
Package ‘joyn’
March 30, 2024

Type Package

Title Tool for Diagnosis of Tables Joins and Complementary Join
Features

Version 0.2.0

Description Tool for diagnosing table joins. It combines the speed of `collapse`
and `data.table`, the flexibility of `dplyr`, and the diagnosis and features
of the `merge` command in `Stata`.

License MIT + file LICENSE

Encoding UTF-8

URL https://github.com/randrescastaneda/joyn,

https://rossanatat.github.io/joyn/

BugReports https://github.com/randrescastaneda/joyn/issues

Suggests badger, covr, knitr, rmarkdown, testthat (>= 3.0.0), withr,
dplyr, tibble

Config/testthat/edition 3

Imports rlang, data.table, cli, utils, collapse (>= 2.0.9), lifecycle

Depends R (>= 2.10)

RoxygenNote 7.3.1

VignetteBuilder knitr

NeedsCompilation no

Author R.Andres Castaneda [aut, cre],
Zander Prinsloo [aut],
Rossana Tatulli [aut]

Maintainer R.Andres Castaneda <acastanedaa@worldbank.org>

Repository CRAN

Date/Publication 2024-03-29 23:30:02 UTC

1

https://github.com/randrescastaneda/joyn
https://rossanatat.github.io/joyn/
https://github.com/randrescastaneda/joyn/issues

2 freq_table

R topics documented:

freq_table . 2
full_join . 3
get_joyn_options . 6
inner_join . 7
is_balanced . 11
is_id . 12
joyn . 13
joyn_msg . 16
joyn_report . 17
left_join . 18
merge . 21
possible_ids . 24
rename_to_valid . 25
right_join . 25
set_joyn_options . 29

Index 30

freq_table Tabulate simple frequencies

Description

tabulate one variable frequencies

Usage

freq_table(x, byvar, digits = 1, na.rm = TRUE)

Arguments

x data frame

byvar character: name of variable to tabulate. Use Standard evaluation.

digits numeric: number of decimal places to display. Default is 1.

na.rm logical: if TRUE remove NAs from calculations. Default is TRUE

Value

data.table with frequencies.

full_join 3

Examples

library(data.table)
x4 = data.table(id1 = c(1, 1, 2, 3, 3),

id2 = c(1, 1, 2, 3, 4),
t = c(1L, 2L, 1L, 2L, NA_integer_),
x = c(16, 12, NA, NA, 15))

freq_table(x4, "id1")

full_join Full join two data frames

Description

This is a joyn wrapper that works in a similar fashion to dplyr::full_join

Usage

full_join(
x,
y,
by = intersect(names(x), names(y)),
copy = FALSE,
suffix = c(".x", ".y"),
keep = NULL,
na_matches = c("na", "never"),
multiple = "all",
unmatched = "drop",
relationship = "one-to-one",
y_vars_to_keep = TRUE,
update_values = FALSE,
update_NAs = update_values,
reportvar = getOption("joyn.reportvar"),
reporttype = c("character", "numeric"),
roll = NULL,
keep_common_vars = FALSE,
sort = TRUE,
verbose = getOption("joyn.verbose"),
...

)

Arguments

x data frame: referred to as left in R terminology, or master in Stata terminology.

y data frame: referred to as right in R terminology, or using in Stata terminology.

4 full_join

by a character vector of variables to join by. If NULL, the default, joyn will do a
natural join, using all variables with common names across the two tables. A
message lists the variables so that you can check they’re correct (to suppress the
message, simply explicitly list the variables that you want to join). To join by
different variables on x and y use a vector of expressions. For example, by =
c("a = b", "z") will use "a" in x, "b" in y, and "z" in both tables.

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

suffix If there are non-joined duplicate variables in x and y, these suffixes will be added
to the output to disambiguate them. Should be a character vector of length 2.

keep Should the join keys from both x and y be preserved in the output?

• If NULL, the default, joins on equality retain only the keys from x, while
joins on inequality retain the keys from both inputs.

• If TRUE, all keys from both inputs are retained.
• If FALSE, only keys from x are retained. For right and full joins, the data in

key columns corresponding to rows that only exist in y are merged into the
key columns from x. Can’t be used when joining on inequality conditions.

na_matches Should two NA or two NaN values match?

• "na", the default, treats two NA or two NaN values as equal, like %in%,
match(), and merge().

• "never" treats two NA or two NaN values as different, and will never match
them together or to any other values. This is similar to joins for database
sources and to base::merge(incomparables = NA).

multiple Handling of rows in x with multiple matches in y. For each row of x:

• "all", the default, returns every match detected in y. This is the same
behavior as SQL.

• "any" returns one match detected in y, with no guarantees on which match
will be returned. It is often faster than "first" and "last" if you just need
to detect if there is at least one match.

• "first" returns the first match detected in y.
• "last" returns the last match detected in y.

unmatched How should unmatched keys that would result in dropped rows be handled?

• "drop" drops unmatched keys from the result.
• "error" throws an error if unmatched keys are detected.

unmatched is intended to protect you from accidentally dropping rows during a
join. It only checks for unmatched keys in the input that could potentially drop
rows.

• For left joins, it checks y.
• For right joins, it checks x.
• For inner joins, it checks both x and y. In this case, unmatched is also

allowed to be a character vector of length 2 to specify the behavior for x
and y independently.

full_join 5

relationship Handling of the expected relationship between the keys of x and y. If the expec-
tations chosen from the list below are invalidated, an error is thrown.

• NULL, the default, doesn’t expect there to be any relationship between x and
y. However, for equality joins it will check for a many-to-many relationship
(which is typically unexpected) and will warn if one occurs, encouraging
you to either take a closer look at your inputs or make this relationship
explicit by specifying "many-to-many".
See the Many-to-many relationships section for more details.

• "one-to-one" expects:
– Each row in x matches at most 1 row in y.
– Each row in y matches at most 1 row in x.

• "one-to-many" expects:
– Each row in y matches at most 1 row in x.

• "many-to-one" expects:
– Each row in x matches at most 1 row in y.

• "many-to-many" doesn’t perform any relationship checks, but is provided
to allow you to be explicit about this relationship if you know it exists.

relationship doesn’t handle cases where there are zero matches. For that, see
unmatched.

y_vars_to_keep character: Vector of variable names in y that will be kept after the merge. If
TRUE (the default), it keeps all the brings all the variables in y into x. If FALSE
or NULL, it does not bring any variable into x, but a report will be generated.

update_values logical: If TRUE, it will update all values of variables in x with the actual of
variables in y with the same name as the ones in x. NAs from y won’t be used
to update actual values in x. Yet, by default, NAs in x will be updated with
values in y. To avoid this, make sure to set update_NAs = FALSE

update_NAs logical: If TRUE, it will update NA values of all variables in x with actual values
of variables in y that have the same name as the ones in x. If FALSE, NA values
won’t be updated, even if update_values is TRUE

reportvar character: Name of reporting variable. Default is ".joyn". This is the same as
variable "_merge" in Stata after performing a merge. If FALSE or NULL, the
reporting variable will be excluded from the final table, though a summary of
the join will be display after concluding.

reporttype character: One of "character" or "numeric". Default is "character". If "nu-
meric", the reporting variable will contain numeric codes of the source and the
contents of each observation in the joined table. See below for more informa-
tion.

roll double: to be implemented
keep_common_vars

logical: If TRUE, it will keep the original variable from y when both tables have
common variable names. Thus, the prefix "y." will be added to the original name
to distinguish from the resulting variable in the joined table.

sort logical: If TRUE, sort by key variables in by. Default is TRUE.

verbose logical: if FALSE, it won’t display any message (programmer’s option). Default
is TRUE.

6 get_joyn_options

... Arguments passed on to joyn

match_type character: one of "m:m", "m:1", "1:m", "1:1". Default is "1:1"
since this the most restrictive. However, following Stata’s recommendation,
it is better to be explicit and use any of the other three match types (See
details in match types sections).

allow.cartesian logical: Check documentation in official web site. Default
is NULL, which implies that if the join is "1:1" it will be FALSE, but if the
join has any "m" on it, it will be converted to TRUE. By specifying TRUE of
FALSE you force the behavior of the join.

suffixes A character(2) specifying the suffixes to be used for making non-by
column names unique. The suffix behaviour works in a similar fashion as
the base::merge method does.

yvars [Superseded]: use now y_vars_to_keep

keep_y_in_x [Superseded]: use now keep_common_vars

msg_type character: type of messages to display by default
na.last logical. If TRUE, missing values in the data are placed last; if FALSE,

they are placed first; if NA they are removed. na.last=NA is valid only for
x[order(., na.last)] and its default is TRUE. setorder and setorderv
only accept TRUE/FALSE with default FALSE.

Value

An data frame of the same class as x. The properties of the output are as close as possible to the
ones returned by the dplyr alternative.

See Also

Other dplyr alternatives: inner_join(), left_join(), right_join()

Examples

Simple full join
library(data.table)

x1 = data.table(id = c(1L, 1L, 2L, 3L, NA_integer_),
t = c(1L, 2L, 1L, 2L, NA_integer_),
x = 11:15)

y1 = data.table(id = c(1,2, 4),
y = c(11L, 15L, 16))

full_join(x1, y1, relationship = "many-to-one")

get_joyn_options Get joyn options

Description

This function aims to display and store info on joyn options

https://rdatatable.gitlab.io/data.table/reference/merge.html/

inner_join 7

Usage

get_joyn_options(env = .joynenv, display = TRUE, option = NULL)

Arguments

env environment, which is joyn environment by default

display logical, if TRUE displays (i.e., print) info on joyn options and corresponding
default and current values

option character or NULL. If character, name of a specific joyn option. If NULL, all
joyn options

Value

joyn options and values invisibly as a list

See Also

JOYn options functions set_joyn_options()

Examples

Not run:

display all joyn options, their default and current values
joyn:::get_joyn_options()

store list of option = value pairs AND do not display info
joyn_options <- joyn:::get_joyn_options(display = FALSE)

get info on one specific option and store it
joyn.verbose <- joyn:::get_joyn_options(option = "joyn.verbose")

get info on two specific option
joyn:::get_joyn_options(option = c("joyn.verbose", "joyn.reportvar"))

End(Not run)

inner_join Inner join two data frames

Description

This is a joyn wrapper that works in a similar fashion to dplyr::inner_join

8 inner_join

Usage

inner_join(
x,
y,
by = intersect(names(x), names(y)),
copy = FALSE,
suffix = c(".x", ".y"),
keep = NULL,
na_matches = c("na", "never"),
multiple = "all",
unmatched = "drop",
relationship = "one-to-one",
y_vars_to_keep = TRUE,
update_values = FALSE,
update_NAs = update_values,
reportvar = getOption("joyn.reportvar"),
reporttype = c("character", "numeric"),
roll = NULL,
keep_common_vars = FALSE,
sort = TRUE,
verbose = getOption("joyn.verbose"),
...

)

Arguments

x data frame: referred to as left in R terminology, or master in Stata terminology.

y data frame: referred to as right in R terminology, or using in Stata terminology.

by a character vector of variables to join by. If NULL, the default, joyn will do a
natural join, using all variables with common names across the two tables. A
message lists the variables so that you can check they’re correct (to suppress the
message, simply explicitly list the variables that you want to join). To join by
different variables on x and y use a vector of expressions. For example, by =
c("a = b", "z") will use "a" in x, "b" in y, and "z" in both tables.

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

suffix If there are non-joined duplicate variables in x and y, these suffixes will be added
to the output to disambiguate them. Should be a character vector of length 2.

keep Should the join keys from both x and y be preserved in the output?

• If NULL, the default, joins on equality retain only the keys from x, while
joins on inequality retain the keys from both inputs.

• If TRUE, all keys from both inputs are retained.
• If FALSE, only keys from x are retained. For right and full joins, the data in

key columns corresponding to rows that only exist in y are merged into the
key columns from x. Can’t be used when joining on inequality conditions.

inner_join 9

na_matches Should two NA or two NaN values match?

• "na", the default, treats two NA or two NaN values as equal, like %in%,
match(), and merge().

• "never" treats two NA or two NaN values as different, and will never match
them together or to any other values. This is similar to joins for database
sources and to base::merge(incomparables = NA).

multiple Handling of rows in x with multiple matches in y. For each row of x:

• "all", the default, returns every match detected in y. This is the same
behavior as SQL.

• "any" returns one match detected in y, with no guarantees on which match
will be returned. It is often faster than "first" and "last" if you just need
to detect if there is at least one match.

• "first" returns the first match detected in y.
• "last" returns the last match detected in y.

unmatched How should unmatched keys that would result in dropped rows be handled?

• "drop" drops unmatched keys from the result.
• "error" throws an error if unmatched keys are detected.

unmatched is intended to protect you from accidentally dropping rows during a
join. It only checks for unmatched keys in the input that could potentially drop
rows.

• For left joins, it checks y.
• For right joins, it checks x.
• For inner joins, it checks both x and y. In this case, unmatched is also

allowed to be a character vector of length 2 to specify the behavior for x
and y independently.

relationship Handling of the expected relationship between the keys of x and y. If the expec-
tations chosen from the list below are invalidated, an error is thrown.

• NULL, the default, doesn’t expect there to be any relationship between x and
y. However, for equality joins it will check for a many-to-many relationship
(which is typically unexpected) and will warn if one occurs, encouraging
you to either take a closer look at your inputs or make this relationship
explicit by specifying "many-to-many".
See the Many-to-many relationships section for more details.

• "one-to-one" expects:
– Each row in x matches at most 1 row in y.
– Each row in y matches at most 1 row in x.

• "one-to-many" expects:
– Each row in y matches at most 1 row in x.

• "many-to-one" expects:
– Each row in x matches at most 1 row in y.

• "many-to-many" doesn’t perform any relationship checks, but is provided
to allow you to be explicit about this relationship if you know it exists.

relationship doesn’t handle cases where there are zero matches. For that, see
unmatched.

10 inner_join

y_vars_to_keep character: Vector of variable names in y that will be kept after the merge. If
TRUE (the default), it keeps all the brings all the variables in y into x. If FALSE
or NULL, it does not bring any variable into x, but a report will be generated.

update_values logical: If TRUE, it will update all values of variables in x with the actual of
variables in y with the same name as the ones in x. NAs from y won’t be used
to update actual values in x. Yet, by default, NAs in x will be updated with
values in y. To avoid this, make sure to set update_NAs = FALSE

update_NAs logical: If TRUE, it will update NA values of all variables in x with actual values
of variables in y that have the same name as the ones in x. If FALSE, NA values
won’t be updated, even if update_values is TRUE

reportvar character: Name of reporting variable. Default is ".joyn". This is the same as
variable "_merge" in Stata after performing a merge. If FALSE or NULL, the
reporting variable will be excluded from the final table, though a summary of
the join will be display after concluding.

reporttype character: One of "character" or "numeric". Default is "character". If "nu-
meric", the reporting variable will contain numeric codes of the source and the
contents of each observation in the joined table. See below for more informa-
tion.

roll double: to be implemented
keep_common_vars

logical: If TRUE, it will keep the original variable from y when both tables have
common variable names. Thus, the prefix "y." will be added to the original name
to distinguish from the resulting variable in the joined table.

sort logical: If TRUE, sort by key variables in by. Default is TRUE.

verbose logical: if FALSE, it won’t display any message (programmer’s option). Default
is TRUE.

... Arguments passed on to joyn

match_type character: one of "m:m", "m:1", "1:m", "1:1". Default is "1:1"
since this the most restrictive. However, following Stata’s recommendation,
it is better to be explicit and use any of the other three match types (See
details in match types sections).

allow.cartesian logical: Check documentation in official web site. Default
is NULL, which implies that if the join is "1:1" it will be FALSE, but if the
join has any "m" on it, it will be converted to TRUE. By specifying TRUE of
FALSE you force the behavior of the join.

suffixes A character(2) specifying the suffixes to be used for making non-by
column names unique. The suffix behaviour works in a similar fashion as
the base::merge method does.

yvars [Superseded]: use now y_vars_to_keep

keep_y_in_x [Superseded]: use now keep_common_vars

msg_type character: type of messages to display by default
na.last logical. If TRUE, missing values in the data are placed last; if FALSE,

they are placed first; if NA they are removed. na.last=NA is valid only for
x[order(., na.last)] and its default is TRUE. setorder and setorderv
only accept TRUE/FALSE with default FALSE.

https://rdatatable.gitlab.io/data.table/reference/merge.html/

is_balanced 11

Value

An data frame of the same class as x. The properties of the output are as close as possible to the
ones returned by the dplyr alternative.

See Also

Other dplyr alternatives: full_join(), left_join(), right_join()

Examples

Simple full join
library(data.table)

x1 = data.table(id = c(1L, 1L, 2L, 3L, NA_integer_),
t = c(1L, 2L, 1L, 2L, NA_integer_),
x = 11:15)

y1 = data.table(id = c(1,2, 4),
y = c(11L, 15L, 16))

inner_join(x1, y1, relationship = "many-to-one")

is_balanced Is data frame balanced by group?

Description

Check if the data frame is balanced by group of columns, i.e., if it contains every combination of
the elements in the specified variables

Usage

is_balanced(df, by, return = c("logic", "table"))

Arguments

df data frame

by character: variables used to check if df is balanced

return character: either "logic" or "table". If "logic", returns TRUE or FALSE depending
on whether data frame is balanced. If "table" returns the unbalanced observa-
tions - i.e. the combinations of elements in specified variables not found in input
df

Value

logical, if return == "logic", else returns data frame of unbalanced observations

12 is_id

Examples

x1 = data.frame(id = c(1L, 1L, 2L, 3L, NA_integer_),
t = c(1L, 2L, 1L, 2L, NA_integer_),
x = 11:15)

is_balanced(df = x1,
by = c("id", "t"),

return = "table") # returns combination of elements in "id" and "t" not present in df
is_balanced(df = x1,

by = c("id", "t"),
return = "logic") # FALSE

is_id Check if dt is uniquely identified by by variable

Description

report if dt is uniquely identified by by var or, if report = TRUE, the duplicates in by variable

Usage

is_id(dt, by, verbose = getOption("joyn.verbose"), return_report = FALSE)

Arguments

dt either right of left table

by variable to merge by

verbose logical: if TRUE messages will be displayed

return_report logical: if TRUE, returns data with summary of duplicates. If FALSE, returns
logical value depending on whether dt is uniquely identified by by

Value

logical or data.frame, depending on the value of argument return_report

Examples

library(data.table)

example with data frame not uniquely identified by `by` var

y <- data.table(id = c("c","b", "c", "a"),
y = c(11L, 15L, 18L, 20L))

is_id(y, by = "id")
is_id(y, by = "id", return_report = TRUE)

example with data frame uniquely identified by `by` var

y1 <- data.table(id = c("1","3", "2", "9"),

joyn 13

y = c(11L, 15L, 18L, 20L))
is_id(y1, by = "id")

joyn Join two tables

Description

This is the primary function in the joyn package. It executes a full join, performs a number of
checks, and filters to allow the user-specified join.

Usage

joyn(
x,
y,
by = intersect(names(x), names(y)),
match_type = c("1:1", "1:m", "m:1", "m:m"),
keep = c("full", "left", "master", "right", "using", "inner"),
y_vars_to_keep = TRUE,
update_values = FALSE,
update_NAs = update_values,
reportvar = getOption("joyn.reportvar"),
reporttype = c("character", "numeric"),
roll = NULL,
keep_common_vars = FALSE,
sort = TRUE,
verbose = getOption("joyn.verbose"),
suffixes = getOption("joyn.suffixes"),
allow.cartesian = deprecated(),
yvars = deprecated(),
keep_y_in_x = deprecated(),
na.last = getOption("joyn.na.last"),
msg_type = getOption("joyn.msg_type")

)

Arguments

x data frame: referred to as left in R terminology, or master in Stata terminology.

y data frame: referred to as right in R terminology, or using in Stata terminology.

by a character vector of variables to join by. If NULL, the default, joyn will do a
natural join, using all variables with common names across the two tables. A
message lists the variables so that you can check they’re correct (to suppress the
message, simply explicitly list the variables that you want to join). To join by
different variables on x and y use a vector of expressions. For example, by =
c("a = b", "z") will use "a" in x, "b" in y, and "z" in both tables.

14 joyn

match_type character: one of "m:m", "m:1", "1:m", "1:1". Default is "1:1" since this the
most restrictive. However, following Stata’s recommendation, it is better to be
explicit and use any of the other three match types (See details in match types
sections).

keep atomic character vector of length 1: One of "full", "left", "master", "right",
"using", "inner". Default is "full". Even though this is not the regular behavior
of joins in R, the objective of joyn is to present a diagnosis of the join which
requires a full join. That is why the default is a a full join. Yet, if "left" or
"master", it keeps the observations that matched in both tables and the ones that
did not match in x. The ones in y will be discarded. If "right" or "using", it keeps
the observations that matched in both tables and the ones that did not match in
y. The ones in x will be discarded. If "inner", it only keeps the observations that
matched both tables. Note that if, for example, a keep = "left", the joyn()
function still executes a full join under the hood and then filters so that only
rows the output table is a left join. This behaviour, while inefficient, allows all
the diagnostics and checks conducted by joyn.

y_vars_to_keep character: Vector of variable names in y that will be kept after the merge. If
TRUE (the default), it keeps all the brings all the variables in y into x. If FALSE
or NULL, it does not bring any variable into x, but a report will be generated.

update_values logical: If TRUE, it will update all values of variables in x with the actual of
variables in y with the same name as the ones in x. NAs from y won’t be used
to update actual values in x. Yet, by default, NAs in x will be updated with
values in y. To avoid this, make sure to set update_NAs = FALSE

update_NAs logical: If TRUE, it will update NA values of all variables in x with actual values
of variables in y that have the same name as the ones in x. If FALSE, NA values
won’t be updated, even if update_values is TRUE

reportvar character: Name of reporting variable. Default is ".joyn". This is the same as
variable "_merge" in Stata after performing a merge. If FALSE or NULL, the
reporting variable will be excluded from the final table, though a summary of
the join will be display after concluding.

reporttype character: One of "character" or "numeric". Default is "character". If "nu-
meric", the reporting variable will contain numeric codes of the source and the
contents of each observation in the joined table. See below for more informa-
tion.

roll double: to be implemented
keep_common_vars

logical: If TRUE, it will keep the original variable from y when both tables have
common variable names. Thus, the prefix "y." will be added to the original name
to distinguish from the resulting variable in the joined table.

sort logical: If TRUE, sort by key variables in by. Default is TRUE.

verbose logical: if FALSE, it won’t display any message (programmer’s option). Default
is TRUE.

suffixes A character(2) specifying the suffixes to be used for making non-by column
names unique. The suffix behaviour works in a similar fashion as the base::merge
method does.

joyn 15

allow.cartesian

logical: Check documentation in official web site. Default is NULL, which im-
plies that if the join is "1:1" it will be FALSE, but if the join has any "m" on it, it
will be converted to TRUE. By specifying TRUE of FALSE you force the behavior
of the join.

yvars [Superseded]: use now y_vars_to_keep

keep_y_in_x [Superseded]: use now keep_common_vars

na.last logical. If TRUE, missing values in the data are placed last; if FALSE, they are
placed first; if NA they are removed. na.last=NA is valid only for x[order(.,
na.last)] and its default is TRUE. setorder and setorderv only accept TRUE/FALSE
with default FALSE.

msg_type character: type of messages to display by default

Value

a data.table joining x and y.

match types

Using the same wording of the Stata manual

1:1: specifies a one-to-one match merge. The variables specified in by uniquely identify single
observations in both table.

1:m and m:1: specify one-to-many and many-to-one match merges, respectively. This means that
in of the tables the observations are uniquely identify by the variables in by, while in the other table
many (two or more) of the observations are identify by the variables in by

m:m refers to many-to-many merge. variables in by does not uniquely identify the observations
in either table. Matching is performed by combining observations with equal values in by; within
matching values, the first observation in the master (i.e. left or x) table is matched with the first
matching observation in the using (i.e. right or y) table; the second, with the second; and so on. If
there is an unequal number of observations within a group, then the last observation of the shorter
group is used repeatedly to match with subsequent observations of the longer group.

reporttype

If reporttype = "numeric", then the numeric values have the following meaning:

1: row comes from x, i.e. "x" 2: row comes from y, i.e. "y" 3: row from both x and y, i.e. "x &
y" 4: row has NA in x that has been updated with y, i.e. "NA updated" 5: row has valued in x that
has been updated with y, i.e. "value updated" 6: row from x that has not been updated, i.e. "not
updated"

NAs order

NAs are placed either at first or at last in the resulting data.frame depending on the value of getOption("joyn.na.last").
The Default is FALSE as it is the default value of data.table::setorderv.

https://rdatatable.gitlab.io/data.table/reference/merge.html/
https://www.stata.com/manuals/dmerge.pdf

16 joyn_msg

Examples

Simple join
library(data.table)
x1 = data.table(id = c(1L, 1L, 2L, 3L, NA_integer_),
t = c(1L, 2L, 1L, 2L, NA_integer_),
x = 11:15)

y1 = data.table(id = 1:2,
y = c(11L, 15L))

x2 = data.table(id = c(1, 1, 2, 3, NA),
t = c(1L, 2L, 1L, 2L, NA_integer_),
x = c(16, 12, NA, NA, 15))

y2 = data.table(id = c(1, 2, 5, 6, 3),
yd = c(1, 2, 5, 6, 3),
y = c(11L, 15L, 20L, 13L, 10L),
x = c(16:20))

joyn(x1, y1, match_type = "m:1")

Bad merge for not specifying by argument or match_type
joyn(x2, y2)

good merge, ignoring variable x from y
joyn(x2, y2, by = "id", match_type = "m:1")

update NAs in x variable form x
joyn(x2, y2, by = "id", update_NAs = TRUE, match_type = "m:1")

Update values in x with variables from y
joyn(x2, y2, by = "id", update_values = TRUE, match_type = "m:1")

joyn_msg display type of joyn message

Description

display type of joyn message

Usage

joyn_msg(msg_type = getOption("joyn.msg_type"), msg = NULL)

Arguments

msg_type character: one or more of the following: all, basic, info, note, warn, timing, or
err

msg character vector to be parsed to cli::cli_abort(). Default is NULL. It only
works if "err" %in% msg_type. This is an internal argument.

joyn_report 17

Value

returns data frame with message invisibly. print message in console

See Also

Messages functions clear_joynenv(), joyn_msgs_exist(), joyn_report(), msg_type_dt(),
store_msg(), style(), type_choices()

Examples

library(data.table)
x1 = data.table(id = c(1L, 1L, 2L, 3L, NA_integer_),
t = c(1L, 2L, 1L, 2L, NA_integer_),
x = 11:15)

y1 = data.table(id = 1:2,
y = c(11L, 15L))

df <- joyn(x1, y1, match_type = "m:1")
joyn_msg("basic")
joyn_msg("all")

joyn_report Print JOYn report table

Description

Print JOYn report table

Usage

joyn_report(verbose = getOption("joyn.verbose"))

Arguments

verbose logical: if FALSE, it won’t display any message (programmer’s option). Default
is TRUE.

Value

invisible table of frequencies

See Also

Messages functions clear_joynenv(), joyn_msg(), joyn_msgs_exist(), msg_type_dt(), store_msg(),
style(), type_choices()

18 left_join

Examples

library(data.table)
x1 = data.table(id = c(1L, 1L, 2L, 3L, NA_integer_),
t = c(1L, 2L, 1L, 2L, NA_integer_),
x = 11:15)

y1 = data.table(id = 1:2,
y = c(11L, 15L))

d <- joyn(x1, y1, match_type = "m:1")
joyn_report(verbose = TRUE)

left_join Left join two data frames

Description

This is a joyn wrapper that works in a similar fashion to dplyr::left_join

Usage

left_join(
x,
y,
by = intersect(names(x), names(y)),
copy = FALSE,
suffix = c(".x", ".y"),
keep = NULL,
na_matches = c("na", "never"),
multiple = "all",
unmatched = "drop",
relationship = NULL,
y_vars_to_keep = TRUE,
update_values = FALSE,
update_NAs = update_values,
reportvar = getOption("joyn.reportvar"),
reporttype = c("character", "numeric"),
roll = NULL,
keep_common_vars = FALSE,
sort = TRUE,
verbose = getOption("joyn.verbose"),
...

)

Arguments

x data frame: referred to as left in R terminology, or master in Stata terminology.

left_join 19

y data frame: referred to as right in R terminology, or using in Stata terminology.

by a character vector of variables to join by. If NULL, the default, joyn will do a
natural join, using all variables with common names across the two tables. A
message lists the variables so that you can check they’re correct (to suppress the
message, simply explicitly list the variables that you want to join). To join by
different variables on x and y use a vector of expressions. For example, by =
c("a = b", "z") will use "a" in x, "b" in y, and "z" in both tables.

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

suffix If there are non-joined duplicate variables in x and y, these suffixes will be added
to the output to disambiguate them. Should be a character vector of length 2.

keep Should the join keys from both x and y be preserved in the output?

• If NULL, the default, joins on equality retain only the keys from x, while
joins on inequality retain the keys from both inputs.

• If TRUE, all keys from both inputs are retained.
• If FALSE, only keys from x are retained. For right and full joins, the data in

key columns corresponding to rows that only exist in y are merged into the
key columns from x. Can’t be used when joining on inequality conditions.

na_matches Should two NA or two NaN values match?

• "na", the default, treats two NA or two NaN values as equal, like %in%,
match(), and merge().

• "never" treats two NA or two NaN values as different, and will never match
them together or to any other values. This is similar to joins for database
sources and to base::merge(incomparables = NA).

multiple Handling of rows in x with multiple matches in y. For each row of x:

• "all", the default, returns every match detected in y. This is the same
behavior as SQL.

• "any" returns one match detected in y, with no guarantees on which match
will be returned. It is often faster than "first" and "last" if you just need
to detect if there is at least one match.

• "first" returns the first match detected in y.
• "last" returns the last match detected in y.

unmatched How should unmatched keys that would result in dropped rows be handled?

• "drop" drops unmatched keys from the result.
• "error" throws an error if unmatched keys are detected.

unmatched is intended to protect you from accidentally dropping rows during a
join. It only checks for unmatched keys in the input that could potentially drop
rows.

• For left joins, it checks y.
• For right joins, it checks x.
• For inner joins, it checks both x and y. In this case, unmatched is also

allowed to be a character vector of length 2 to specify the behavior for x
and y independently.

20 left_join

relationship Handling of the expected relationship between the keys of x and y. If the expec-
tations chosen from the list below are invalidated, an error is thrown.

• NULL, the default, doesn’t expect there to be any relationship between x and
y. However, for equality joins it will check for a many-to-many relationship
(which is typically unexpected) and will warn if one occurs, encouraging
you to either take a closer look at your inputs or make this relationship
explicit by specifying "many-to-many".
See the Many-to-many relationships section for more details.

• "one-to-one" expects:
– Each row in x matches at most 1 row in y.
– Each row in y matches at most 1 row in x.

• "one-to-many" expects:
– Each row in y matches at most 1 row in x.

• "many-to-one" expects:
– Each row in x matches at most 1 row in y.

• "many-to-many" doesn’t perform any relationship checks, but is provided
to allow you to be explicit about this relationship if you know it exists.

relationship doesn’t handle cases where there are zero matches. For that, see
unmatched.

y_vars_to_keep character: Vector of variable names in y that will be kept after the merge. If
TRUE (the default), it keeps all the brings all the variables in y into x. If FALSE
or NULL, it does not bring any variable into x, but a report will be generated.

update_values logical: If TRUE, it will update all values of variables in x with the actual of
variables in y with the same name as the ones in x. NAs from y won’t be used
to update actual values in x. Yet, by default, NAs in x will be updated with
values in y. To avoid this, make sure to set update_NAs = FALSE

update_NAs logical: If TRUE, it will update NA values of all variables in x with actual values
of variables in y that have the same name as the ones in x. If FALSE, NA values
won’t be updated, even if update_values is TRUE

reportvar character: Name of reporting variable. Default is ".joyn". This is the same as
variable "_merge" in Stata after performing a merge. If FALSE or NULL, the
reporting variable will be excluded from the final table, though a summary of
the join will be display after concluding.

reporttype character: One of "character" or "numeric". Default is "character". If "nu-
meric", the reporting variable will contain numeric codes of the source and the
contents of each observation in the joined table. See below for more informa-
tion.

roll double: to be implemented
keep_common_vars

logical: If TRUE, it will keep the original variable from y when both tables have
common variable names. Thus, the prefix "y." will be added to the original name
to distinguish from the resulting variable in the joined table.

sort logical: If TRUE, sort by key variables in by. Default is TRUE.

verbose logical: if FALSE, it won’t display any message (programmer’s option). Default
is TRUE.

merge 21

... Arguments passed on to joyn

match_type character: one of "m:m", "m:1", "1:m", "1:1". Default is "1:1"
since this the most restrictive. However, following Stata’s recommendation,
it is better to be explicit and use any of the other three match types (See
details in match types sections).

allow.cartesian logical: Check documentation in official web site. Default
is NULL, which implies that if the join is "1:1" it will be FALSE, but if the
join has any "m" on it, it will be converted to TRUE. By specifying TRUE of
FALSE you force the behavior of the join.

suffixes A character(2) specifying the suffixes to be used for making non-by
column names unique. The suffix behaviour works in a similar fashion as
the base::merge method does.

yvars [Superseded]: use now y_vars_to_keep

keep_y_in_x [Superseded]: use now keep_common_vars

msg_type character: type of messages to display by default
na.last logical. If TRUE, missing values in the data are placed last; if FALSE,

they are placed first; if NA they are removed. na.last=NA is valid only for
x[order(., na.last)] and its default is TRUE. setorder and setorderv
only accept TRUE/FALSE with default FALSE.

Value

An data frame of the same class as x. The properties of the output are as close as possible to the
ones returned by the dplyr alternative.

See Also

Other dplyr alternatives: full_join(), inner_join(), right_join()

Examples

Simple left join
library(data.table)

x1 = data.table(id = c(1L, 1L, 2L, 3L, NA_integer_),
t = c(1L, 2L, 1L, 2L, NA_integer_),
x = 11:15)

y1 = data.table(id = c(1,2, 4),
y = c(11L, 15L, 16))

left_join(x1, y1, relationship = "many-to-one")

merge Merge two data frames

Description

This is a joyn wrapper that works in a similar fashion to base::merge and data.table::merge, which
is why merge masks the other two.

https://rdatatable.gitlab.io/data.table/reference/merge.html/

22 merge

Usage

merge(
x,
y,
by = NULL,
by.x = NULL,
by.y = NULL,
all = FALSE,
all.x = all,
all.y = all,
sort = TRUE,
suffixes = c(".x", ".y"),
no.dups = TRUE,
allow.cartesian = getOption("datatable.allow.cartesian"),
match_type = c("m:m", "m:1", "1:m", "1:1"),
keep_common_vars = TRUE,
...

)

Arguments

x, y data tables. y is coerced to a data.table if it isn’t one already.

by A vector of shared column names in x and y to merge on. This defaults to
the shared key columns between the two tables. If y has no key columns, this
defaults to the key of x.

by.x, by.y Vectors of column names in x and y to merge on.

all logical; all = TRUE is shorthand to save setting both all.x = TRUE and all.y =
TRUE.

all.x logical; if TRUE, rows from x which have no matching row in y are included.
These rows will have ’NA’s in the columns that are usually filled with values
from y. The default is FALSE so that only rows with data from both x and y are
included in the output.

all.y logical; analogous to all.x above.

sort logical. If TRUE (default), the rows of the merged data.table are sorted by
setting the key to the by / by.x columns. If FALSE, unlike base R’s merge for
which row order is unspecified, the row order in x is retained (including retaining
the position of missings when all.x=TRUE), followed by y rows that don’t match
x (when all.y=TRUE) retaining the order those appear in y.

suffixes A character(2) specifying the suffixes to be used for making non-by col-
umn names unique. The suffix behaviour works in a similar fashion as the
merge.data.frame method does.

no.dups logical indicating that suffixes are also appended to non-by.y column names
in y when they have the same column name as any by.x.

allow.cartesian

See allow.cartesian in [.data.table.

merge 23

match_type character: one of "m:m", "m:1", "1:m", "1:1". Default is "1:1" since this the
most restrictive. However, following Stata’s recommendation, it is better to be
explicit and use any of the other three match types (See details in match types
sections).

keep_common_vars

logical: If TRUE, it will keep the original variable from y when both tables have
common variable names. Thus, the prefix "y." will be added to the original name
to distinguish from the resulting variable in the joined table.

... Arguments passed on to joyn

y_vars_to_keep character: Vector of variable names in y that will be kept after
the merge. If TRUE (the default), it keeps all the brings all the variables in
y into x. If FALSE or NULL, it does not bring any variable into x, but a
report will be generated.

reportvar character: Name of reporting variable. Default is ".joyn". This
is the same as variable "_merge" in Stata after performing a merge. If
FALSE or NULL, the reporting variable will be excluded from the final
table, though a summary of the join will be display after concluding.

update_NAs logical: If TRUE, it will update NA values of all variables in x
with actual values of variables in y that have the same name as the ones in
x. If FALSE, NA values won’t be updated, even if update_values is TRUE

update_values logical: If TRUE, it will update all values of variables in x with
the actual of variables in y with the same name as the ones in x. NAs from y
won’t be used to update actual values in x. Yet, by default, NAs in x will
be updated with values in y. To avoid this, make sure to set update_NAs =
FALSE

verbose logical: if FALSE, it won’t display any message (programmer’s op-
tion). Default is TRUE.

Value

data.table merging x and y

Examples

x1 = data.frame(id = c(1L, 1L, 2L, 3L, NA_integer_),
t = c(1L, 2L, 1L, 2L, NA_integer_),
x = 11:15)

y1 = data.frame(id = c(1,2, 4),
y = c(11L, 15L, 16))

joyn::merge(x1, y1, by = "id")
example of using by.x and by.y
x2 = data.frame(id1 = c(1, 1, 2, 3, 3),

id2 = c(1, 1, 2, 3, 4),
t = c(1L, 2L, 1L, 2L, NA_integer_),
x = c(16, 12, NA, NA, 15))

y2 = data.frame(id = c(1, 2, 5, 6, 3),
id2 = c(1, 1, 2, 3, 4),
y = c(11L, 15L, 20L, 13L, 10L),
x = c(16:20))

24 possible_ids

jn <- joyn::merge(x2,
y2,
match_type = "m:m",
all.x = TRUE,
by.x = "id1",
by.y = "id2")

example with all = TRUE
jn <- joyn::merge(x2,

y2,
match_type = "m:m",
by.x = "id1",
by.y = "id2",
all = TRUE)

possible_ids Find possible unique identifies of data frame

Description

Identify possible variables uniquely identifying x

Usage

possible_ids(
dt,
exclude = NULL,
include = NULL,
verbose = getOption("possible_ids.verbose")

)

Arguments

dt data frame

exclude character: Exclude variables to be selected as identifiers. It could be either the
name of the variables of one type of the variable prefixed by "_". For instance,
"_numeric" or "_character".

include character: Name of variable to be included, that might belong to the group ex-
cluded in the exclude

verbose logical: If FALSE no message will be displayed. Default is TRUE

Value

list with possible identifiers

rename_to_valid 25

Examples

library(data.table)
x4 = data.table(id1 = c(1, 1, 2, 3, 3),

id2 = c(1, 1, 2, 3, 4),
t = c(1L, 2L, 1L, 2L, NA_integer_),
x = c(16, 12, NA, NA, 15))

possible_ids(x4)

rename_to_valid Rename to syntactically valid names

Description

Rename to syntactically valid names

Usage

rename_to_valid(name, verbose = getOption("joyn.verbose"))

Arguments

name character: name to be coerced to syntactically valid name

verbose logical: if FALSE, it won’t display any message (programmer’s option). Default
is TRUE.

Value

valid character name

Examples

joyn:::rename_to_valid("x y")

right_join Right join two data frames

Description

This is a joyn wrapper that works in a similar fashion to dplyr::right_join

26 right_join

Usage

right_join(
x,
y,
by = intersect(names(x), names(y)),
copy = FALSE,
suffix = c(".x", ".y"),
keep = NULL,
na_matches = c("na", "never"),
multiple = "all",
unmatched = "drop",
relationship = "one-to-one",
y_vars_to_keep = TRUE,
update_values = FALSE,
update_NAs = update_values,
reportvar = getOption("joyn.reportvar"),
reporttype = c("character", "numeric"),
roll = NULL,
keep_common_vars = FALSE,
sort = TRUE,
verbose = getOption("joyn.verbose"),
...

)

Arguments

x data frame: referred to as left in R terminology, or master in Stata terminology.

y data frame: referred to as right in R terminology, or using in Stata terminology.

by a character vector of variables to join by. If NULL, the default, joyn will do a
natural join, using all variables with common names across the two tables. A
message lists the variables so that you can check they’re correct (to suppress the
message, simply explicitly list the variables that you want to join). To join by
different variables on x and y use a vector of expressions. For example, by =
c("a = b", "z") will use "a" in x, "b" in y, and "z" in both tables.

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

suffix If there are non-joined duplicate variables in x and y, these suffixes will be added
to the output to disambiguate them. Should be a character vector of length 2.

keep Should the join keys from both x and y be preserved in the output?

• If NULL, the default, joins on equality retain only the keys from x, while
joins on inequality retain the keys from both inputs.

• If TRUE, all keys from both inputs are retained.
• If FALSE, only keys from x are retained. For right and full joins, the data in

key columns corresponding to rows that only exist in y are merged into the
key columns from x. Can’t be used when joining on inequality conditions.

right_join 27

na_matches Should two NA or two NaN values match?

• "na", the default, treats two NA or two NaN values as equal, like %in%,
match(), and merge().

• "never" treats two NA or two NaN values as different, and will never match
them together or to any other values. This is similar to joins for database
sources and to base::merge(incomparables = NA).

multiple Handling of rows in x with multiple matches in y. For each row of x:

• "all", the default, returns every match detected in y. This is the same
behavior as SQL.

• "any" returns one match detected in y, with no guarantees on which match
will be returned. It is often faster than "first" and "last" if you just need
to detect if there is at least one match.

• "first" returns the first match detected in y.
• "last" returns the last match detected in y.

unmatched How should unmatched keys that would result in dropped rows be handled?

• "drop" drops unmatched keys from the result.
• "error" throws an error if unmatched keys are detected.

unmatched is intended to protect you from accidentally dropping rows during a
join. It only checks for unmatched keys in the input that could potentially drop
rows.

• For left joins, it checks y.
• For right joins, it checks x.
• For inner joins, it checks both x and y. In this case, unmatched is also

allowed to be a character vector of length 2 to specify the behavior for x
and y independently.

relationship Handling of the expected relationship between the keys of x and y. If the expec-
tations chosen from the list below are invalidated, an error is thrown.

• NULL, the default, doesn’t expect there to be any relationship between x and
y. However, for equality joins it will check for a many-to-many relationship
(which is typically unexpected) and will warn if one occurs, encouraging
you to either take a closer look at your inputs or make this relationship
explicit by specifying "many-to-many".
See the Many-to-many relationships section for more details.

• "one-to-one" expects:
– Each row in x matches at most 1 row in y.
– Each row in y matches at most 1 row in x.

• "one-to-many" expects:
– Each row in y matches at most 1 row in x.

• "many-to-one" expects:
– Each row in x matches at most 1 row in y.

• "many-to-many" doesn’t perform any relationship checks, but is provided
to allow you to be explicit about this relationship if you know it exists.

relationship doesn’t handle cases where there are zero matches. For that, see
unmatched.

28 right_join

y_vars_to_keep character: Vector of variable names in y that will be kept after the merge. If
TRUE (the default), it keeps all the brings all the variables in y into x. If FALSE
or NULL, it does not bring any variable into x, but a report will be generated.

update_values logical: If TRUE, it will update all values of variables in x with the actual of
variables in y with the same name as the ones in x. NAs from y won’t be used
to update actual values in x. Yet, by default, NAs in x will be updated with
values in y. To avoid this, make sure to set update_NAs = FALSE

update_NAs logical: If TRUE, it will update NA values of all variables in x with actual values
of variables in y that have the same name as the ones in x. If FALSE, NA values
won’t be updated, even if update_values is TRUE

reportvar character: Name of reporting variable. Default is ".joyn". This is the same as
variable "_merge" in Stata after performing a merge. If FALSE or NULL, the
reporting variable will be excluded from the final table, though a summary of
the join will be display after concluding.

reporttype character: One of "character" or "numeric". Default is "character". If "nu-
meric", the reporting variable will contain numeric codes of the source and the
contents of each observation in the joined table. See below for more informa-
tion.

roll double: to be implemented
keep_common_vars

logical: If TRUE, it will keep the original variable from y when both tables have
common variable names. Thus, the prefix "y." will be added to the original name
to distinguish from the resulting variable in the joined table.

sort logical: If TRUE, sort by key variables in by. Default is TRUE.

verbose logical: if FALSE, it won’t display any message (programmer’s option). Default
is TRUE.

... Arguments passed on to joyn

match_type character: one of "m:m", "m:1", "1:m", "1:1". Default is "1:1"
since this the most restrictive. However, following Stata’s recommendation,
it is better to be explicit and use any of the other three match types (See
details in match types sections).

allow.cartesian logical: Check documentation in official web site. Default
is NULL, which implies that if the join is "1:1" it will be FALSE, but if the
join has any "m" on it, it will be converted to TRUE. By specifying TRUE of
FALSE you force the behavior of the join.

suffixes A character(2) specifying the suffixes to be used for making non-by
column names unique. The suffix behaviour works in a similar fashion as
the base::merge method does.

yvars [Superseded]: use now y_vars_to_keep

keep_y_in_x [Superseded]: use now keep_common_vars

msg_type character: type of messages to display by default
na.last logical. If TRUE, missing values in the data are placed last; if FALSE,

they are placed first; if NA they are removed. na.last=NA is valid only for
x[order(., na.last)] and its default is TRUE. setorder and setorderv
only accept TRUE/FALSE with default FALSE.

https://rdatatable.gitlab.io/data.table/reference/merge.html/

set_joyn_options 29

Value

An data frame of the same class as x. The properties of the output are as close as possible to the
ones returned by the dplyr alternative.

See Also

Other dplyr alternatives: full_join(), inner_join(), left_join()

Examples

Simple right join
library(data.table)

x1 = data.table(id = c(1L, 1L, 2L, 3L, NA_integer_),
t = c(1L, 2L, 1L, 2L, NA_integer_),
x = 11:15)

y1 = data.table(id = c(1,2, 4),
y = c(11L, 15L, 16))

right_join(x1, y1, relationship = "many-to-one")

set_joyn_options Set joyn options

Description

This function is used to change the value of one or more joyn options

Usage

set_joyn_options(..., env = .joynenv)

Arguments

... pairs of option = value

env environment, which is joyn environment by default

Value

joyn new options and values invisibly as a list

See Also

JOYn options functions get_joyn_options()

Examples

joyn:::set_joyn_options(joyn.verbose = FALSE, joyn.reportvar = "joyn_status")
joyn:::set_joyn_options() # return to default options

Index

∗ dplyr alternatives
full_join, 3
inner_join, 7
left_join, 18
right_join, 25

∗ messages
joyn_msg, 16
joyn_report, 17

∗ options
get_joyn_options, 6
set_joyn_options, 29

[.data.table, 22

base::merge, 6, 10, 14, 21, 28

clear_joynenv, 17
cli::cli_abort(), 16

data.table::merge, 21
data.table::setorderv, 15
dplyr::full_join, 3
dplyr::inner_join, 7
dplyr::left_join, 18
dplyr::right_join, 25

freq_table, 2
full_join, 3, 11, 21, 29

get_joyn_options, 6, 29

inner_join, 6, 7, 21, 29
is_balanced, 11
is_id, 12

joyn, 6, 10, 13, 21, 23, 28
joyn_msg, 16, 17
joyn_msgs_exist, 17
joyn_report, 17, 17

left_join, 6, 11, 18, 29

match(), 4, 9, 19, 27

merge, 21, 21
merge(), 4, 9, 19, 27
merge.data.frame, 22
msg_type_dt, 17

possible_ids, 24

rename_to_valid, 25
right_join, 6, 11, 21, 25

set_joyn_options, 7, 29
store_msg, 17
style, 17

type_choices, 17

30

	freq_table
	full_join
	get_joyn_options
	inner_join
	is_balanced
	is_id
	joyn
	joyn_msg
	joyn_report
	left_join
	merge
	possible_ids
	rename_to_valid
	right_join
	set_joyn_options
	Index

