
Calibration of Quinine Fluorescence Emission

Vignette for the Data Set flu of the R

package hyperSpec

Claudia Beleites <Claudia.Beleites@chemometrix.gmbh>
DIA Raman Spectroscopy Group, University of Trieste/Italy (2005 – 2008)

Spectroscopy · Imaging, IPHT, Jena/Germany (2008 – 2017)

ÖPV, JKI, Berlin/Germany (2017 – 2019)

Arbeitskreis Lebensmittelmikrobiologie und Biotechnologie, Hamburg University, Hamburg/German

Chemometric Consulting and Chemometrix GmbH, Wölfersheim/Germany (since 2016

September 13, 2021

The spectra files are shipped with hyperSpec. This allows reproduction of the whole vignette (source
code and spectra files are in the package’s documentation directory and its rawdata subdirectory).
For reproducing the examples in a live session, the full file names of the spectra can be found with
the command:
> list.files (system.file("doc", package = "hyperSpec"), pattern = "flu[1-6][.]txt") . Note
that loading the package, and some definitions e.g. of the color palettes are executed in vi-

gnettes.def.

Reproducing the Examples in this Vignette

Contents

1 Writing an Import Function 2

2 Adding further Data Columns 2

3 Dropping data columns 3

4 Linear Calibration 3

This vignette gives an example how to

• write an import function for a spectrometer manufacturer’s proprietary ASCII files,

• add further data columns to the spectra, and

• set up a linear calibration (inverse least squares).

1

<Claudia.Beleites@chemometrix.gmbh>

The data set flu in hyperSpec consists of 6 fluorescence emission spectra of quinine solutions. They
were acquired during an student practicum and were kindly provided by M. Kammer.

The concentrations of the solutions range from 0.05 mg/l to 0.30 mg/l. Spectra were acquired with
a Perkin Elmer LS50-B fluorescence spectrometer at 350 nm excitation.

1 Writing an Import Function

The raw spectra are in Perkin Elmer’s ASCII file format, one spectrum per file. The files are
completely ASCII text, with the actual spectra starting at line 55.

The function to import these files, read.txt.PerkinElmer, is discussed in the “FileIO” vignette,
please refer to that document for details.

It needs to be sourced before use:

> source ("read.txt.PerkinElmer.R")

> flu <- read.txt.PerkinElmer (Sys.glob ("rawdata/flu?.txt"), skip = 54)

Now the spectra are in a hyperSpec object and can be examined e.g. by

> flu

hyperSpec object

6 spectra

2 data columns

181 data points / spectrum

wavelength: lambda/nm [numeric] 405.0 405.5 ... 495

data: (6 rows x 2 columns)

1. spc: I[fl]/"a.u." [matrix, array181] 27.150 66.801 ... 294.65

2. filename: filename [character] rawdata/flu1.txt rawdata/flu2.txt ... rawdata/flu6.txt

> plot (flu)

410 420 430 440 450 460 470 480 490

1
0

0
3

0
0

5
0

0
7

0
0

λ nm

I fl
a

.u
.

2 Adding further Data Columns

The calibration model needs the quinine concentrations for the spectra. This information can be
stored together with the spectra, and also gets an appropriate label:

> flu$c <- seq (from = 0.05, to = 0.30, by = 0.05)

> labels (flu, "c") <- "c / (mg / l)"

> flu

hyperSpec object

6 spectra

3 data columns

181 data points / spectrum

wavelength: lambda/nm [numeric] 405.0 405.5 ... 495

2

data: (6 rows x 3 columns)

1. spc: I[fl]/"a.u." [matrix, array181] 27.150 66.801 ... 294.65

2. filename: filename [character] rawdata/flu1.txt rawdata/flu2.txt ... rawdata/flu6.txt

3. c: c / (mg / l) [numeric] 0.05 0.10 ... 0.3

> save (flu, file = 'flu.rda')

Now the hyperSpec object flu contains two data columns, holding the actual spectra and the re-
spective concentrations. The dollar operator returns such a data column:

> flu$c

[1] 0.05 0.10 0.15 0.20 0.25 0.30

3 Dropping data columns

read.txt.PerkinElmer added a column with the file names that we don’t need. It is therefore
deleted:

> flu$filename <- NULL

4 Linear Calibration

As R is developed for the purpose of statistical analysis, tools for a least squares calibration model
are readily available.

The original spectra range from 405 to 495 nm. However, the intensities at 450 nm are perfect for a
univariate calibration. Plotting them over the concentration is done by:

> plotc (flu[,,450])

c / (mg / l)

I fl
a

.u
.

100

200

300

400

500

600

0.05 0.10 0.15 0.20 0.25 0.30

The square bracket operator extracts parts of a hyperSpec object. The first coordinate defines which
spectra are to be used, the second which data columns, and the third gives the spectral range.

We discard all the wavelengths but 450 nm:

> flu <- flu [,,450]

> labels (flu, "spc") <- expression (I ["450 nm"] / a.u.)

The plot could be enhanced by annotating the ordinate with the emission wavelength. Also the axes
should start at the origin, so that it is easier to see whether the calibration function will go through
the origin:

> plotc (flu, xlim = range (0, flu$c), ylim = range (0, flu$spc))

3

c / (mg / l)

I 4
5
0
 n

m
a
.u

.

100

200

300

400

500

600

0.05 0.10 0.15 0.20 0.25

The actual calibration is a linear model, which can be fitted by the R function lm. lm needs a formula

that specifies which data columns are dependent and independent variables.

The normal calibration plot gives the emission intensity as a function of the concentration, and the
calibration function thus models I = f (c), i. e. I = mc+b for a linear calibration. This is then solved
for c when the calibration is used.

However, R’s linear model is a quite strict in predicting: a model set up as I = f (c) will predict the
intensity as a function of the concentration but not the other way round. Thus we set up an inverse
calibration model1: c = f (I). The corresponding R formula is c ~ I, or in our case c ~ spc, as the
intensities are stored in the data column $spc:

In addition, lm (like most R model building functions) expects the data to be a data.frame.

There are three abbreviations that help to get the parts of the hyperSpec object that are frequently
needed:

flu[[]] returns the spectra matrix. It takes the same indices as [].

flu$. returns the data as a data.frame

flu$.. returns a data.frame that has all data columns but the spectra

> flu[[]]

450

[1,] 106.95

[2,] 213.50

[3,] 333.78

[4,] 446.63

[5,] 556.52

[6,] 672.53

> flu$.

450 c

1 106.95 0.05

2 213.50 0.10

3 333.78 0.15

4 446.63 0.20

5 556.52 0.25

6 672.53 0.30

> flu$..

1As we can safely assume that the error on the concentrations is far larger than the error on the instrument signal,

it is actually the correct type of model from the least squares fit point of view.

4

c

1 0.05

2 0.10

3 0.15

4 0.20

5 0.25

6 0.30

Putting this together, the calibration model is calculated:

> calibration <- lm (c ~ spc, data = flu$.)

The summary gives a good overview of our model:

> summary (calibration)

Call:

lm(formula = c ~ spc, data = flu$.)

Residuals:

1 2 3 4 5 6

-0.000987 0.002052 -0.000960 -0.000701 0.000864 -0.000267

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.85e-03 1.25e-03 3.09 0.037 *

spc 4.41e-04 2.87e-06 153.60 1.1e-08 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.00136 on 4 degrees of freedom

Multiple R-squared: 1, Adjusted R-squared: 1

F-statistic: 2.36e+04 on 1 and 4 DF, p-value: 1.08e-08

In order to get predictions for new measurements, a new data.frame with the same independent
variables (in columns with the same names) as in the calibration data are needed. Then the function
predict can be used. It can also calculate the prediction interval. If we observe e.g. an intensity of
125 or 400 units, the corresponding concentrations and their 99 % prediction intervals are:

> I <- c (125, 400)

> conc <- predict (calibration, newdata = list (spc = as.matrix(I)), interval = "prediction",

+ level = .99)

> conc

fit lwr upr

1 0.058943 0.05133 0.066556

2 0.180149 0.17338 0.186922

Finally, we can draw the calibration function and its 99 % confidence interval (also via predict)
together with the prediction example. In order to draw the confidence interval into the calibration
graph, we can either use a customized panel function:

> int <- list (spc = as.matrix(seq (min (flu), max(flu), length.out = 25)))

> ci <- predict (calibration, newdata = int, interval = "confidence", level = 0.99)

> panel.ci <- function (x, y, ...,

+ intensity, ci.lwr, ci.upr, ci.col = "#606060") {

+ panel.xyplot (x, y, ...)

+ panel.lmline (x, y,...)

+ panel.lines (ci.lwr, intensity, col = ci.col)

+ panel.lines (ci.upr, intensity, col = ci.col)

+ }

> plotc (flu, panel = panel.ci,

+ intensity = int$spc, ci.lwr = ci [, 2], ci.upr = ci [, 3])

5

c / (mg / l)

I 4
5
0
 n

m
a
.u

.

100

200

300

400

500

600

0.05 0.10 0.15 0.20 0.25 0.30

Or, we can add the respective data to the hyperSpec object. The meaning of the data can be saved
in a new extra data column that acts as grouping variable for the plot.

First, the spectral range of flu is cut to contain the fluorescence emission at 450 nm only, and the
new column is introduced for the original data:

> flu$type <- "data points"

Next, the calculated confidence intervals are appended:

> tmp <- new ("hyperSpec", spc = as.matrix(seq (min (flu), max(flu), length.out = 25)),

+ wavelength = 450)

> ci <- predict (calibration, newdata = tmp$., interval = "confidence", level = 0.99)

> tmp <- tmp [rep (seq (tmp, index = TRUE), 3)]

> tmp$c <- as.numeric (ci)

> tmp$type <- rep (colnames (ci), each = 25)

> flu <- collapse (flu, tmp)

Finally, the resulting object is plotted. Our prediction example is handled by another customized
panel function:

> panel.predict <- function (x, y, ...,

+ intensity, ci, pred.col = "red", pred.pch = 19, pred.cex = 1) {

+ panel.xyplot (x, y, ...)

+ mapply (function (i, lwr, upr, ...) {

+ panel.lines (c (lwr, upr), rep (i, 2), ...)

+ },

+ intensity, ci [, 2], ci [, 3], MoreArgs = list (col = pred.col))

+ panel.xyplot (ci [, 1], intensity, col = pred.col, pch = pred.pch, cex = pred.cex, type = "p")

+ }

> plotc (flu, groups = type, type = c("l", "p"),

+ col = c ("black", "black", "#606060", "#606060"),

+ pch = c (19, NA, NA, NA), cex = 0.5,

+ lty = c (0, 1, 1, 1),

+ panel = panel.predict,

+ intensity = I,

+ ci = conc,

+ pred.cex = 0.5)

6

c / (mg / l)

I 4
5
0
 n

m
a
.u

.

100

200

300

400

500

600

0.05 0.10 0.15 0.20 0.25 0.30

Session Info

R version 4.1.1 (2021-08-10)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 20.04.3 LTS

Matrix products: default

BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3

LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/liblapack.so.3

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=de_DE.UTF-8

[4] LC_COLLATE=C LC_MONETARY=de_DE.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=de_DE.UTF-8 LC_NAME=C LC_ADDRESS=C

[10] LC_TELEPHONE=C LC_MEASUREMENT=de_DE.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] tools grid stats graphics grDevices utils datasets methods base

other attached packages:

[1] hyperSpec_0.100.0 xml2_1.3.2 ggplot2_3.3.5 lattice_0.20-44

loaded via a namespace (and not attached):

[1] pillar_1.6.1 compiler_4.1.1 RColorBrewer_1.1-2 R.methodsS3_1.8.1

[5] R.utils_2.10.1 testthat_3.0.4 digest_0.6.27 lifecycle_1.0.0

[9] tibble_3.1.3 gtable_0.3.0 R.cache_0.15.0 pkgconfig_2.0.3

[13] png_0.1-7 rlang_0.4.11 R.rsp_0.44.0 withr_2.4.2

[17] dplyr_1.0.7 generics_0.1.0 vctrs_0.3.8 tidyselect_1.1.1

[21] glue_1.4.2 R6_2.5.0 jpeg_0.1-9 fansi_0.5.0

[25] latticeExtra_0.6-29 purrr_0.3.4 magrittr_2.0.1 scales_1.1.1

[29] ellipsis_0.3.2 colorspace_2.0-2 utf8_1.2.2 lazyeval_0.2.2

[33] munsell_0.5.0 crayon_1.4.1 R.oo_1.24.0

7

	Writing an Import Function
	Adding further Data Columns
	Dropping data columns
	Linear Calibration

