Implementation of 1m.beta

Stefan Behrendt

January 01, 2023

The package lm. beta is based on equation (1) to estimate the standardized regression coefficients.

$$
\begin{equation*}
\hat{\beta}_{i}=\hat{b}_{i} \cdot \frac{s\left(X_{i}\right)}{s(Y)} \tag{1}
\end{equation*}
$$

using

$$
\begin{gathered}
s(A)=\sqrt{\frac{\sum_{j} w_{j} \cdot\left(A_{j}-m(A) \cdot I\right)^{2}}{\left(n_{w}-1\right) / n_{w} \cdot \sum_{j} w_{j}}} \\
m(A)=\frac{\sum_{j} w_{j} \cdot A_{j}}{\sum_{j} w_{j}}
\end{gathered}
$$

with

- $\hat{\beta}_{i}$ the i-th standardized regression coefficient
- \hat{b}_{i} the i-th unstandardized regression coefficient
- $I=\left\{\begin{array}{cc}0 / 1 & \text { for models without intercept } \\ 1 & \text { for models with intercept }\end{array}\right.$
* argument complete.standardization chooses the factor: complete.standardization $=$ FALSE \Rightarrow $I=0 /$ complete.standardization $=$ TRUE $\Rightarrow I=1$
* $\mathrm{IBM}^{\circledR}{ }^{\circledR}$ SPSS Statistics ${ }^{\circledR}$, e.g., always uses $I=0$ for models without intercept
* see e.g. https://online.stat.psu.edu/~ajw13/stat501/SpecialTopics/Reg_thru_origin.pdfl for further information on which I to choose
- Y the dependent variable
- X_{i} the i-th independent variable
- w the case weights
- n_{w} the number of non-zero weights

[^0]A simplification for $I=1$ is shown in equation (2) and for $I=0$ in equation (3).

$$
\begin{align*}
& \hat{\beta}_{i}=\hat{b}_{i} \cdot \frac{s_{X_{i}}}{s_{Y}} \tag{2}\\
& \hat{\beta}_{i}=\hat{b}_{i} \cdot \frac{\sigma_{X_{i}}}{\sigma_{Y}} \tag{3}
\end{align*}
$$

with (additionally to above)

- s_{A} the standard deviation of $A\left({ }^{*}\right)$
- $\sigma_{A}=\sqrt{\sum_{j} A_{j}^{2}}$ an estimate of the uncentered second moment of $A\left({ }^{*}\right)$
* The sample size - and the different methods for correcting it-doesn't have to be considered when estimating the moments, because the factors would be similar in numerater and denominater, and therefore would be reduced.

Simplifications of non-weighted cases are

$$
\begin{gathered}
s(A)=\sqrt{\frac{\sum_{j}\left(A_{j}-m(A) \cdot I\right)^{2}}{n-1}} \\
m(A)=\frac{\sum_{j} A_{j}}{n}
\end{gathered}
$$

with (additionally to above)

- n the number of non-empty cases

[^0]: ${ }^{1}$ Eisenhauer J.G. (2003). Regression through the Origin. Teaching Statistics, 25(3), p. 76-80.

