Hierarchical cluster analysis.

6 Plotting a False-Colour Map of Certain Spectral Regions

hyperSpec comes with a sophisticated interface for specifying spectral ranges. Expressing things like
1000 cm-1

± 1 data points is easily possible. Thus, we can have a fast look at the nucleic acid
distribution, using the DNA bands at 728, 782, 1098, 1240, 1482, and 1577 cm-1:
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Figure 6 The cluster mean ± 1 standard deviation spectra. The blue cluster shows distinct lipid bands, the yellow
cluster collagen, and the red cluster proteins and nucleic acids.

> DNAcols <- colorRampPalette (c("white", "gold", "dark green"), space = "Lab") (20)

> plotmap (chondro[, , c( 728, 782, 1098, 1240, 1482, 1577)],

+ col.regions = DNAcols)

x

y

0

5

10

15

−10 0 10 20

0.05

0.10

0.15

0.20

(a) False color map of DNA.
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(b) Smoothed DNA abundance.

Figure 7 False colour map of the DNA band intensities.

The result is shown in figure 7a. While the nucleus of the right cell shows up nicely, only low
concentration remainders are detected of the left cell.

7 Smoothed False-Colour Maps and Interpolation

As we plotted only a few selected wavelenths, figure 7a is quite noisy. Smoothing interpolation
could help. In R, such a smoother is mostly seen as a model, whose predictions are then displayed
as smooth map (fig. 7b). This smoothing model can be calculated on the fly, e.g. by using the
panel.2dsmoother wrapper provided by latticeExtra:

> plotmap (chondro[, , c( 728, 782, 1098, 1240, 1482, 1577)],

+ col.regions = DNAcols,

+ panel = panel.2dsmoother, args = list (span = 0.05))

For interpolation (i.e. no smoothing at the available data points), a Voronoi plot (a.k.a. Delaunay tri-
angulation) is basically a 2d constant interpolation: each point in space has the same z/color value as
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its closest available point. For a full rectangular grid, this corresponds to the usual square/rectangular
pixel plot. With missing points, differences become clear (fig. 8):

> tmp <- sample (chondro[, , c( 728, 782, 1098, 1240, 1482, 1577)], 500)

> plotmap (tmp, col.regions = DNAcols)

> plotmap (tmp, col.regions = DNAcols,

+ panel = panel.voronoi, pch = 19, col = "black", cex = 0.1)
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(a) Omitting missing data points.
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(b) Delaunay triangulation / Voronoi plot.

Figure 8 2d ”constant” interpolation with missing values.

2d linear interpolation can be done e.g. by the functions provided by package akima. However, they
do not follow the model-predict paradigm, but instead do directly return an object suitable for base
plotting with image (9):

> if (require ("akima")){

+

+ tmp <- rowMeans (chondro[[, , c( 728, 782, 1098, 1240, 1482, 1577)]])

+ chondro.bilinear <- interp (chondro$x, chondro$y, as.numeric (tmp), nx = 100, ny = 100)

+

+ image (chondro.bilinear,

+ xlab = labels (chondro, "x"), ylab = labels (chondro, "y"),

+ col = DNAcols)

+ } else {

+ plot(NULL, xlim=c(0, 1), ylim=c(0, 1))

+ text(0.5, 0.5, 'Package "akima" is required to create this plot')

+ }

8 Saving the data set

Finally, the example data set is put together and saved. In order to keep the package size small,
only a PCA-compressed version with 10 PCs is shipped as example data set of the package.

> spectra.to.save$clusters <- factor (NA, levels = levels (chondro$clusters))

> spectra.to.save$clusters[- out] <- chondro$clusters

> pca <- prcomp (spectra.to.save)

> .chondro.scores <- pca$x [, seq_len (10)]

> .chondro.loadings <- pca$rot [, seq_len (10)]

> .chondro.center <- pca$center
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Figure 9 2d interpolation.

> .chondro.wl <- wl (chondro)

> .chondro.labels <- lapply (labels (chondro), as.expression)

> .chondro.extra <- spectra.to.save$..

> save (.chondro.scores, .chondro.loadings, .chondro.center,

+ .chondro.wl, .chondro.labels, .chondro.extra,

+ file = "chondro-internal.rda")

This is the file distributed with hyperSpec as example data set.

Session Info

R version 4.1.0 (2021-05-18)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 20.04.2 LTS

Matrix products: default

BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3

LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/liblapack.so.3

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=de_DE.UTF-8

[4] LC_COLLATE=en_US.UTF-8 LC_MONETARY=de_DE.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=de_DE.UTF-8 LC_NAME=C LC_ADDRESS=C

[10] LC_TELEPHONE=C LC_MEASUREMENT=de_DE.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] grid stats graphics grDevices utils datasets methods base

other attached packages:

[1] latticeExtra_0.6-29 hyperSpec_0.100 xml2_1.3.2 ggplot2_3.3.5

[5] lattice_0.20-44

loaded via a namespace (and not attached):

[1] magrittr_2.0.1 tidyselect_1.1.1 munsell_0.5.0 colorspace_2.0-2 R6_2.5.0

[6] jpeg_0.1-9 rlang_0.4.11 fansi_0.5.0 dplyr_1.0.7 tools_4.1.0

[11] gtable_0.3.0 png_0.1-7 utf8_1.2.2 deldir_0.2-10 withr_2.4.2

[16] ellipsis_0.3.2 lazyeval_0.2.2 tibble_3.1.3 lifecycle_1.0.0 crayon_1.4.1

[21] RColorBrewer_1.1-2 purrr_0.3.4 vctrs_0.3.8 testthat_3.0.4 glue_1.4.2

[26] compiler_4.1.0 pillar_1.6.1 generics_0.1.0 scales_1.1.1 pkgconfig_2.0.3
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