
Introduction to lifelogr
2017-03-21

vignette("Report", package = "lifelogr")

library(lifelogr)

Lifelogging is the “process of tracking personal data generated by our own behavioral activities.” Examples of
lifelogging include tracking one’s exercise and sleep. While devices like iPhones and Fitbits make collecting
data on oneself easy, analyzing and interpreting that data is more difficult.

The lifelogr package makes life logging analysis and interpretation easy by:

• Providing a framework for working with multiple sources of personal data.
• Allowing users to easily create three sets of meaningful visualizations.
• Creating an ecosystem for experimentation - a feedback loop between self-data, and the process

generating it.

Working with Multiple Sources of Data: the “Person” class

This package is built around the Person class, an R6 class. An object of Person class encapsulates a complete
picture of a user, as seen through her data. The goal of this class is to make working with multiple sources of
data as easy as possible by joining and standardizing multiple datasets. Users can then access the data from
and across sources for visualization and experimentation.

Upon instantiation, a user can provide information about himself, the filepath to a csv file with Apple data,
Fitbit account information, and/or dataframes of data from other sources.

Loading Multi-Source Data into Person Objects

Fitbit users can provide their account username and password upon instantiation. We use functions from the
fitbitScraper package to collect all of a user’s Fitbit data between the start and end date of interest.

EX <- Person$new(fitbit_user_email = "example@domain.com",
fitbit_user_pw = "password",
apple_data_file = "apple.csv",
addl_data = NA,
user_info = list("name" = "EX", "age" = 29, "gender" = "male"),
target_steps = 10000,
group_assignments = list(data.frame(NA), data.frame(NA)),
start_date = "2017-01-19", end_date = "2017-02-17")

iPhone users can provide a filepath to a csv with their Apple health data. Users can download their data
using an iOS app called QS Access (quantified self), which allows for selection of variables and time scales
(by day or by hour), to include in a csv file. For greater compatibility with the lifelogr package, users are
highly recommended to select the “by hour” time interval.

Users can provide data from other sources and self-tracking apps as pre-cleaned dataframes in the addl_data
or addl_data2 arguments. To make maximal use of lifelogr’s functions, the column names of the same
variables in the dataframe should match those referenced in the Person class, and class documentation (when
the variables in the dataframe are the same as those referred to in the documentation).

1

http://lifestreamblog.com/lifelogging/

Example of Person Class

EX is an example of a Person class for a user who provided their Fitbit account information upon instantiation.
Functions within the Person class gathered and manipulated the data into data from three main “sources”:

• fitbit_daily has Fitbit data recorded on a daily basis
• fitbit_intraday has Fitbit data recorded on an intraday basis, generally every 15 minutes, although

for certain variables, such as heart rate, data are recorded every 5 minutes.
• fitbit_util has information about the dates in the range specified by the user upon Person instantiation,

such as which day of the week a specific date is.

Dates, Times, and Date-Times

Dates and times come in numerous forms. lifelogr recognizes three types of dates/times as acceptable
time-related variables to join datasets on:

• date: “2017-03-20”
• time: “08:00:00”
• datetime: “2017-03-20 08:00:00”, a combination of a date and a time

Upon instantiation, the Person class automatically converts and renames Fitbit and Apple health data to
adhere to this variable naming and format convention. If users provide their own addl_data as dataframes,
they will need to have one or more of these time-related variables as columns in their dataframes in order to
be able to join across their data source, and Fitbit/Apple health data.

Visualization

There are 3 functions which allow for a series of plots with just one function call: plot_sleep_all,
plot_daily_all, and plot_intraday_all. Each acts like the plot.lm function, where users must click
“enter” to see the next plot.
Each plot within each of the three series can also be generated individually with a call to its appropriate plot
function.
For example, using plot_sleep_all to generate all the sleep plots for EX:

plot_sleep_all(EX)
#> Press [enter] to continue
#> Press [enter] to continue
#> Press [enter] to continue
#> Press [enter] to continue
#> Press [enter] to continue
#> Press [enter] to continue

0.0

2.5

5.0

7.5

SunMonTuesWedThursFri Sat

Day of the Week

H
ou

rs

Sleep Type

Sleep Duration

Time Asleep

Hours of Sleep by Day of the Week

Jan 23

Jan 30

Feb 06

Feb 13

01:00 AM04:00 AM07:00 AM10:00 AM

Hours Asleep

D
at

e Weekday

Weekend

Sleep Start and End Times

2

6

7

8

9

10

Jan 23Jan 30Feb 06Feb 13

Date

S
le

ep
 D

ur
at

io
n

(h
ou

rs
)

Sleep Type

Sleep Duration

Time Asleep

Sleep Over Time

5.0

7.5

10.0

12.5

Jan 23 Jan 30 Feb 06 Feb 13

DateP
er

ce
nt

 o
f R

es
tle

ss
 S

le
ep Quality of Sleep: Restlessness (%)

20

30

40

50

60

Jan 23 Jan 30 Feb 06 Feb 13

Date

Le
ng

th
 o

f R
es

tle
ss

 S
le

ep
 (

m
in

ut
es

)

Quality of Sleep: Restlessness (mins)

80

85

90

95

Jan 23 Jan 30 Feb 06 Feb 13

Date
S

le
ep

 Q
ua

lit
y

S
co

re

Quality of Sleep: Quality Score

Calling plot_daily_all and plot_intraday_all will result in similar series of plots.

Users can also call each function individually using plot_sleep(person, plot_type) (or plot_daily or
plot_intraday), and also pass in other arguments for plots with other arguments.

For example:

plot_sleep(EX, "by_start_end_time", "day_of_week")

Jan 23

Jan 30

Feb 06

Feb 13

01:00 AM04:00 AM07:00 AM10:00 AM

Hours Asleep

D
at

e

Sun

Mon

Tues

Wed

Thurs

Fri

Sat

Sleep Start and End Times

Using plot_daily:

plot_daily(EX, "steps")

3

5000

10000

15000

Jan 23 Jan 30 Feb 06 Feb 13

Date

S
te

ps
Number of Steps Per Day

Using plot_intraday: The default is for plot_intraday to group the data by time intervals within each
day so that data for a “typical day” is displayed.

plot_intraday(EX, "distance", unit = "km")

0.00

0.05

0.10

0.15

01:00 AM04:00 AM07:00 AM10:00 AM13:00 PM16:00 PM19:00 PM22:00 PM

Time of Typical Day

D
is

ta
nc

e
(k

m
)

Average Distance Per 15 Min Interval vs Time of Day

However, it is also possible to specify that the plots use the raw data and plot over all datetimes.

plot_intraday(EX, "bpm", FALSE)

Fat burn
Cardio
Peak

0

50

100

150

200

Jan 23 Jan 30 Feb 06 Feb 13

Date−Time

H
ea

rt
 R

at
e

(b
pm

)

Average Heart Rate Per 5 Min Interval vs Date−Time

Experimentation Framework

While almost all the visualizations shown above had date, date-time, or time on the x axis, the experimentation
framework allows for greater flexibility. Users can select any variables of interest and examine their relationship.

Users can specify

• x variables of interest
• y measures of interest

4

• type of analysis (“plot”, “correlation”, “anova”, “compare_groups”, or “regression”)
• time variable (date, time, or datetime)

The experiment function studies the effect of each variable, or all variables together (depending on the
analysis), of the variable (X) and measure variables (Y) given.

Users can also perform each analysis using the functions l_plot, correlation, l_anova, compare_groups,
or l_regression instead of the higher-level function experiment.

The analysis functions below perform specific analyses, but using the standardized datasets in the fields of
the Person class, the create_dataset function, which joins datasets across source types, and the templates
provided by these analysis functions, users can easily perform their own unique analyses.

1. Plots
To plot the relationship between sleep duration and resting heart rate and the relationship between day
of week and resting heart rate on a date basis:

experiment(person = EX,
variables = list("fitbit_daily" = c("sleepDuration"),

"util" = c("day_of_week")),
measures = list("fitbit_daily" = c("restingHeartRate")),
analysis = c("plot"),
time_var = c("date"))

58

60

62

64

400 450 500 550 600

sleepDuration

re
st

in
gH

ea
rt

R
at

e

sleepDuration vs restingHeartRate

58

60

62

64

Sun Mon Tues Wed Thurs Fri Sat

day_of_week

re
st

in
gH

ea
rt

R
at

e

day_of_week vs restingHeartRate

2. Correlation
To calculate the correlation between sleep duration and number of steps on a date basis:

experiment(person = EX,
variables = list("fitbit_daily" = c("sleepDuration")),
measures = list("fitbit_intraday" = c("distance")),
analysis = c("correlation"),
time_var = c("date"))

#> [1] -0.01030084

l_plot will generate the same result:

dataset <- create_dataset(person = EX,
all_variables = list("fitbit_daily" = c("sleepDuration"),

"fitbit_intraday" = c("distance")),
time_var = c("date"))

correlation_df <- correlation(dataset, person = EX,

5

variables = list("fitbit_daily" = c("sleepDuration")),
measures = list("fitbit_intraday" = c("distance")),
time_var = "date")

#> [1] -0.01030084

3. ANOVA
To create ANOVAs for the effect of sleep duration and steps on resting heart rate on a date basis:

experiment(person = EX,
variables = list("fitbit_daily" = c("sleepDuration", "steps")),
measures = list("fitbit_daily" = c("restingHeartRate")),
analysis = c("anova"),
time_var = c("date"))

#> [1] "restingHeartRate ~ (sleepDuration + steps)^2"
#> Analysis of Variance Table
#>
#> Response: restingHeartRate
#> Df Sum Sq Mean Sq F value Pr(>F)
#> sleepDuration 1 0.252 0.2525 0.0489 0.8266
#> steps 1 0.228 0.2277 0.0441 0.8352
#> sleepDuration:steps 1 0.203 0.2026 0.0393 0.8444
#> Residuals 26 134.102 5.1578

4. Compare Groups
To compare across time variables not already defined, such as months, users can set up groups. Groups
must be part of the Person instance, so it is oftentimes easier to just use compare_groups, which
instead allows users to pass in new dataframes defining groupings.
In this case, only data from January and February is in the sample instance of Person, so only two
groups are compared:

dataset <- create_dataset(person = EX,
all_variables = list("util" = c("month"),

"fitbit_daily" =
c("sleepDuration",

"steps",
"restingHeartRate")),

time_var = c("date"))

indiv_months <- data.frame("month" = c("Jan", "Feb", "Mar", "Apr", "May",
"Jun", "Jul", "Aug",
"Sep", "Oct", "Nov", "Dec"),

"group" = c(1:12))

compare_groups(dataset, person = EX,
addl_grouping_assignments = list("indiv_months" =

indiv_months),
names_of_groupings = c("indiv_months"),
variables_to_compare = c("steps", "restingHeartRate"))

#> [1] "month"
#> [1] "steps"
#> # A tibble: 2 × 3
#> group mean sd

6

#> <int> <dbl> <dbl>
#> 1 1 8142.692 4300.470
#> 2 2 5847.412 2350.607
#> [1] "restingHeartRate"
#> # A tibble: 2 × 3
#> group mean sd
#> <int> <dbl> <dbl>
#> 1 1 61.36231 1.856939
#> 2 2 59.08167 1.855553

5. Regression
To run a regression of resting heart rate on steps ˆ 2

experiment(person = EX,
variables = list("fitbit_daily" = c("steps")),
measures = list("fitbit_daily" = c("restingHeartRate")),
analysis = c("regression"),
time_var = c("date"))

#> [1] "restingHeartRate ~ (steps)^2"
#>
#> Call:
#> lm(formula = restingHeartRate ~ (steps)^2, data = dataset)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -3.3178 -1.7636 -0.3039 1.1040 4.0493
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 5.993e+01 8.972e-01 66.796 <2e-16 ***
#> steps 2.008e-05 1.174e-04 0.171 0.865
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 2.193 on 28 degrees of freedom
#> Multiple R-squared: 0.001044, Adjusted R-squared: -0.03463
#> F-statistic: 0.02927 on 1 and 28 DF, p-value: 0.8654

Shiny Application

We provide a sample Shiny application for visualization of the EX object’s data.

7

	Working with Multiple Sources of Data: the Person class
	Loading Multi-Source Data into Person Objects
	Example of Person Class
	Dates, Times, and Date-Times

	Visualization
	Experimentation Framework
	Shiny Application

