Estimation of multinomial logit model using the Begg \& Gray approximation

Hana Ševčíková and Adrian Raftery

April 13, 2022

1 MNL Model Specification

Our observations correspond to N individuals each of whom makes one choice out of J alternatives. The dependent variable, Y_{n}, is the choice made by the n th individual. The set of independent variables is divided into a set of variables that are individual-specific, say $X_{n}=\left(x_{n 1}, \ldots, x_{n K_{o}}\right)^{T}$, and a set of variables that are alternative-specific, say $W_{n i}=\left(w_{n i 1}, \ldots, w_{n i K_{a}}\right)^{T}, i=1, \ldots, J$. The probability of individual n choosing alternative i is given by the standard multinomial logit formula

$$
\begin{equation*}
P_{n i}=\frac{e^{V_{n i}}}{\sum_{j=1}^{J} e^{V_{n j}}} \quad \text { where } V_{n i}=\alpha_{i 0}+\alpha_{i} X_{n}+\beta_{i} W_{n i} \tag{1}
\end{equation*}
$$

Here, $\alpha_{i}=\left(\alpha_{i 1}, \ldots, \alpha_{i K_{o}}\right)$ and $\beta_{i}=\left(\beta_{i 1}, \ldots, \beta_{i K_{a}}\right)$. We call $\alpha_{10}, \ldots, \alpha_{J 0}$ the alternative-specific constants.
It is often of interest to constrain the coefficients to be the same over the given set of alternatives, i.e. $\alpha_{1 k}=\alpha_{2 k} \cdots=\alpha_{J k}$ for a given k. The same applies to the β coefficients.

Base Alternative

In order to be able to use the Begg \& Gray approximation [1], we need to set a base alternative and treat the remaining alternatives as differences to the base. Thus, if the base alternative is $1, V_{n 1}=0$ for all n. Furthermore,

$$
\begin{equation*}
V_{n i}=\alpha_{i 0}+\alpha_{i} X_{n}+\beta_{i} W_{n i}^{\prime} \quad \text { where } W_{n i}^{\prime}=W_{n i}-W_{n 1} \quad \text { for } i=2, \ldots J \tag{2}
\end{equation*}
$$

2 Conversion

The conversion is done analogously to [2]. We decompose the original dataset into $D_{0}=\left\{D_{b}, D_{r}\right\}$, where D_{b} denotes the set of individuals that chose the base alternative, and D_{r} denotes the set of the remaining individuals. For each
$i=1, \ldots, J$, set N_{i} to be the number of individuals that chose alternative i. Then the converted dataset is constructed as follows:

1. Form J matrices M_{1}, \ldots, M_{J} where each M_{i} has N_{i} rows and the columns consist of Y, X and $U=W_{\cdot i}^{\prime}$.
2. Form $J-1$ blocks, D_{2}, \ldots, D_{J}, where D_{i} has $\left(N_{1}+N_{i}\right)$ rows and is formed as follows:
(a) Take the rows of M_{1} and M_{i}.
(b) Add columns:

- $Y^{*}=\left\{\begin{array}{lll}0 & : & Y=1 \\ 1 & : & \text { otherwise }\end{array}\right.$
- $\left\{Z_{2}, \ldots, Z_{J}\right\}$, where $Z_{j}=\left\{\begin{array}{lll}\mathbf{1} & : & j=i \\ \mathbf{0} & : & \text { otherwise }\end{array}\right.$
- $\left\{Z_{2} X, \ldots, Z_{J} X\right\}$
- $\left\{Z_{2} U, \ldots, Z_{J} U\right\}$

3. Combine the rows of D_{2}, \ldots, D_{J}.

The approximated binary logistic model is given by

$$
\begin{equation*}
\operatorname{logit}\left(P\left[Y^{*}=1\right]\right)=\gamma_{2}+\sum_{l=3}^{J} \gamma_{l} Z_{l}+\sum_{k=1}^{K_{o}} Q\left(\delta_{(\cdot) k}, X_{k}\right)+\sum_{k=1}^{K_{a}} Q\left(\theta_{(\cdot) k}, U_{k}\right) \tag{3}
\end{equation*}
$$

where

$$
Q\left(\tau_{(\cdot) k}, S\right)= \begin{cases}\tau_{k} S & : \begin{array}{l}
\text { if the coefficients of } S \text { are contrained to be } \\
\\
\sum_{l=2}^{J} \tau_{l k} Z_{l} S
\end{array}: \begin{array}{l}
\text { the same for all alternatives, i.e. } \tau_{(\cdot) k}=\tau_{k}
\end{array} \\
\text { otherwise }\end{cases}
$$

Given estimated coefficients $\widehat{\gamma}, \widehat{\delta}$ and $\widehat{\theta}$, estimators of the coefficients of the original model in Equation (2) are given by:

$$
\begin{aligned}
& \widehat{\alpha}_{10}=0, \quad \widehat{\alpha}_{20}=\widehat{\gamma}_{2}, \widehat{\alpha}_{i 0}=\widehat{\gamma}_{i}+\widehat{\gamma}_{2}, \quad \text { for } i=3, \ldots, J \\
& \widehat{\alpha}_{i k}=\widehat{\delta}_{i k}, \quad \text { for } i=2, \ldots, J, k=1, \ldots, K_{o} \\
& \widehat{\beta}_{i k}=\widehat{\theta}_{i k}, \quad \text { for } i=2, \ldots, J, k=1, \ldots, K_{a}
\end{aligned}
$$

3 Example

Consider the following toy dataset with eight individuals, four alternatives and two independent variables, X and W :

id	Y	X	W_{1}	W_{2}	W_{3}	W_{4}
1	1	x_{1}	w_{11}	w_{12}	w_{13}	w_{14}
2	1	x_{2}	w_{21}	w_{22}	w_{23}	w_{24}
3	2	x_{3}	w_{31}	w_{32}	w_{33}	w_{34}
4	2	x_{4}	w_{41}	w_{42}	w_{43}	w_{44}
5	3	x_{5}	w_{51}	w_{52}	w_{53}	w_{54}
6	3	x_{6}	w_{61}	w_{62}	w_{63}	w_{64}
7	4	x_{7}	w_{71}	w_{72}	w_{73}	w_{74}
8	4	x_{8}	w_{81}	w_{82}	w_{83}	w_{84}

Setting the base alternative to 1 , the converted dataset is of the form:

	Y	X	U	Y^{*}	Z_{2}	Z_{3}	Z_{4}	$Z_{2} X$	$Z_{3} X$	$Z_{4} X$	$Z_{2} U$	$Z_{3} U$	$Z_{4} U$
$D_{2} U$	1	x_{1}	$w_{12}-w_{11}$	0	1	0	0	x_{1}	0	0	$w_{12}-w_{11}$	0	0
	1	x_{2}	$w_{22}-w_{21}$	0	1	0	0	x_{2}	0	0	$w_{22}-w_{21}$	0	0
	2	x_{3}	$w_{32}-w_{31}$	1	1	0	0	x_{3}	0	0	$w_{32}-w_{31}$	0	0
	2	x_{4}	$w_{42}-w_{41}$	1	1	0	0	x_{4}	0	0	$w_{42}-w_{41}$	0	0
D_{3}	1	x_{1}	$w_{13}-w_{11}$	0	0	1	0	0	x_{1}	0	0	$w_{13}-w_{11}$	0
	1	x_{2}	$w_{23}-w_{21}$	0	0	1	0	0	x_{2}	0	0	$w_{23}-w_{21}$	0
	3	x_{5}	$w_{53}-w_{51}$	1	0	1	0	0	x_{5}	0	0	$w_{53}-w_{51}$	0
	3	x_{6}	$w_{63}-w_{61}$	1	0	1	0	0	x_{6}	0	0	$w_{63}-w_{61}$	0
D_{4}	1	x_{1}	$w_{14}-w_{11}$	0	0	0	1	0	0	x_{1}	0	0	$w_{14}-w_{11}$
	1	x_{2}	$w_{24}-w_{21}$	0	0	0	1	0	0	x_{2}	0	0	$w_{24}-w_{21}$
	4	x_{7}	$w_{74}-w_{71}$	1	0	0	1	0	0	x_{7}	0	0	$w_{74}-w_{71}$
	4	x_{8}	$w_{84}-w_{81}$	1	0	0	1	0	0	x_{8}	0	0	$w_{84}-w_{81}$

An MNL model, specified in mlogitBMA by $Y \sim 1 \mid X+U$, is approximated using the logit model

$$
Y^{*} \sim Z_{3}+Z_{4}+Z_{2} X+Z_{3} X+Z_{4} X+Z_{2} U+Z_{3} U+Z_{4} U
$$

The MNL coefficients from Equation (2) correspond to:

$$
\begin{aligned}
\left(\alpha_{20}, \alpha_{2}, \beta_{2}\right) & \left.=\text { (Intercept, } Z_{2} X \text { coef., } Z_{2} U \text { coef. }\right) \\
\left(\alpha_{30}, \alpha_{3}, \beta_{3}\right) & \left.=\text { (Intercept }+Z_{3} \text { coef., } Z_{3} X \text { coef., } Z_{3} U \text { coef. }\right) \\
\left(\alpha_{40}, \alpha_{4}, \beta_{4}\right) & \left.=\text { (Intercept }+Z_{4} \text { coef., } Z_{4} X \text { coef., } Z_{4} U \text { coef. }\right)
\end{aligned}
$$

If we constrain the coefficients to be the same for all alternatives, i.e. $\alpha=\alpha_{2}=$ $\alpha_{3}=\alpha_{4}$ and $\beta=\beta_{2}=\beta_{3}=\beta_{4}$, which is specified in mlogitBMA by $Y \sim X+U$, the logit model

$$
Y^{*} \sim Z_{3}+Z_{4}+X+U
$$

is used as an approximation. In this case, α corresponds to the coefficient of X and β corresponds to the coefficient of U.

References

[1] Begg, C.B., Gray, R. (1984) Calculation of polychotomous logistic regression parameters using individualized regressions. Biometrika 71, 11-18.
[2] Yeung, K.Y., Bumgarner, R.E., Raftery, A.E. (2005) Bayesian model averaging: development of an improved multi-class, gene selection and classification tool for microarray data. Bioinformatics 21 (10), 2394-2402.

