
Package ‘mosaic’
February 23, 2024

Type Package

Title Project MOSAIC Statistics and Mathematics Teaching Utilities

Version 1.9.1

Description Data sets and utilities from Project MOSAIC (<http://www.mosaic-web.org>) used
to teach mathematics, statistics, computation and modeling. Funded by the
NSF, Project MOSAIC is a community of educators working to tie together
aspects of quantitative work that students in science, technology,
engineering and mathematics will need in their professional lives, but
which are usually taught in isolation, if at all.

Depends R (>= 4.1),

Imports dplyr, tibble, lattice (>= 0.20-21), ggformula, mosaicData,
Matrix, mosaicCore (>= 0.7.0), ggplot2, rlang (>= 0.4.7),
purrr, MASS, grid, tidyr, methods, utils

Suggests ggstance, ggridges, vdiffr, lubridate, magrittr, NHANES,
RCurl, sp, vcd, testthat (>= 3.0.0), knitr, tools, parallel,
mapproj, rgl, rmarkdown, covr, formatR, palmerpenguins,
ggrepel, readr, ggdendro, gridExtra, splines, latticeExtra,
glue, broom, leaflet

Enhances manipulate

VignetteBuilder knitr

License GPL (>= 2)

LazyLoad yes

LazyData yes

URL https://github.com/ProjectMOSAIC/mosaic,

https://www.mosaic-web.org/mosaic/

BugReports https://github.com/ProjectMOSAIC/mosaic/issues

RoxygenNote 7.3.1

Encoding UTF-8

Config/testthat/edition 3

NeedsCompilation no

1

http://www.mosaic-web.org
https://github.com/ProjectMOSAIC/mosaic
https://www.mosaic-web.org/mosaic/
https://github.com/ProjectMOSAIC/mosaic/issues

2 R topics documented:

Author Randall Pruim [aut, cre],
Daniel T. Kaplan [aut],
Nicholas J. Horton [aut]

Maintainer Randall Pruim <rpruim@calvin.edu>

Repository CRAN

Date/Publication 2024-02-23 14:30:06 UTC

R topics documented:
mosaic-package . 4
adapt_seq . 5
aggregatingFunction1 . 6
aggregatingFunction1or2 . 7
aggregatingFunction2 . 8
as.xtabs . 9
ashplot . 10
bargraph . 11
binom.test . 13
Broyden . 15
cdist . 15
chisq . 18
CIAdata . 19
CIsim . 19
cnorm . 21
compareMean . 22
confint . 23
confint.htest . 25
cor_test.formula . 26
cross . 27
cull_for_do . 28
deg2rad . 29
derivedVariable . 29
design_plot . 31
diffmean . 33
do . 34
docFile . 36
dotPlot . 36
dpqrdist . 37
expandFun . 38
factorize . 39
fav_stats . 40
fetchData . 40
findZeros . 41
findZerosMult . 43
fitModel . 44
fitSpline . 45
fortify.hclust . 47

R topics documented: 3

fortify.summary.lm . 48
freqpoly . 49
freqpolygon . 50
FunctionsFromData . 52
getVarFormula . 54
googleMap . 54
inferArgs . 55
is.wholenumber . 56
ladd . 57
leaflet_map . 58
linear.algebra . 59
MAD . 60
MAD_ . 61
maggregate . 62
makeColorscheme . 63
makeMap . 64
mean_ . 65
mid . 67
mosaic.options . 67
mPlot . 68
mplot . 70
mUSMap . 74
Mustangs . 75
mWorldMap . 75
ntiles . 76
orrr . 77
panel.levelcontourplot . 79
panel.lmbands . 80
panel.plotFun . 81
panel.plotFun1 . 83
pdist . 84
plotCumfreq . 87
plotDist . 88
plotFun . 90
plotModel . 93
plotPoints . 95
project . 97
prop.test . 99
prop_test . 100
qdata . 101
qdata_v . 103
qdist . 104
rand . 106
read.file . 107
relm . 108
repeater-class . 109
resample . 110
rescale . 113

4 mosaic-package

rflip . 113
rfun . 115
rlatlon . 116
rspin . 117
rsquared . 117
rstudio_is_available . 118
set.rseed . 118
Sleep . 119
sp2df . 119
standardName . 120
statTally . 121
surround . 123
swap . 124
theme.mosaic . 124
theme_map . 125
TukeyHSD.lm . 126
t_test . 127
update_ci . 128
value . 129
xchisq.test . 130
xhistogramBreaks . 131
xpnorm . 133
xqqmath . 135
xyz2latlon . 137
zscore . 138

Index 139

mosaic-package mosaic: the Project MOSAIC package

Description

mosaic

Details

Data sets and utilities from Project MOSAIC (mosaic-web.org) used to teach mathematics, statis-
tics, computation and modeling. Funded by the NSF, Project MOSAIC is a community of educators
working to tie together aspects of quantitative work that students in science, technology, engineer-
ing and mathematics will need in their professional lives, but which are usually taught in isolation,
if at all.

Author(s)

Randall Pruim (<rpruim@calvin.edu>), Daniel Kaplan (<kaplan@macalester.edu>), Nicholas
Horton (<nhorton@smith.edu>)

adapt_seq 5

References

http://www.mosaic-web.org

See Also

Useful links:

• https://github.com/ProjectMOSAIC/mosaic

• https://www.mosaic-web.org/mosaic/

• Report bugs at https://github.com/ProjectMOSAIC/mosaic/issues

adapt_seq Adaptively generate sequences in an interval

Description

adapt_seq is similar to seq except that instead of selecting points equally spaced along an interval,
it selects points such that the values of a function applied at those points are (very) roughly equally
spaced. This can be useful for sampling a function in such a way that it can be plotted more
smoothly, for example.

Usage

adapt_seq(
from,
to,
length.out = 200,
f = function(x, ...) {

1
},
args = list(),
quiet = FALSE

)

Arguments

from start of interval

to end of interval

length.out desired length of sequence

f a function

args arguments passed to f

quiet suppress warnings about NaNs, etc.

Value

a numerical vector

http://www.mosaic-web.org
https://github.com/ProjectMOSAIC/mosaic
https://www.mosaic-web.org/mosaic/
https://github.com/ProjectMOSAIC/mosaic/issues

6 aggregatingFunction1

Examples

adapt_seq(0, pi, 25, sin)

aggregatingFunction1 1-ary Aggregating functions

Description

aggregatinFuntion1 creates statistical summaries of one numerical vector that are formula aware.

Usage

aggregatingFunction1(
fun,
output.multiple = FALSE,
envir = parent.frame(),
na.rm = getOption("na.rm", FALSE),
style = c("formula1st", "formula", "flexible")

)

Arguments

fun a function that takes a numeric vector and computes a summary statistic, return-
ing a numeric vector.

output.multiple

a boolean indicating whether fun returns multiple values

envir an environment in which evaluation takes place.

na.rm the default value for na.rm in the resulting function.

style one of "formula1st", "formula2nd" or "flexible". In the first two cases, the
first argument must be a formula or evaluate to an object. In the latter case, bare
names will be converted into formulas.

Details

The logic of the resulting function is this: 1) If the first argument is a formula, use that formula and
data to create the necessary call(s) to fun; (2) Else simply pass everything to fun for evaluation.

Value

a function that generalizes fun to handle a formula/data frame interface.

Note

Earlier versions of this function supported a "bare name + data frame" interface. This functionality
has been removed since it was (a) ambiguous in some cases, (b) unnecessary, and (c) difficult to
maintain.

aggregatingFunction1or2 7

Examples

if (require(mosaicData)) {
foo <- aggregatingFunction1(base::mean)
foo(~ length, data = KidsFeet)
base::mean(KidsFeet$length)
foo(length ~ sex, data = KidsFeet)

}

aggregatingFunction1or2

1- or 2-ary aggregating functions

Description

aggregatingFunction1or2() creates statistical summaries for functions like var() that can have
either 1 or 2 numeric vector inputs.

Usage

aggregatingFunction1or2(
fun,
output.multiple = FALSE,
na.rm = getOption("na.rm", FALSE)

)

Arguments

fun a function that takes 1 or 2 numeric vectors and computes a summary statistic,
returning a numeric vector of length 1.

output.multiple

a boolean indicating whether fun returns multiple values

na.rm the default value for na.rm in the resulting function.

Details

This was designed primarily to support var which can be used to compute either the variance of
one variable or the covariance of two variables. The logic of the resulting function is this: 1) If the
first two arguments are both formulas, then those formulas are evaluated (with data) to compute
the covariance; (2) If the first argument is a formula, and the second is NULL, then the formula and
data are used to create the necessary call(s) to fun; (3) Else everything is simply passed to fun for
evaluation.

Note

Earlier versions of this function supported a "bare name + data frame" interface. This functionality
has been removed since it was (a) ambiguous in some cases, (b) unnecessary, and (c) difficult to
maintain.

8 aggregatingFunction2

aggregatingFunction2 2-ary aggregating functions

Description

aggregatinFuntion2 creates statistical summaries of two numerical vectors that are formula aware.

Usage

aggregatingFunction2(fun)

Arguments

fun a function that takes two numeric vectors and computes a summary statistic,
returning a numeric vector of length 1.

Details

This was designed to support functions like cov() which can be used to compute numerical sum-
maries from two numeric vectors. The logic of the resulting function is this: 1) If the first two
arguments are both formulas, then those formulas are evaluated (with data) to compute the covari-
ance; (2) If the first argument is a formula, and the second is NULL, then the left and ride sides of the
formula and data are used to create the vectors passed to fun; (3) Else everything is simply passed
to fun for evaluation.

Value

a function that generalizes fun to handle a formula/data frame interface.

Note

Earlier versions of this function supported a "bare name + data frame" interface. This functionality
has been removed since it was (a) ambiguous in some cases, (b) unnecessary, and (c) difficult to
maintain.

Examples

if(require(mosaicData)) {
foo <- aggregatingFunction2(stats::cor)
foo(length ~ width, data = KidsFeet)
stats::cor(KidsFeet$length, KidsFeet$width)

}

as.xtabs 9

as.xtabs Convert objects to xtabs format

Description

Convert a data frame or a matrix into an xtabs object.

Usage

as.xtabs(x, ...)

S3 method for class 'data.frame'
as.xtabs(x, rowvar = NULL, colvar = NULL, labels = 1, ...)

S3 method for class 'matrix'
as.xtabs(x, rowvar = NULL, colvar = NULL, ...)

Arguments

x object (typically a data frame) to be converted to xtabs format

... additional arguments to be passed to or from methods.

rowvar name of the row variable as character string

colvar name of the column variable as character string

labels column of data frame that contains the labels of the row variable.

Details

The intended use is to convert a two-way contingency table stored in a data frame or a matrix into
an xtabs object.

Value

An xtabs object.

Examples

example from example(fisher.test)
df <- data.frame(X=c('Tea','Milk'), Tea=c(3,1), Milk=c(1,3))
xt <- as.xtabs(df, rowvar="Guess", colvar="Truth"); xt
if (require(vcd)) { mosaic(xt) }

10 ashplot

ashplot Average Shifted Histograms

Description

An ASH plot is the average over all histograms of a fixed bin width.

Usage

ashplot(
x,
data = data,
...,
width = NULL,
adjust = NULL,
panel = panel.ashplot,
prepanel = prepanel.default.ashplot

)

prepanel.default.ashplot(x, darg, groups = NULL, subscripts = TRUE, ...)

panel.ashplot(
x,
darg = list(),
plot.points = FALSE,
ref = FALSE,
groups = NULL,
jitter.amount = 0.01 * diff(current.panel.limits()$ylim),
type = "p",
...,
identifier = "ash"

)

Arguments

x A formula or numeric vector.

data A data frame.

... Additional arguments passed to panel and prepanel functions or data, a data
frame in which to find the variables used for the plot.

width The histogram bin width.

adjust A numeric adjustment to width. Primarily useful when width is not specified.
Increasing adjust makes the plot smoother.

panel A panel function.

prepanel A prepanel function.

darg a list of arguments for the function computing the ASH.

bargraph 11

groups as in other lattice plots

subscripts as in other lattice prepanel functions

plot.points One of TRUE, FALSE, "jitter", or "rug"

ref a logical indicating whether a reference line should be displayed

jitter.amount when plot.points="jitter", the value to use as the amount argument to
jitter().

type type argument used to plot points, if requested. This is not expected to be useful,
it is available mostly to protect a type argument, if specified, from affecting the
display of the ASH.

identifier A character string that is prepended to the names of i grobs that are created by
this panel function.

Examples

ashplot(~age | substance, groups = sex, data = HELPrct)

bargraph Create bar graphs from raw data

Description

lattice::barchart() from the lattice package makes bar graphs from pre-tabulated data. Raw
data can be tabulated using xtabs(), but the syntax is unusual compared to the other lattice plotting
functions. bargraph provides an interface that is consistent with the other lattice functions.

Usage

bargraph(
x,
data = parent.frame(),
groups = NULL,
horizontal = FALSE,
origin = 0,
ylab = ifelse(horizontal, "", type),
xlab = ifelse(horizontal, type, ""),
type = c("count", "frequency", "proportion", "percent"),
auto.key = TRUE,
scales = list(),
...

)

12 bargraph

Arguments

x a formula describing the plot

data a data frame in which the formula x is evaluated

groups a variable or expression used for grouping. See lattice::barchart().

horizontal a logical indicating whether bars should be horizontal

origin beginning point for bars. For the default behavior used by lattice::barchart()
set origin to NULL, but 0 is often a better default. If 0 is not good, perhaps you
should use a different kind of plot as the results may be misleading.

ylab a character vector of length one used for the y-axis label

xlab a character vector of length one used for the x-axis label

type one of "frequency", "count", "percent", or "proportion" indicating what
type of scale to use. Unique prefixes are sufficient.

auto.key a logical expression indicating whether a legend should be automatically pro-
duced

scales is a list determining how the x- and y-axes are drawn

... additional arguments passed to lattice::barchart()

Details

bargraph(formula, data=data, ...) works by creating a new data frame from xtabs(formula,
data=data) and then calling lattice::barchart() using modified version of the formula and
this new data frame as inputs. This has implications on, for example, conditional plots where one
desires to condition on some expression that will be evaluated in data. This typically does not work
because the required variables do not exist in the output of xtabs. One solution is to first add a new
variable to data first and then to condition using this new variable. See the examples.

Value

a trellis object describing the plot

See Also

lattice::barchart()

Examples

if (require(mosaicData)) {
data(HELPrct)
bargraph(~ substance, data = HELPrct)
bargraph(~ substance, data = HELPrct, horizontal = TRUE)
bargraph(~ substance | sex, groups = homeless, auto.key = TRUE, data = HELPrct)
bargraph(~ substance, groups = homeless, auto.key=TRUE,

data = HELPrct |> filter(sex == "male"))
HELPrct2 <- mutate(HELPrct, older = age > 40)
bargraph(~ substance | older, data = HELPrct2)
}

binom.test 13

binom.test Exact Tests for Proportions

Description

The binom.test() function performs an exact test of a simple null hypothesis about the proba-
bility of success in a Bernoulli experiment from summarized data or from raw data. The mosaic
binom.test provides wrapper functions around the function of the same name in stats. These
wrappers provide an extended interface (including formulas).

Usage

binom.test(
x,
n = NULL,
p = 0.5,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95,
ci.method = c("Clopper-Pearson", "binom.test", "Score", "Wilson", "prop.test", "Wald",

"Agresti-Coull", "Plus4"),
data = NULL,
success = NULL,
...

)

Arguments

x count of successes, length 2 vector of success and failure counts, a formula, or a
character, numeric, or factor vector containing raw data.

n sample size (successes + failures) or a data frame (for the formula interface)

p probability for null hypothesis

alternative type of alternative hypothesis

conf.level confidence level for confidence interval

ci.method a method to use for computing the confidence interval (case insensitive and may
be abbreviated). See details below.

data a data frame (if missing, n may be a data frame)

success level of variable to be considered success. All other levels are considered failure.

... additional arguments (often ignored)

Details

binom.test() is a wrapper around stats::binom.test() from the stats package to simplify its
use when the raw data are available, in which case an extended syntax for binom.test() is pro-
vided. See the examples.

14 binom.test

Also, five confidence interval methods are provided: * "Clopper-Pearson", "binom.test": This
is the interval produced when using stats::binom.test() from the stats package. It guarantees a
coverage rate at least as large as the nominal coverage rate, but may produce wider intervals than
some of the methods below, which may either under- or over-cover depending on the data.

• ‘"Score", "Wilson", "prop.test": This is the usual method used by stats::prop.test() and
is computed by inverting p-values from score tests. It is often attributed to Edwin Wil-
son. If specified with "prop.test", the continuity correction is applied (as is the default
in prop.test()), else the continuity correction is not applied.

– "Wald" This is the interval traditionally taught in entry level statistics courses. It uses the
sample proportion to estimate the standard error and uses normal theory to determine how
many standard deviations to add and/or subtract from the sample proportion to determine
an interval.

– \"Agresti-Coull"‘ This is the Wald method after setting n′ = n + z2 and p′ = (x +
z2/2)/n’ and using x′ = n′p′ and n′ in place of x and n.

– "Plus4" This is Wald after adding in two artificial success and two artificial failures. It
is nearly the same as the Agresti-Coull method when the confidence level is 95%. since
z2 is approximately 4 and z2/2 is approximately 2.

Value

an object of class htest

Note

When x is a 0-1 vector, 0 is treated as failure and 1 as success. Similarly, for a logical vector TRUE
is treated as success and FALSE as failure.

See Also

prop.test(), stats::binom.test()

Examples

Several ways to get a confidence interval for the proportion of Old Faithful
eruptions lasting more than 3 minutes.
data(faithful)
binom.test(faithful$eruptions > 3)
binom.test(97, 272)
binom.test(c(97, 272-97))
faithful$long <- faithful$eruptions > 3
binom.test(faithful$long)
binom.test(resample(1:4, 400), p=.25)
binom.test(~ long, data = faithful)
binom.test(~ long, data = faithful, ci.method = "Wald")
binom.test(~ long, data = faithful, ci.method = "Plus4")
with(faithful, binom.test(~long))
with(faithful, binom.test(long))

Broyden 15

Broyden Multi-Dimensional Root Finding

Description

Implementation of Broyden’s root finding function to numerically compute the root of a system of
nonlinear equations

Usage

Broyden(system, vars, x = 0, tol = .Machine$double.eps^0.4, maxiters = 10000)

Arguments

system A list of functions

vars A character string list of variables that appear in the functions

x A starting vector

tol The tolerance for the function specifying how precise it will be

maxiters maximum number of iterations.

cdist Central portion of a distribution

Description

This function determines the critical values for isolating a central portion of a distribution with a
specified probability. This is designed to work especially well for symmetric distributions, but it
can be used with any distribution.

Usage

cdist(
dist = "norm",
p,
plot = TRUE,
verbose = FALSE,
invisible = FALSE,
digits = 3L,
xlim = NULL,
ylim = NULL,
resolution = 500L,
return = c("values", "plot"),
pattern = c("rings", "stripes"),
...,

16 cdist

refinements = list()
)

xcgamma(
p,
shape,
rate = 1,
scale = 1/rate,
lower.tail = TRUE,
log.p = FALSE,
...

)

xct(p, df, ncp, lower.tail = TRUE, log.p = FALSE, ...)

xcchisq(p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE, ...)

xcf(p, df1, df2, lower.tail = TRUE, log.p = FALSE, ...)

xcbinom(p, size, prob, lower.tail = TRUE, log.p = FALSE, ...)

xcpois(p, lambda, lower.tail = TRUE, log.p = FALSE, ...)

xcgeom(p, prob, lower.tail = TRUE, log.p = FALSE, ...)

xcnbinom(p, size, prob, mu, lower.tail = TRUE, log.p = FALSE, ...)

xcbeta(p, shape1, shape2, ncp = 0, lower.tail = TRUE, log.p = FALSE, ...)

Arguments

dist a character string naming a distribution family (e.g., "norm"). This will work
for any family for which the usual d/p/q functions exist.

p the proportion to be in the central region, with equal proportions in either "tail".

plot a logical indicating whether a plot should be created

verbose a logical indicating whether a more verbose output value should be returned.

invisible a logical

digits the number of digits desired

xlim x limits. By default, these are chosen to show the central 99.8\ of the distribution.

ylim y limits

resolution number of points used for detecting discreteness and generating plots. The de-
fault value of 5000 should work well except for discrete distributions that have
many distinct values, especially if these values are not evenly spaced.

return If "plot", return a plot. If "values", return a vector of numerical values.

pattern One of "stripes" or "rings". In the latter case, pairs of regions (from the out-
side to the inside) are grouped together for coloring and probability calculation.

cdist 17

... additional arguments passed to the distribution functions. Typically these spec-
ify the parameters of the particular distribution desired. See the examples.

refinements A list of refinements to the plot. See ggformula::gf_refine().

shape, scale shape and scale parameters. Must be positive, scale strictly.

rate an alternative way to specify the scale.

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

log.p A logical indicating whether probabilities should be returned on the log scale.

df degrees of freedom (> 0, maybe non-integer). df = Inf is allowed.

ncp non-centrality parameter δ; currently except for rt(), only for abs(ncp) <=
37.62. If omitted, use the central t distribution.

df1, df2 degrees of freedom. Inf is allowed.

size number of trials (zero or more).

prob probability of success on each trial.

lambda vector of (non-negative) means.

mu alternative parametrization via mean: see ‘Details’.

shape1, shape2 non-negative parameters of the Beta distribution.

Value

a pair of numbers indicating the upper and lower bounds, unless verbose is TRUE, in which case a
1-row data frame is returned containing these bounds, the central probability, the tail probabilities,
and the name of the distribution.

Note

This function is still experimental and changes the input or output formats are possible in future
versions of the package.

Examples

cdist("norm", .95)
cdist("t", c(.90, .95, .99), df=5)
cdist("t", c(.90, .95, .99), df=50)
plotting doesn't work well when the parameters are not constant
cdist("t", .95, df=c(3,5,10,20), plot = FALSE)
cdist("norm", .95, mean=500, sd=100)
cdist("chisq", c(.90, .95), df=3)
CI
x <- rnorm(23, mean = 10, sd = 2)
cdist("t", p = 0.95, df=22)
mean(x) + cdist("t", p = 0.95, df=22) * sd(x) / sqrt(23)
confint(t.test(x))
cdist("t", p = 0.95, df=22, verbose = TRUE)

18 chisq

chisq Extract Chi-squared statistic

Description

Extract Chi-squared statistic

Usage

chisq(x, ...)

S3 method for class 'htest'
chisq(x, ...)

S3 method for class 'table'
chisq(x, correct = FALSE, ...)

Default S3 method:
chisq(x, correct = FALSE, ...)

Arguments

x An object of class "htest" a coming from a Chi-squared test, an object of class
"table", or the inputs to tally().

... additional arguments passed on to tally or chisq.test.

correct a logical indicating whether a continuity correction should be applied.

See Also

after_stat()

Examples

if(require(mosaicData)) {
Mites.table <- tally(~ outcome + treatment, data=Mites)
Mites.table
chisq.test(Mites.table)
chisq(Mites.table)
chisq(chisq.test(Mites.table))
Randomization test. Increase replications to decrease Monte Carlo error.
do(3) * chisq(tally(~ outcome + shuffle(treatment), data=Mites))
Mites.rand <- do(1000) * chisq(tally(~ outcome + shuffle(treatment), data=Mites))
tally(~(X.squared >= chisq(Mites.table)), data=Mites.rand, format="proportion")

}

CIAdata 19

CIAdata Return a dataset based on the CIA World Factbook

Description

This function can be used in two different ways. Without an argument, it returns a reference table
that includes information about all the CIA World Factbook tables that are available through this
function. Note the Name column that indicates a unique name for each available dataset. If this
name is passed as an argument to the function, the function will return the corresponding dataset.

Usage

CIAdata(name = NULL)

Arguments

name An optional parameter specifying the name of the desired dataset. If multiple
names are given, a merge will be attempted on the individual data sets.

Examples

Not run:
head(CIAdata())
Population <- CIAdata("pop")
nrow(Population)
head(Population)

PopArea <-
CIAdata(c("pop","area")) |>
mutate(density = pop / area)

nrow(PopArea)
head(PopArea)
PopArea |>

filter(!is.na(density)) |>
arrange(density) |>
tail()

End(Not run)

CIsim Compute confidence intervals from (multiple) simulated data sets

Description

This function automates the calculation of coverage rates for exploring the robustness of confidence
interval methods.

20 CIsim

Usage

CIsim(
n,
samples = 100,
rdist = rnorm,
args = list(),
plot = if (samples <= 200) "draw" else "none",
estimand = 0,
conf.level = 0.95,
method = t.test,
method.args = list(),
interval = function(x) {

do.call(method, c(list(x, conf.level = conf.level),
method.args))$conf.int

},
estimate = function(x) {

do.call(method, c(list(x, conf.level = conf.level),
method.args))$estimate

},
verbose = TRUE

)

Arguments

n size of each sample

samples number of samples to simulate

rdist function used to draw random samples

args arguments required by rdist

plot one of "print", "return", "horizontal", or "none" describing whether a plot
should be printed, returned, printed with horizontal intervals, or not generated
at all.

estimand true value of the parameter being estimated

conf.level confidence level for intervals

method function used to compute intervals. Standard functions that produce an object
of class htest can be used here.

method.args arguments required by method

interval a function that computes a confidence interval from data. Function should return
a vector of length 2.

estimate a function that computes an estimate from data

verbose print summary to screen?

Value

A data frame with variables lower, upper, estimate, cover (’Yes’ or ’No’), and sample is returned
invisibly. See the examples for a way to use this to display the intervals graphically.

cnorm 21

Examples

1000 95% intervals using t.test; population is N(0,1)
CIsim(n = 10, samples = 1000)
this time population is Exp(1); fewer samples, so we get a plot
CIsim(n = 10, samples = 100, rdist = rexp, estimand = 1)
Binomial treats 1 like success, 0 like failure
CIsim(n = 30, samples = 100, rdist = rbinom, args = list(size = 1, prob = .7),

estimand = .7, method = binom.test, method.args = list(ci = "Plus4"))

cnorm Central Probability in a Normal or T Distribution

Description

These versions of the quantile functions take a vector of central probabilities as its first argument.

Usage

cnorm(p, mean = 0, sd = 1, log.p = FALSE, side = c("both", "upper", "lower"))

ct(p, df, ncp, log.p = FALSE, side = c("upper", "lower", "both"))

Arguments

p vector of probabilities.

mean vector of means.

sd vector of standard deviations.

log.p logical. If TRUE, uses the log of probabilities.

side One of "upper", "lower", or "both" indicating whether a vector of upper or lower
quantiles or a matrix of both should be returned.

df degrees of freedom (> 0, maybe non-integer). df = Inf is allowed.

ncp non-centrality parameter δ; currently except for rt(), only for abs(ncp) <=
37.62. If omitted, use the central t distribution.

See Also

stats::qnorm(), cdist()

22 compareMean

Examples

qnorm(.975)
cnorm(.95)
xcnorm(.95)
xcnorm(.95, verbose = FALSE, return = "plot") |>

gf_refine(
scale_fill_manual(values = c("navy", "limegreen")),
scale_color_manual(values = c("black", "black")))

cnorm(.95, mean = 100, sd = 10)
xcnorm(.95, mean = 100, sd = 10)

compareMean Defunct functions

Description

The following functions were once a part of the mosaic pacakge but have been removed. In some
cases, an alternative is available and is suggested if you attempt to execute the function.

Usage

compareMean(...)

compareProportion(...)

deltaMethod(...)

gwm(...)

r.squared(...)

mm(...)

perctable(...)

proptable(...)

xhistogram(...)

Arguments

... arguments, ignored since the function is defunct

confint 23

confint Confidence interval methods for output of resampling

Description

Methods for confint to compute confidence intervals on numerical vectors and numerical compo-
nents of data frames.

Usage

S3 method for class 'numeric'
confint(
object,
parm,
level = 0.95,
...,
method = "percentile",
margin.of.error = "stderr" %in% method == "stderr"

)

S3 method for class 'do.tbl_df'
confint(
object,
parm,
level = 0.95,
...,
method = "percentile",
margin.of.error = "stderr" %in% method,
df = NULL

)

S3 method for class 'do.data.frame'
confint(
object,
parm,
level = 0.95,
...,
method = "percentile",
margin.of.error = "stderr" %in% method,
df = NULL

)

S3 method for class 'data.frame'
confint(object, parm, level = 0.95, ...)

S3 method for class 'summary.lm'
confint(object, parm, level = 0.95, ...)

24 confint

Arguments

object and R object

parm a vector of parameters

level a confidence level

... additional arguments

method a character vector of methods to use for creating confidence intervals. Choices
are "percentile" (or "quantile") which is the default, "stderr" (or "se"), "bootstrap-
t", and "reverse" (or "basic"))

margin.of.error

if true, report intervals as a center and margin of error.

df degrees for freedom. This is required when object was produced using link{do}
when using the standard error to compute the confidence interval since typically
this information is not recorded in these objects. The default (Inf) uses a normal
critical value rather than a one derived from a t-distribution.

Details

The methods of producing confidence intervals from bootstrap distributions are currently quite
naive. In particular, when using the standard error, assistance may be required with the degrees
of freedom, and it may not be possible to provide a correct value in all situations. None of the
methods include explicit bias correction. Let qa be the a quantile of the bootstrap distribution, let
ta, df be the a quantile of the t distribution with df degrees of freedom, let SEb be the standard
deviation of the bootstrap distribution, and let θ̂ be the estimate computed from the original data.
Then the confidence intervals with confidence level 1− 2a are

quantile (qa, q1−a)

reverse (2θ̂ − q1−a, 2θ̂ − qa)

stderr (θ̂−t1−a,dfSEb, θ̂+t1−a,dfSEb). When df is not provided, at attempt is made to determine
an appropriate value, but this should be double checked. In particular, missing data an lead to
unreliable results.
The bootstrap-t confidence interval is computed much like the reverse confidence interval
but the bootstrap t distribution is used in place of a theoretical t distribution. This interval
has much better properties than the reverse (or basic) method, which is here for comparison
purposes only and is not recommended. The t-statistic is computed from a mean, a standard
deviation, a sample size which much be named "mean", "sd", and "n" as they are when using
favstats().

Value

When applied to a data frame, returns a data frame giving the confidence interval for each variable
in the data frame using t.test or binom.test, unless the data frame was produced using do, in
which case it is assumed that each variable contains resampled statistics that serve as an estimated
sampling distribution from which a confidence interval can be computed using either a central
proportion of this distribution or using the standard error as estimated by the standard deviation of
the estimated sampling distribution. For the standard error method, the user must supply the correct

confint.htest 25

degrees of freedom for the t distribution since this information is typically not available in the output
of do().

When applied to a numerical vector, returns a vector.

References

Tim C. Hesterberg (2015): What Teachers Should Know about the Bootstrap: Resampling in
the Undergraduate Statistics Curriculum, The American Statistician, https://www.tandfonline.
com/doi/full/10.1080/00031305.2015.1089789.

Examples

if (require(mosaicData)) {
bootstrap <- do(500) * diffmean(age ~ sex, data = resample(HELPrct))
confint(bootstrap)
confint(bootstrap, method = "percentile")
confint(bootstrap, method = "boot")
confint(bootstrap, method = "se", df = nrow(HELPrct) - 1)
confint(bootstrap, margin.of.error = FALSE)
confint(bootstrap, margin.of.error = TRUE, level = 0.99,
method = c("se", "perc"))

bootstrap t method requires both mean and sd
bootstrap2 <- do(500) * favstats(resample(1:10))
confint(bootstrap2, method = "boot")

}
lm(width ~ length * sex, data = KidsFeet) |>

summary() |>
confint()

confint.htest Extract summary statistics

Description

Extract confidence intervals, test statistics or p-values from an htest object.

Usage

S3 method for class 'htest'
confint(object, parm, level, ...)

pval(x, ...)

S3 method for class 'htest'
pval(x, digits = 4, verbose = FALSE, ...)

stat(x, ...)

https://www.tandfonline.com/doi/full/10.1080/00031305.2015.1089789
https://www.tandfonline.com/doi/full/10.1080/00031305.2015.1089789

26 cor_test.formula

S3 method for class 'htest'
stat(x, ...)

S3 method for class 'uneval'
stat(x, ...)

Arguments

object a fitted model object or an htest object.

parm a specification of which parameters are to be given confidence intervals, either
a vector of numbers or a vector of names. If missing, all parameters are consid-
ered.

level the confidence level required.

... Additional arguments.

x An object of class htest.

digits number of digits to display in verbose output

verbose a logical

Value

the extracted p-value, confidence interval, or test statistic

Examples

confint(t.test(rnorm(100)))
pval(t.test(rnorm(100)))
stat(t.test(rnorm(100)))
confint(var.test(rnorm(10,sd=1), rnorm(20, sd=2)))
pval(var.test(rnorm(10,sd=1), rnorm(20, sd=2)))
if (require(mosaicData)) {
data(HELPrct)
stat(t.test (age ~ shuffle(sex), data=HELPrct))
Compare to test statistic computed with permuted values of sex.
do(10) * stat(t.test (age ~ shuffle(sex), data=HELPrct))
}

cor_test.formula Alternative formula interface for cor.test

Description

stats::cor.test() in stats accepts formulas of the shape ~ y + x. The mosaic package allows
the use of y ~ x as an alternative formula shape.

cross 27

Usage

S3 method for class 'formula'
cor_test(formula, ...)

cor.test(x, ...)

cor_test(x, ...)

Default S3 method:
cor_test(x, y, ...)

Arguments

formula a formula

... other arguments passed to stats::cor.test().

x, y numeric vectors of data values. x and y must have the same length.

See Also

stats::cor.test() in the stats package.

Examples

This is an example from example(stats::cor.test) done in old and new style
require(graphics)
cor.test(~ CONT + INTG, data = USJudgeRatings)
cor.test(CONT ~ INTG, data = USJudgeRatings)

cross Factor cross products

Description

Construct a product of factors.

Usage

cross(..., sep = ":", drop.unused.levels = FALSE)

Arguments

... factors to be crossed.

sep separator between levels
drop.unused.levels

should levels that do not appear in cross product be dropped?

28 cull_for_do

Value

a factor

Examples

x <- letters[1:3]
y <- c(1,2,1,1,3,1,3)
cross(x, y)
cross(x, y, drop.unused.levels=TRUE)

cull_for_do Cull objects used with do()

Description

The do() function facilitates easy replication for randomization tests and bootstrapping (among
other things). Part of what makes this particularly useful is the ability to cull from the objects
produced those elements that are useful for subsequent analysis. cull_for_do does this culling. It
is generic, and users can add new methods to either change behavior or to handle additional classes
of objects.

Usage

cull_for_do(object, ...)

Arguments

object an object to be culled

... additional arguments (currently ignored)

Details

When do(n) * expression is evaluated, expression is evaluated n times to produce a list of n
result objects. cull_for_do is then applied to each element of this list to extract from it the in-
formation that should be stored. For example, when applied to a object of class "lm", the default
cull_for_do extracts the coefficients, coefficient of determinism, an the estimate for the variance,
etc.

Examples

cull_for_do(lm(length ~ width, data = KidsFeet))
do(1) * lm(length ~ width, data = KidsFeet)

deg2rad 29

deg2rad Convert between degrees and radians

Description

Facilitates conversion between degrees and radians.

Usage

deg2rad(x)

rad2deg(x)

Arguments

x a numeric vector

Value

a numeric vector

See Also

latlon2xyz(), googleMap(), and rgeo().

Examples

deg2rad(180)
rad2deg(2*pi)

derivedVariable Create new variables from logicals

Description

Utility functions for creating new variables from logicals describing the levels

Usage

derivedVariable(
...,
.ordered = FALSE,
.method = c("unique", "first", "last"),
.debug = c("default", "always", "never"),
.sort = c("given", "alpha"),
.default = NULL,

30 derivedVariable

.asFactor = FALSE
)

derivedFactor(..., .asFactor = TRUE)

Arguments

... named logical "rules" defining the levels.

.ordered a logical indicating whether the resulting factored should be ordered Ignored if
.asFactor is FALSE.

.method one of "unique", "first", and "last". If "unique", exactly one rule must
be TRUE for each position. If "first", the first TRUE rule defines the level. If
"last", the last TRUE rule defines the level.

.debug one of "default", "always", and "never", indicating whether debugging in-
formation should be printed. If "default", debugging information is printed
only when multiple rules give conflicting definitions for some positions.

.sort One of "given" (the default) or "alpha" or a vector of integers the same length
as the number of levels indicating the order in which the levels should appear in
the resulting factor. Ignored if .asFactor is FALSE.

.default character vector of length 1 giving name of default level or NULL for no default.

.asFactor A logical indicating whether the returned value should be a factor.

Details

Each logical "rule" corresponds to a level in the resulting variable. If .default is defined, an
implicit rule is added that is TRUE whenever all other rules are FALSE. When there are multiple TRUE
rules for a slot, the first or last such is used or an error is generated, depending on the value of
method.

derivedVariable is designed to be used with transform() or dplyr::mutate() to add new
variables to a data frame. derivedFactor() is the same but that the default value for .asFactor is
TRUE. See the examples.

Examples

Kf <- mutate(KidsFeet, biggerfoot2 = derivedFactor(
dom = biggerfoot == domhand,
nondom = biggerfoot != domhand)
)

tally(~ biggerfoot + biggerfoot2, data = Kf)
tally(~ biggerfoot + domhand, data = Kf)

Three equivalent ways to define a new variable
Method 1: explicitly define all levels
modHELP <- mutate(HELPrct, drink_status = derivedFactor(

abstinent = i1 == 0,
moderate = (i1>0 & i1<=1 & i2<=3 & sex=='female') |

(i1>0 & i1<=2 & i2<=4 & sex=='male'),
highrisk = ((i1>1 | i2>3) & sex=='female') |

design_plot 31

((i1>2 | i2>4) & sex=='male'),
.ordered = TRUE)

)
tally(~ drink_status, data = modHELP)

Method 2: Use .default for last level
modHELP <- mutate(HELPrct, drink_status = derivedFactor(

abstinent = i1 == 0,
moderate = (i1<=1 & i2<=3 & sex=='female') |

(i1<=2 & i2<=4 & sex=='male'),
.ordered = TRUE,
.method = "first",
.default = "highrisk")

)
tally(~ drink_status, data = modHELP)

Method 3: use TRUE to catch any fall through slots
modHELP <- mutate(HELPrct, drink_status = derivedFactor(

abstinent = i1 == 0,
moderate = (i1<=1 & i2<=3 & sex=='female') |

(i1<=2 & i2<=4 & sex=='male'),
highrisk=TRUE,
.ordered = TRUE,
.method = "first"
)

)
tally(~ drink_status, data = modHELP)
is.factor(modHELP$drink_status)

modHELP <- mutate(HELPrct, drink_status = derivedVariable(
abstinent = i1 == 0,
moderate = (i1<=1 & i2<=3 & sex=='female') |

(i1<=2 & i2<=4 & sex=='male'),
highrisk=TRUE,
.ordered = TRUE,
.method = "first"
)

)
is.factor(modHELP$drink_status)

design_plot Interactively design plots

Description

Proves a simple interface to let users interactively design plots in ggformula, lattice, or ggplot2.
An option is available to show the code used to create the plot. This can be copied and pasted
elsewhere to (into an RMarkdown document, for example) to recreate the plot. Only works in
RStudio. Requires the manipulate package.

32 design_plot

Usage

design_plot(
data,
format,
default = format,
system = system_choices()[1],
show = FALSE,
title = "",
data_text = rlang::expr_deparse(substitute(data)),
...

)

Arguments

data a data frame containing the variables that might be used in the plot. Note that
for maps, the data frame must contain coordinates of the polygons comprising
the map and a variable for determining which coordinates are part of the same
region. See sp2df() for one way to create such a data frame. Typically merge()
will be used to combine the map data with some auxiliary data to be displayed
as fill color on the map, although this is not necessary if all one wants is a map.

format a synonym for default.

default default type of plot to create; one of "scatter", "jitter", "boxplot", "violin",
"sina", "histogram", "density", "density (contours)", "density (filled)",
"frequency polygon", "xyplot", or "map". Unique prefixes suffice.

system which graphics system to use (initially) for plotting (ggplot2 or lattice). A check
box will allow on the fly change of plotting system.

show a logical, if TRUE, the code will be displayed each time the plot is changed.

title a title for the plot

data_text A text string describing the data. It must be possible to recover the data from
this string using eval(). Typically users will not need to modify this from the
default value.

... additional arguments

Details

Currently maps are only supported in ggplot2 and not in lattice.

Due to an unresolved issue with RStudio, the first time this function is called, and additional plot is
created to correctily initialize the mainipulate frameowrk.

Value

Nothing. Used for side effects.

diffmean 33

Examples

Not run:
mtcars2 <-
mtcars |>

mutate(
cyl2 = factor(cyl),
carb2 = factor(carb),
shape = c("V-shaped", "straight")[1 + vs],
gear2 = factor(gear),
transmission = c("automatic", "manual")[1 + am])

design_plot(mtcars2)

End(Not run)

diffmean Difference in means and proportions

Description

Wrappers around diff(mean(...)) and diff(prop(...)) that facilitate better naming of the re-
sult

Usage

diffmean(x, ..., data = parent.frame(), only.2 = TRUE)

diffprop(x, ..., data = parent.frame(), only.2 = TRUE)

Arguments

x, data, ... as in mean() or prop()

only.2 a logical indicating whether differences should only be computed between two
groups.

Examples

if (require(mosaicData)) {
diffprop(homeless ~ sex , data=HELPrct)
do(3) * diffprop(homeless ~ shuffle(sex) , data=HELPrct)
diffmean(age ~ substance, data=HELPrct, only.2=FALSE)
do(3) * diffmean(age ~ shuffle(substance), data=HELPrct, only.2=FALSE)
diffmean(age ~ sex, data=HELPrct)
do(3) * diffmean(age ~ shuffle(sex), data=HELPrct)
}

34 do

do Do Things Repeatedly

Description

do() provides a natural syntax for repetition tuned to assist with replication and resampling meth-
ods.

Usage

do(object, ...)

S3 method for class 'numeric'
do(object, ...)

Default S3 method:
do(object, ...)

Do(n = 1L, cull = NULL, mode = "default", algorithm = 1, parallel = TRUE)

S3 method for class 'repeater'
print(x, ...)

S4 method for signature 'repeater,ANY'
e1 * e2

Arguments

object an object

... additional arguments

n number of times to repeat

cull function for culling output of objects being repeated. If NULL, a default culling
function is used. The default culling function is currently aware of objects of
types lme, lm, htest, table, cointoss, and matrix.

mode target mode for value returned

algorithm a number used to select the algorithm used. Currently numbers below 1 use an
older algorithm and numbers >=1 use a newer algorithm which is faster in some
situations.

parallel a logical indicating whether parallel computation should be attempted using the
parallel package (if it is installed and loaded).

x an object created by do.

e1 an object (in cases documented here, the result of running do)

e2 an object (in cases documented here, an expression to be repeated)

do 35

Value

do returns an object of class repeater which is only useful in the context of the operator *. See the
examples.

Naming

The names used in the object returned from do() are inferred from the objects created in each
replication. Roughly, this the strategy employed.

• If the objects have names, those names are inherited, if possible.

• If the objects do not have names, but do() is used with a simple function call, the name of that
function is used. Example: do(3) * mean(~height, data = Galton) produces a data frame
with a variable named mean.

• In cases where names are not easily inferred and a single result is produced, it is named
result.

To get different names, one can rename the objects as they are created, or rename the result re-
turned from do(). Example of the former: do(3) * c(mean_height = mean(~height, data =
resample(Galton))).

Note

do is a thin wrapper around Do to avoid collision with dplyr::do() from the dplyr package.

Author(s)

Daniel Kaplan (<kaplan@macalaster.edu>) and Randall Pruim (<rpruim@calvin.edu>)

See Also

replicate(), set.rseed()

Examples

do(3) * rnorm(1)
do(3) * "hello"
do(3) * 1:4
do(3) * mean(rnorm(25))
do(3) * lm(shuffle(height) ~ sex + mother, Galton)
do(3) * anova(lm(shuffle(height) ~ sex + mother, Galton))
do(3) * c(sample.mean = mean(rnorm(25)))
change the names on the fly
do(3) * mean(~height, data = resample(Galton))
do(3) * c(mean_height = mean(~height, data = resample(Galton)))
set.rseed(1234)
do(3) * tally(~sex|treat, data=resample(HELPrct))
set.rseed(1234) # re-using seed gives same results again
do(3) * tally(~sex|treat, data=resample(HELPrct))

36 dotPlot

docFile Return the path to a documentation file in a package

Description

Return the path to a documentation file in a package

Usage

docFile(file, package = "mosaic", character.only = FALSE)

Arguments

file the name of a file

package the name of a package

character.only a logical. If TRUE package names must be specified as character, else names will
be converted as a convenience as is library() and library().

Value

a character vector specifying the path to the file on the user’s system.

dotPlot Dotplots

Description

A high level function and panel function for producing a variant of a histogram called a dotplot.

Usage

dotPlot(x, breaks, ..., panel = panel.dotPlot)

panel.dotPlot(
x,
breaks,
equal.widths = TRUE,
groups = NULL,
nint = if (is.factor(x)) nlevels(x) else round(1.3 * log2(length(x)) + 4),
pch,
col,
lty = trellis.par.get("dot.line")$lty,
lwd = trellis.par.get("dot.line")$lwd,
col.line = trellis.par.get("dot.line")$col,
alpha = trellis.par.get("dot.symbol")$alpha,

dpqrdist 37

cex = 1,
type = "count",
...

)

Arguments

x a vector of values or a formula
breaks, equal.widths, groups, pch, col, lty, lwd, col.line, type, alpha

as in histogram()

... additional arguments

panel a panel function

nint the number of intervals to use

cex a ratio by which to increase or decrease the dot size

Value

a trellis object

See Also

histogram()

Examples

if (require(mosaicData)) {
dotPlot(~ age, data = HELPrct)
dotPlot(~ age, nint=42, data = HELPrct)
dotPlot(~ height | voice.part, data = singer, nint = 17,

endpoints = c(59.5, 76.5), layout = c(4,2), aspect = 1,
xlab = "Height (inches)")

}

dpqrdist Distribution wrapper

Description

Utility function wrapping up the d/p/q/r distribution functions

Usage

dpqrdist(dist, type = c("d", "p", "q", "r"), ...)

38 expandFun

Arguments

dist a character description of a distribution, for example "norm", "t", or "chisq"

type one of "x", "p", "q", or "r"

... additional arguments passed on to underlying distribution function. Note that
one of d, p, q, or n must be a named argument in ...

Examples

3 random draws from N(1,2)
dpqrdist("norm", "r", n = 3, mean = 1, sd = 2)
These should all be the same
dpqrdist("norm", "d", x = 0) == dnorm(x = 0)
dpqrdist("norm", "p", q = 0, mean = 1, sd = 2) == pnorm(q = 0, mean = 1, sd = 2)
dpqrdist("norm", "q", p = 0.5, mean = 1, sd = 2) == qnorm(p = 0.5, mean = 1, sd = 2)

expandFun Expand the left-hand side of a formula

Description

Expands the contents of functions used in a formula.

Usage

expandFun(formula, ...)

Arguments

formula A mathematical expression (see examples and plotFun())

... additional parameters

Value

A list with the new expanded formula and the combined formals

Examples

f=makeFun(x^2~x)
expandFun(f(z)~z) #Returns z^2~z

factorize 39

factorize Conditionally convert vectors to factors

Description

A generic function and several instances for creating factors from other sorts of data. The primary
use case is for vectors that contain few unique values and might be better considered as factors.
When applied to a data frame, this is applied to each variable in the data frame.

Usage

factorize(x, ...)

Default S3 method:
factorize(x, ...)

S3 method for class 'numeric'
factorize(x, max.levels = 5L, ...)

S3 method for class 'character'
factorize(x, max.levels = 5L, ...)

S3 method for class 'data.frame'
factorize(x, max.levels = 5L, ...)

factorise(x, ...)

Arguments

x an object

... additional arguments (currently ignored)

max.levels an integer. Only convert if the number of unique values is no more than max.levels.

Examples

data(KidsFeet, package="mosaicData")
str(KidsFeet)
factorize(KidsFeet$birthyear)
str(factorize(KidsFeet))
alternative spelling
str(factorise(KidsFeet))

40 fetchData

fav_stats Some favorite statistical summaries

Description

Likely you mean to be using favstats(). Each of these computes the mean, standard deviation,
quartiles, sample size and number of missing values for a numeric vector, but favstats() can take
a formula describing how these summary statistics should be aggregated across various subsets of
the data.

Usage

fav_stats(x, ..., na.rm = TRUE, type = 7)

Arguments

x numeric vector

... additional arguments (currently ignored)

na.rm boolean indicating whether missing data should be ignored

type an integer between 1 and 9 selecting one of the nine quantile algorithms detailed
in the documentation for stats::quantile()

Value

A vector of statistical summaries

Examples

fav_stats(1:10)
fav_stats(faithful$eruptions)
data(penguins, package = "palmerpenguins")

Note: this is favstats() rather than fav_stats()
favstats(bill_length_mm ~ species, data = penguins)

fetchData Defunct functions now in the fetch package

Description

These functions have been moved to the fetch package.

findZeros 41

Usage

fetchData(...)

fetchGapminder1(...)

fetchGapminder(...)

fetchGoogle(...)

Arguments

... arguments

findZeros Find zeros of functions

Description

Compute numerically zeros of a function or simultaneous zeros of multiple functions.

Usage

findZeros(
expr,
...,
xlim = c(near - within, near + within),
near = 0,
within = Inf,
nearest = 10,
npts = 1000,
iterate = 1,
sortBy = c("byx", "byy", "radial")

)

S3 method for class 'formula'
solve(
form,
...,
near = 0,
within = Inf,
nearest = 10,
npts = 1000,
iterate = 1,
sortBy = c("byx", "byy", "radial")

)

42 findZeros

Arguments

expr A formula. The right side names the variable with respect to which the zeros
should be found. The left side is an expression, e.g. sin(x) ~ x. All free vari-
ables (all but the variable on the right side) named in the expression must be
assigned a value via \ldots

... Formulas corresponding to additional functions to use in simultaneous zero find-
ing and/or specific numerical values for the free variables in the expression.

xlim The range of the dependent variable to search for zeros. Inf is a legitimate value,
but is interpreted in the numerical sense as the non-Inf largest floating point
number. This can also be specified replacing x with the name of the variable.
See the examples.

near a value near which zeros are desired

within only look for zeros at least this close to near. near and within provide an
alternative to using xlim to specify the search space.

nearest the number of nearest zeros to return. Fewer are returned if fewer are found.

npts How many sub-intervals to divide the xlim into when looking for candidates for
zeros. The default is usually good enough. If Inf is involved, the intervals are
logarithmically spaced up to the largest finite floating point number. There is no
guarantee that all the roots will be found.

iterate maximum number of times to iterate the search. Subsequent searches take place
with the range of previously found zeros. Choosing a large number here is likely
to kill performance without improving results, but a value of 1 (the default) or 2
works well when searching in c(-Inf,Inf) for a modest number of zeros near
near.

sortBy specifies how the zeros found will be sorted. Options are ’byx’, ’byy’, or ’radial’.

form Expression to be solved

Details

Searches numerically using uniroot.

Uses findZerosMult of findZeros to solve the given expression

Value

A dataframe of zero or more numerical values. Plugging these into the expression on the left side
of the formula should result in values near zero.

a dataframe with solutions to the expression.

Author(s)

Daniel Kaplan (<kaplan@macalester.edu>)

Cecylia Bocovich

findZerosMult 43

Examples

findZeros(sin(t) ~ t, xlim=c(-10,10))
Can use tlim or t.lim instead of xlim if we prefer
findZeros(sin(t) ~ t, tlim=c(-10,10))
findZeros(sin(theta) ~ theta, near=0, nearest=20)
findZeros(A*sin(2*pi*t/P) ~ t, xlim=c(0,100), P=50, A=2)
Interval of a normal at half its maximum height.
findZeros(dnorm(x,mean=0,sd=10) - 0.5*dnorm(0,mean=0,sd=10) ~ x)
A pathological example
There are no "neareset" zeros for this function. Each iteration finds new zeros.
f <- function(x) { if (x==0) 0 else sin(1/x) }
findZeros(f(x) ~ x, near=0)
Better to look nearer to 0
findZeros(f(x) ~ x, near=0, within=100)
findZeros(f(x) ~ x, near=0, within=100, iterate=0)
findZeros(f(x) ~ x, near=0, within=100, iterate=3)
Zeros in multiple dimensions (not run: these take a long time)
findZeros(x^2+y^2+z^2-5~x&y&z, nearest=3000, within = 5)
findZeros(x*y+z^2~z&y&z, z+y~x&y&z, npts=10)
solve(3*x==3~x)

plot out sphere (not run)
sphere = solve(x^2+y^2+z^2==5~x&y&z, within=5, nearest=1000)
cloud(z~x+y, data=sphere)

findZerosMult Find the zeros of a function of two or more variables

Description

Compute numerically zeros of a function of two or more variables. All free variables (all but the
variable on the right side) named in the expression must be assigned a value via \ldots

Usage

findZerosMult(..., npts = 10, rad = 5, near = 0, sortBy = "byx")

Arguments

... arguments for values NOTE: if the system has more than one equation and the
rhs variables do not match up, there will be an error.

npts number of desired zeros to return

rad radius around near in which to look for zeros

near center of search for zeros

sortBy options for sorting zeros for plotting. Options are ’byx’, ’byy’ and ’radial’. The
default value is ’byx’.

44 fitModel

Details

sorts points in the domain according to the sign of the function value at respective points. Use
continuity and uniroot to find zeros between points of opposite signs. Returns any number of points
which may be sorted and plotted according to x, y, or radial values.

Value

A data frame of numerical values which should all result in a value of zero when input into original
function

Author(s)

Cecylia Bocovich

Examples

findZerosMult(a*x^2-8~a&x, npts = 50)
findZerosMult(a^2+x^2-8~a&x, npts = 100, sortBy='radial')
Not run: findZerosMult(a^2+x^2-8~a&x, npts = 1000, sortBy='radial')

fitModel Fit a nonlinear least squares model

Description

Allows you to specify a formula with parameters, along with starting guesses for the parameters.
Refines those guesses to find the least-squares fit.

Usage

fitModel(formula, data = parent.frame(), start = list(), ...)

model(object, ...)

S3 method for class 'nlsfunction'
model(object, ...)

S3 method for class 'nlsfunction'
summary(object, ...)

S3 method for class 'nlsfunction'
coef(object, ...)

fitSpline 45

Arguments

formula formula specifying the model

data dataframe containing the data to be used

start passed as start to nls(). If and empty list, a simple starting point is used (thus
avoiding the usual warning message).

... additional arguments passed to nls()

object an R object (typically a the result of fitModel)

Details

Fits a nonlinear least squares model to data. In contrast to linear models, all the parameters (in-
cluding linear ones) need to be named in the formula. The function returned simply contains the
formula together with pre-assigned arguments setting the parameter value. Variables used in the
fitting (as opposed to parameters) are unassigned arguments to the returned function.

Value

a function

Note

This doesn’t work with categorical explanatory variables. Also, this does not work with synthetic
data that fit the model perfectly. See link{nls} for details.

See Also

linearModel(), nls()

Examples

if (require(mosaicData)) {
f <- fitModel(temp ~ A+B*exp(-k*time), data=CoolingWater, start=list(A=50,B=50,k=1/20))
f(time=50)
coef(f)
summary(f)
model(f)
}

fitSpline Fit splines to data

Description

These functions create mathematical functions from data, using splines.

46 fitSpline

Usage

fitSpline(
formula,
data = parent.frame(),
df = NULL,
knots = NULL,
degree = 3,
type = c("natural", "linear", "cubic", "polynomial"),
...

)

Arguments

formula a formula. Only one quantity is allowed on the left-hand side, the output quantity

data a data frame in which formula is evaluated.

df degrees of freedom (used to determine how many knots should be used)

knots a vector of knots

degree parameter for splines when type is "polynomial". 1 is locally linear, 2 is lo-
cally quadratic, etc.

type type of splines to use; one of "linear", "cubic", "natural" (cubic with linear
tails, the default), or "polynomial".

... additional arguments passed to spline basis functions (splines::ns() and splines::bs()).

Value

a function of the explanatory variable

See Also

splines::bs() and splines::ns() for the bases used to generate the splines.

Examples

f <- fitSpline(weight ~ height, data=women, df=5)
xyplot(weight ~ height, data=women)
plotFun(f(height) ~ height, add=TRUE)

g <- fitSpline(length ~ width, data = KidsFeet, type='natural', df=5)
h <- fitSpline(length ~ width, data = KidsFeet, type='linear', df=5)
xyplot(length ~ width, data = KidsFeet, col='gray70', pch=16)
plotFun(g, add=TRUE, col='navy')
plotFun(h, add=TRUE, col='red')

fortify.hclust 47

fortify.hclust mosaic tools for clustering

Description

mosaic tools for clustering

Usage

S3 method for class 'hclust'
fortify(
model,
data,
which = c("segments", "heatmap", "leaves", "labels", "data"),
k = 1,
...

)

S3 method for class 'hclust'
mplot(
object,
data,
colorize = TRUE,
k = 1,
labels = FALSE,
heatmap = 0,
enumerate = "white",
...

)

Arguments

model a model

data a data-like object

which which kind of fortification to compute

k number of clusters

... additional arguments passed on to link{dendro_data}

object an object of class "hclust"

colorize whether to show clusters in different colors

labels a logical indicating whether labels should be used to identify leaves of the tree.

heatmap the ratio of size of heatmap to size of dendrogram. Use 0 or FALSE to omit the
heatmap.

enumerate a color used for numbers within heatmap. Use "transparent" to hide.

48 fortify.summary.lm

Examples

KidsFeet |> select(-name, -birthmonth) |> rescale() -> KidsFeet2
M <- dist(KidsFeet2)
Cl <- hclust(M)
fortify(Cl, k=5) |> head(3)
fortify(Cl, which="heatmap", data=KidsFeet2) |> head(3)
fortify(Cl, which="data", data=KidsFeet2) |> head(3)
fortify(Cl, which="labels") |> head(3)
mplot(Cl, data=KidsFeet2, k=4, heatmap=2)
mplot(Cl, data=KidsFeet2, k=4, heatmap=0.5, enumerate="transparent")
mplot(Cl, data=KidsFeet2, k=4, heatmap=2, type="triangle")
mplot(Cl, data=KidsFeet2, k=4, heatmap=0, type="triangle")

fortify.summary.lm Extract data from R objects

Description

Extract data from R objects

Usage

S3 method for class 'summary.lm'
fortify(model, data = NULL, level = 0.95, ...)

S3 method for class 'summary.glm'
fortify(model, data = NULL, level = 0.95, ...)

S3 method for class 'TukeyHSD'
fortify(model, data, order = c("asis", "pval", "difference"), ...)

Arguments

model an R object

data original data set, if needed

level confidence level

... additional arguments

order one of "pval", "diff", or "asis" determining the order of the pair factor,
which determines the order in which the differences are displayed on the plot.

freqpoly 49

freqpoly Turn histograms into frequency polygons

Description

Turn histograms into frequency polygons

Usage

freqpoly(x, plot = TRUE, ...)

hist2freqpolygon(hist)

S3 method for class 'freqpolygon'
plot(
x,
freq = equidist,
col = graphics::par("fg"),
lty = NULL,
lwd = 1,
main = paste("Frequency polygon of", paste(x$xname, collapse = "\n")),
sub = NULL,
xlab = x$xname,
ylab,
xlim = range(x$x),
ylim = NULL,
axes = TRUE,
labels = FALSE,
add = FALSE,
ann = TRUE,
...

)

Arguments

x a vector of values for which a frequency polygon is desired.

plot a logical indicating if a plot should be generated.

... additional arguments passed on to hist().

hist a histogram object produced by link{hist}().

freq A logical indicating whether the vertical scale should be frequency (count).

col A color for the frequency polygon.

lty An integer indicating the line type.

lwd An integer indicating the line width.

main A title for the plot.

50 freqpolygon

sub A sub-title for the plot.

xlab Label for the horizontal axis.

ylab Label for the vertical axis.

xlim A numeric vector of length 2.

ylim A numeric vector of length 2.

axes A logical indicating whether axes should be drawn.

labels A logical indicating whether labels should be printed or a character vector of
labels to add.

add A logical indicating whether the plot should be added to the current plot

ann A logical indicating whether annotations (titles and axis titles) should be plotted.

Value

An object of class "freqpoly" (invisibly). Additionally, if plot is TRUE, a plot is generated.

Examples

freqpoly(faithful$eruptions)
bks <- c(0, 1, 1.5, 2, 3, 3.5, 4, 4.5, 5, 7)
hist(faithful$eruptions, breaks = bks)
freqpoly(faithful$eruptions, col = rgb(0,0,1,.5), lwd = 5, breaks = bks, add = TRUE)

freqpolygon Frequency Polygons

Description

Frequency polygons are an alternative to histograms that make it simpler to overlay multiple distri-
butions.

Usage

freqpolygon(
x,
...,
panel = "panel.freqpolygon",
prepanel = "prepanel.default.freqpolygon"

)

prepanel.default.freqpolygon(
x,
darg = list(),
plot.points = FALSE,
ref = FALSE,

freqpolygon 51

groups = NULL,
subscripts = TRUE,
jitter.amount = 0.01 * diff(current.panel.limits()$ylim),
center = NULL,
nint = NULL,
breaks = NULL,
width = darg$width,
type = "density",
...

)

panel.freqpolygon(
x,
darg = list(),
plot.points = FALSE,
ref = FALSE,
groups = NULL,
weights = NULL,
jitter.amount = 0.01 * diff(current.panel.limits()$ylim),
type = "density",
breaks = NULL,
nint = NULL,
center = NULL,
width = darg$width,
gcol = trellis.par.get("reference.line")$col,
glwd = trellis.par.get("reference.line")$lwd,
h,
v,
...,
identifier = "freqpoly"

)

Arguments

x a formula or a numeric vector

... additional arguments passed on to histogram() and panel.

panel a panel function

prepanel a prepanel function

darg a list of arguments for the function computing the frequency polygon. This
exists primarily for compatibility with densityplot and is unlikely to be needed
by the end user.

plot.points one of TRUE, FALSE, "jitter", or "rug" indicating how points are to be dis-
played

ref a logical indicating whether a horizontal reference line should be added (roughly
equivalent to h=0)

groups, weights, jitter.amount, identifier

as in densityplot() or histogram()

52 FunctionsFromData

subscripts as in other lattice prepanel functions
center center of one of the bins
nint an approximate number of bins for the frequency polygon
breaks a vector of breaks for the frequency polygon bins
width width of the bins
type one of 'density', 'percent', or 'count'
gcol color of guidelines
glwd width of guidelines
h, v a vector of values for additional horizontal and vertical lines

Value

a trellis object

Note

This function make use of histogram to determine overall layout. Often this works reasonably
well but sometimes it does not. In particular, when groups is used to overlay multiple frequency
polygons, there is often too little head room. In the latter cases, it may be necessary to use ylim to
determine an appropriate viewing rectangle for the plot.

Examples

freqpolygon(~age | substance, data=HELPrct, v=35)
freqpolygon(~age, data=HELPrct, labels=TRUE, type='count')
freqpolygon(~age | substance, data=HELPrct, groups=sex)
freqpolygon(~age | substance, data=HELPrct, groups=sex, ylim=c(0,0.11))
comparison of histogram and frequency polygon
histogram(~eruptions, faithful, type='density', width=.5)
ladd(panel.freqpolygon(faithful$eruptions, width=.5))

FunctionsFromData Create function from data

Description

These functions create mathematical functions from data, by smoothing, splining, or linear combi-
nation (fitting). Each of them takes a formula and a data frame as an argument

Usage

spliner(formula, data = NULL, method = "fmm", monotonic = FALSE)

connector(formula, data = NULL, method = "linear")

smoother(formula, data, span = 0.5, degree = 2, ...)

linearModel(formula, data, ...)

FunctionsFromData 53

Arguments

formula a formula. Only one quantity is allowed on the left-hand side, the output quantity

data a data frame

method a method for splining. See spline().

monotonic a TRUE/FALSE flag specifying whether the spline should respect monotonicity in
the data

span parameter to smoother. How smooth it should be.

degree parameter to smoother. 1 is locally linear, 2 is locally quadratic.

... additional arguments to stats::loess() or stats::lm()

Details

These functions use data to create a mathematical, single-valued function of the inputs. All return
a function whose arguments are the variables used on the right-hand side of the formula. If the
formula involves a transformation, e.g. sqrt(age) or log(income), only the variable itself, e.g.
age or income, is an argument to the function.

linearModel takes a linear combination of the vectors specified on the right-hand side. It differs
from project in that linearModel returns a function whereas project returns the coefficients.
NOTE: An intercept term is not included unless that is explicitly part of the formula with +1. This
conflicts with the standard usage of formulas as found in lm. Another option for creating such
functions is to combine lm() and makeFun().

spliner and connector currently work for only one input variable.

See Also

project() method for formulas

Examples

if (require(mosaicData)) {
data(CPS85)
f <- smoother(wage ~ age, span=.9, data=CPS85)
f(40)
g <- linearModel(log(wage) ~ age + educ + 1, data=CPS85)
g(age=40, educ=12)
an alternative way to define g (Note: + 1 is the default for lm().)
g2 <- makeFun(lm(log(wage) ~ age + educ, data=CPS85))
g2(age=40, educ=12)
x<-1:5; y=c(1, 2, 4, 8, 8.2)
f1 <- spliner(y ~ x)
f1(x=8:10)
f2 <- connector(x~y)
}

54 googleMap

getVarFormula Extract data from a data frame using a formula interface

Description

Uses the full model syntax.

Usage

getVarFormula(formula, data = parent.frame(), intercept = FALSE)

Arguments

formula a formula. The right-hand side selects variables; the left-hand side, if present, is
used to set row names. A . on the right-hand side indicates to use all variables
not in the LHS.

data a data frame

intercept a logical indicating whether to include the intercept in the model default: FALSE
(no intercept)

Examples

getVarFormula(~ wt + mpg, data = mtcars)

googleMap Display a point on earth on a Google Map

Description

Creates a URL for Google Maps for a particular latitude and longitude position. This function
has been deprecated due to changes in Google’s access policies. Give leaflet_map() a try as an
alternative.

Usage

googleMap(
latitude,
longitude,
position = NULL,
zoom = 12,
maptype = c("roadmap", "satellite", "terrain", "hybrid"),
mark = FALSE,
radius = 0,
browse = TRUE,
...

)

inferArgs 55

Arguments

latitude, longitude

vectors of latitude and longitude values

position a data frame containing latitude and longitude positions

zoom zoom level for initial map (1-20)

maptype one of 'roadmap', 'satellite', 'terrain', and 'hybrid'

mark a logical indicating whether the location should be marked with a pin

radius a vector of radii of circles centered at position that are displayed on the map

browse a logical indicating whether the URL should be browsed (else only returned as
a string)

... additional arguments passed to browseURL

Value

a string containing a URL. Optionally, as a side-effect, the URL is visited in a browser

See Also

leaflet_map(), deg2rad(), latlon2xyz() and rgeo().

Examples

Not run:
googleMap(40.7566, -73.9863, radius=1) # Times Square
googleMap(position=rgeo(2), radius=1) # 2 random locations

End(Not run)

inferArgs Infer arguments

Description

The primary purpose is for inferring argument settings from names derived from variables occurring
in a formula. For example, the default use is to infer limits for variables without having to call them
xlim and ylim when the variables in the formula have other names. Other uses could easily be
devised by specifying different variants.

Usage

inferArgs(
vars,
dots,
defaults = alist(xlim = , ylim = , zlim =),
variants = c(".lim", "lim")

)

56 is.wholenumber

Arguments

vars a vector of variable names to look for

dots a named list of argument values

defaults named list or alist of default values for limits

variants a vector of optional postfixes for limit-specifying variable names

Value

a named list or alist of limits. The names are determined by the names in defaults.

If multiple variants are matched, the first is used.

Examples

inferArgs(c('x','u','t'), list(t=c(1,3), x.lim=c(1,10), u=c(1,3), u.lim=c(2,4)))
inferArgs(c('x','u'), list(u=c(1,3)), defaults=list(xlim=c(0,1), ylim=NULL))

is.wholenumber Check for whole number values

Description

Unlike is.integer(), which checks the type of argument is integer, this function checks whether
the value of the argument is an integer (within a specified tolerance).

Usage

is.wholenumber(x, tol = .Machine$double.eps^0.5)

Arguments

x a vector

tol a numeric tolerance

Details

This function is borrowed from the examples for is.integer()

Value

a logical vector indicating whether x has a whole number value

Examples

is.wholenumber(1)
all(is.wholenumber(rbinom(100,10,.5)))
is.wholenumber((1:10)/2)

ladd 57

ladd Add to Lattice Plots

Description

Simplified lattice plotting by adding additional elements to existing plots.

Usage

ladd(x, data = NULL, ..., plot = trellis.last.object())

Arguments

x callable graphical element to be added to a panel or panels in a lattice plot

data a list containing objects that can be referred to in x. Panel functions also have
access to the data already used in the panel by the underlying lattice plot. See
latticeExtra::layer() for details.

... additional arguments passed to latticeExtra::layer().

plot a lattice plot to add to. Defaults to previous lattice plot.

Details

ladd is a wrapper around latticeExtra::layer() that simplifies certain common plotting addi-
tions. The same caveats that apply to that function apply here as well. In particular, ladd uses
non-standard evaluation. For this reason care must be taken if trying to use ladd within other func-
tions and the use of data may be required to pass information into the environment in which x will
be evaluated.

Value

a trellis object

Author(s)

Randall Pruim (<rpruim@calvin.edu>)

See Also

latticeExtra::layer()

Examples

p <- xyplot(rnorm(100) ~rnorm(100))
print(p)
ladd(panel.abline(a=0,b=1))
ladd(panel.abline(h=0,col='blue'))
ladd(grid.text('Hello'))
ladd(grid.text(x=.95,y=.05,'text here',just=c('right','bottom')))

58 leaflet_map

q <- xyplot(rnorm(100) ~rnorm(100)|factor(rbinom(100,4,.5)))
q <- update(q, layout=c(3,2))
ladd(panel.abline(a=0,b=1), plot=q)
ladd(panel.abline(h=0,col='blue'))
ladd(grid.text("(2,1)",gp=gpar(cex=3,alpha=.5)), columns=2, rows=1)
ladd(grid.text("p5",gp=gpar(cex=3,alpha=.5)), packets=5)
q
ladd(grid.text(paste(current.column(), current.row(),sep=','), gp=gpar(cex=3,alpha=.5)))
histogram(~eruptions, data=faithful)
over would probably be better here, but the demonstrates what under=TRUE does.
ladd(panel.densityplot(faithful$eruptions, lwd=4), under=TRUE)

leaflet_map Simple Leaflet Maps

Description

Primarily designed to work with rgeo() to display randomly sampled points on the globe.

Usage

leaflet_map(
latitude = NULL,
longitude = NULL,
position = NULL,
zoom = 12,
mark = FALSE,
radius = 0,
units = c("km", "miles", "meters", "feet"),
...

)

Arguments

latitude, longitude

vectors of latitude and longitude values. If latitude is a data frame, then it is
treated as position. This facilitates "piping" from rgeo(). See examples.

position a data frame containing latitude and longitude positions

zoom zoom level for initial map (1-20)

mark a logical indicating whether the location should be marked with a pin

radius a vector of radii of circles (in miles) centered at position that are displayed on
the map

units units for radii of circles (km, miles, meters, or feet).

... additional arguments passed to leaflet::addCircles()

linear.algebra 59

Value

a leaflet map

See Also

deg2rad(), latlon2xyz() and rgeo().

Examples

the leaflet package is required
if (require(leaflet)) {

Times Square
leaflet_map(40.7566, -73.9863, radius = 1, units = "miles")
3 random locations; 5 km circles
leaflet_map(position = rgeo(3), radius = 5, mark = TRUE, color = "red")
using pipes
rgeo(4, latlim = c(25,50), lonlim = c(-65, -125)) |>
leaflet_map(radius = 5, mark = TRUE, color = "purple")

}

linear.algebra Functions for teaching linear algebra.

Description

These functions provide a formula based interface to the construction of matrices from data and for
fitting. You can use them both for numerical vectors and for functions of variables in data frames.
These functions are intended to support teaching basic linear algebra with a particular connection
to statistics.

Usage

mat(formula, data = parent.frame(), A = formula)

singvals(formula, data = parent.frame(), A = formula)

Arguments

formula a formula. In mat and singvals, only the right-hand side is used.

data a data frame from which to pull out numerical values for the variables in the
formula

A an alias for formula for backward compatibility.
mat returns a model matrix
To demonstrate singularity, use singvals.

60 MAD

Value

mat returns a matrix

singvals gives singular values for each column in the model matrix

See Also

project()

linearModel(), which returns a function.

Examples

a <- c(1,0,0); b <- c(1,2,3); c <- c(4,5,6); x <- rnorm(3)
Formula interface
mat(~a+b)
mat(~a+b+1)
if (require(mosaicData)) {
mat(~length+sex, data=KidsFeet)
singvals(~length*sex*width, data=KidsFeet)
}

MAD All pairs mean and sum of absolute differences

Description

The functions compute the sum or mean of all pairwise absolute differences. This differs from
stats::mad(), which computes the median absolute difference of each value from the median of
all the values. See the ISIwithR package (and the textbook it accompanies) for examples using
these functions in the context of simulation-based inference.

Usage

MAD(x, ..., data = NULL, groups = NULL, na.rm = getOption("na.rm", FALSE))

SAD(x, ..., data = NULL, groups = NULL, na.rm = getOption("na.rm", FALSE))

Arguments

x a numeric vector or a formula.
... additional arguments passed through to MAD_ or SAD_. If x is a formula, ...

should include an argument named data if the intent is to interpret the formula
in a data frame.

data a data frame in which to evaluate formulas (or bare names). Note that the default
is data = parent.frame(). This makes it convenient to use this function inter-
actively by treating the working environment as if it were a data frame. But this
may not be appropriate for programming uses. When programming, it is best to
use an explicit data argument – ideally supplying a data frame that contains the
variables mentioned.

MAD_ 61

groups a grouping variable, typically a name of a variable in data

na.rm a logical indicating whether NAs should be removed before calculating.

Value

the mean or sum of the absolute differences between each pair of values in c(x,...).

See Also

mad(), MAD_()

Examples

SAD(1:3)
MAD(1:3)
MAD(~eruptions, data = faithful)

MAD_ All pairs mean and sum of absolute differences

Description

All pairs mean and sum of absolute differences

Usage

MAD_(x, ..., na.rm = getOption("na.omit", FALSE))

SAD_(x, ..., na.rm = getOption("na.omit", FALSE))

Arguments

x a numeric vector or a formula.

... additional arguments appended to x

na.rm a logical indicating whether NAs should be removed before calculating.

Value

the mean or sum of the absolute differences between each pair of values in c(x,...).

See Also

mad()

62 maggregate

maggregate Aggregate for mosaic

Description

Compute function on subsets of a variable in a data frame.

Usage

maggregate(
formula,
data = parent.frame(),
FUN,
groups = NULL,
subset,
drop = FALSE,
...,
.format = c("default", "table", "flat"),
.overall = mosaic.par.get("aggregate.overall"),
.multiple = FALSE,
.name = deparse(substitute(FUN)),
.envir = parent.frame()

)

Arguments

formula a formula. Left side provides variable to be summarized. Right side and con-
dition describe subsets. If the left side is empty, right side and condition are
shifted over as a convenience.

data a data frame. Note that the default is data = parent.frame(). This makes it
convenient to use this function interactively by treating the working environment
as if it were a data frame. But this may not be appropriate for programming
uses. When programming, it is best to use an explicit data argument – ideally
supplying a data frame that contains the variables mentioned in formula.

FUN a function to apply to each subset
groups grouping variable that will be folded into the formula (if there is room for it).

This offers some additional flexibility in how formulas can be specified.
subset a logical indicating a subset of data to be processed.
drop a logical indicating whether unused levels should be dropped.
... additional arguments passed to FUN

.format format used for aggregation. "default" and "flat" are equivalent.

.overall currently unused

.multiple a logical indicating whether FUN returns multiple values Ignored if .multiple
is not NULL.

.name a name used for the resulting object

.envir an environment in which to evaluate expressions

makeColorscheme 63

Value

a vector

Examples

if (require(mosaicData)) {
maggregate(cesd ~ sex, HELPrct, FUN = mean)
using groups instead
maggregate(~ cesd, groups = sex, HELPrct, FUN = sd)
the next four all do the same thing
maggregate(cesd ~ sex + homeless, HELPrct, FUN = mean)
maggregate(cesd ~ sex | homeless, HELPrct, FUN = sd)
maggregate(~ cesd | sex , groups= homeless, HELPrct, FUN = sd)
maggregate(cesd ~ sex, groups = homeless, HELPrct, FUN = sd)
this is unusual, but also works.
maggregate(cesd ~ NULL , groups = sex, HELPrct, FUN = sd)
}

makeColorscheme Create a color generating function from a vector of colors

Description

Create a color generating function from a vector of colors

Usage

makeColorscheme(col)

Arguments

col a vector of colors

Value

a function that generates a vector of colors interpolated among the colors in col

Examples

cs <- makeColorscheme(c('red','white','blue'))
cs(10)
cs(10, alpha=.5)

64 makeMap

makeMap Make a map with ggplot2

Description

makeMap takes in two sources of data that refer to geographical regions and merges them together.
Depending on the arguments passed, it returns this merged data or a ggplot object constructed with
the data.

Usage

makeMap(
data = NULL,
map = NULL,
key = c(key.data, key.map),
key.data,
key.map,
tr.data = identity,
tr.map = identity,
plot = c("borders", "frame", "none")

)

Arguments

data A dataframe with regions as cases

map An object that can be fortified to a dataframe (ex: a dataframe itself, or a Spa-
tialPolygonsDataFrame)

key The combination of key.data and key.map

key.data The column name in the data that holds the unique names of each region

key.map The column name in the map that holds the unique names of each region

tr.data A function of the transformation to be performed to the key.data column

tr.map A function of the transformation to be performed to the key.map column

plot The plot desired for the output. plot = "none" returns the merged data that is
the result of merging the data and map together; plot="frame" returns an empty
(unplottable) ggplot object; plot = "border" (the default) returns a ggplot object
with one geom_polygon layer that shows the borders of the regions.

mean_ 65

mean_ Aggregating functions

Description

The mosaic package makes several summary statistic functions (like mean and sd) formula aware.

Usage

mean_(x, ..., data = NULL, groups = NULL, na.rm = getOption("na.rm", FALSE))

mean(x, ...)

median(x, ..., data = NULL, groups = NULL, na.rm = getOption("na.rm", FALSE))

range(x, ..., data = NULL, groups = NULL, na.rm = getOption("na.rm", FALSE))

sd(x, ..., data = NULL, groups = NULL, na.rm = getOption("na.rm", FALSE))

max(x, ..., data = NULL, groups = NULL, na.rm = getOption("na.rm", FALSE))

min(x, ..., data = NULL, groups = NULL, na.rm = getOption("na.rm", FALSE))

sum(x, ..., data = NULL, groups = NULL, na.rm = getOption("na.rm", FALSE))

IQR(x, ..., data = NULL, groups = NULL, na.rm = getOption("na.rm", FALSE))

fivenum(x, ..., data = NULL, groups = NULL, na.rm = getOption("na.rm", FALSE))

iqr(x, ..., data = NULL, groups = NULL, na.rm = getOption("na.rm", FALSE))

prod(x, ..., data = NULL, groups = NULL, na.rm = getOption("na.rm", FALSE))

sum(x, ..., data = NULL, groups = NULL, na.rm = getOption("na.rm", FALSE))

favstats(x, ..., data = NULL, groups = NULL, na.rm = TRUE)

quantile(x, ..., data = NULL, groups = NULL, na.rm = getOption("na.rm", FALSE))

var(x, y = NULL, na.rm = getOption("na.rm", FALSE), ..., data = NULL)

cor(x, y = NULL, ..., data = NULL)

cov(x, y = NULL, ..., data = NULL)

Arguments

x a numeric vector or a formula

66 mean_

... additional arguments

data a data frame in which to evaluate formulas (or bare names). Note that the default
is data = parent.frame(). This makes it convenient to use this function inter-
actively by treating the working environment as if it were a data frame. But this
may not be appropriate for programming uses. When programming, it is best to
use an explicit data argument – ideally supplying a data frame that contains the
variables mentioned.

groups a grouping variable, typically a name of a variable in data

na.rm a logical indicating whether NAs should be removed before computing

y a numeric vector or a formula

Details

Many of these functions mask core R functions to provide an additional formula interface. Old
behavior should be unchanged. But if the first argument is a formula, that formula, together with
data are used to generate the numeric vector(s) to be summarized. Formulas of the shape x ~ a or
~ x | a can be used to produce summaries of x for each subset defined by a. Two-way aggregation
can be achieved using formulas of the form x ~ a + b or x ~ a | b. See the examples.

Note

Earlier versions of these functions supported a "bare name + data frame" interface. This function-
ality has been removed since it was (a) ambiguous in some cases, (b) unnecessary, and (c) difficult
to maintain.

Examples

mean(HELPrct$age)
mean(~ age, data = HELPrct)
mean(~ drugrisk, na.rm = TRUE, data = HELPrct)
mean(age ~ shuffle(sex), data = HELPrct)
mean(age ~ shuffle(sex), data = HELPrct, .format = "table")
wrap in data.frame() to auto-convert awkward variable names
data.frame(mean(age ~ shuffle(sex), data = HELPrct, .format = "table"))
mean(age ~ sex + substance, data = HELPrct)
mean(~ age | sex + substance, data = HELPrct)
mean(~ sqrt(age), data = HELPrct)
sum(~ age, data = HELPrct)
sd(HELPrct$age)
sd(~ age, data = HELPrct)
sd(age ~ sex + substance, data = HELPrct)
var(HELPrct$age)
var(~ age, data = HELPrct)
var(age ~ sex + substance, data = HELPrct)
IQR(width ~ sex, data = KidsFeet)
iqr(width ~ sex, data = KidsFeet)
favstats(width ~ sex, data = KidsFeet)

cor(length ~ width, data = KidsFeet)
cov(length ~ width, data = KidsFeet)

mid 67

tally(is.na(mcs) ~ is.na(pcs), data = HELPmiss)
cov(mcs ~ pcs, data = HELPmiss) # NA because of missing data
cov(mcs ~ pcs, data = HELPmiss, use = "complete") # ignore missing data
alternative approach using filter explicitly
cov(mcs ~ pcs, data = HELPmiss |> filter(!is.na(mcs) & !is.na(pcs)))

mid midpoints along a sequence

Description

Compute a vector of midpoints between values in a numeric vector

Usage

mid(x)

Arguments

x a numeric vector

Value

a vector of length 1 less than x

Examples

mid(1:5)
mid((1:5)^2)

mosaic.options Setting options for mosaic package functions

Description

A mechanism for setting options in the mosaic package.

Usage

mosaic.options(...)

mosaic.getOption(name)

mosaic.par.set(name, value, ..., theme, warn = TRUE, strict = FALSE)

mosaic.par.get(name = NULL)

68 mPlot

restoreLatticeOptions()

mosaicLatticeOptions()

Arguments

... additional arguments that are turned into a list if a list cannot be inferred from
theme, name, and value.

name the name of the option being set

value the value to which to set the option

theme a list appropriate for a mosaic theme

warn a logical. UNUSED at present.

strict a logical or numeric.

Details

restoreLatticeOptions returns any lattice options that were changed when the mosaic package
was loaded back to their pre-mosaic state.

mosaicLatticeOptions sets a number of defaults for lattice graphics.

mPlot Interactive plotting

Description

These functions provide a menu selection system (via manipulate) so that different aspects of a
plot can be selected interactively. The ggplot2 or lattice command for generating the plot currently
being displayed can be copied to the console, whence it can be copied to a document for later direct,
non-interactive use.

Usage

mPlot(
data,
format,
default = format,
system = system_choices()[1],
show = FALSE,
title = "",
data_text = rlang::expr_deparse(substitute(data)),
...

)

mMap(
data,

mPlot 69

default = "map",
system = "ggplot2",
show = FALSE,
title = title,
data_text = rlang::expr_deparse(substitute(data)),
...

)

mScatter(
data,
default = c("scatter", "jitter", "boxplot", "violin", "line", "sina",
"density (contours)", "density (filled)"),

system = "ggformula",
show = FALSE,
title = "",
data_text = rlang::expr_deparse(substitute(data))

)

mUniplot(
data,
default = c("histogram", "density", "frequency polygon", "ASH plot"),
system = system_choices()[1],
show = FALSE,
title = "",
data_text = rlang::expr_deparse(substitute(data))

)

Arguments

data a data frame containing the variables that might be used in the plot. Note that
for maps, the data frame must contain coordinates of the polygons comprising
the map and a variable for determining which coordinates are part of the same
region. See sp2df() for one way to create such a data frame. Typically merge()
will be used to combine the map data with some auxiliary data to be displayed
as fill color on the map, although this is not necessary if all one wants is a map.

format a synonym for default.

default default type of plot to create; one of "scatter", "jitter", "boxplot", "violin",
"sina", "histogram", "density", "density (contours)", "density (filled)",
"frequency polygon", "xyplot", or "map". Unique prefixes suffice.

system which graphics system to use (initially) for plotting (ggplot2 or lattice). A check
box will allow on the fly change of plotting system.

show a logical, if TRUE, the code will be displayed each time the plot is changed.

title a title for the plot

data_text A text string describing the data. It must be possible to recover the data from
this string using eval(). Typically users will not need to modify this from the
default value.

... additional arguments

70 mplot

Details

Only mPlot is required by end users. The other plotting functions are dispatched based on the value
of default. Furthermore, mplot() will dispatch mPlot when provided a data frame.

Currently maps are only supported in ggplot2 and not in lattice.

Due to an unresolved issue with RStudio, the first time this function is called, and additional plot is
created to correctily initialize the mainipulate frameowrk.

Value

Nothing. Just for side effects.

Note

Due to an unresolved issue with RStudio, the first time this function is called, and additional plot is
created to correctily initialize the mainipulate frameowrk.

Examples

Not run:
mPlot(HELPrct, format = "scatter")
mPlot(HELPrct, format = "density")

End(Not run)

mplot Generic plotting

Description

Generic function plotting for R objects. Currently plots exist for data.frames, lms, (including
glms).

Usage

mplot(object, ...)

Default S3 method:
mplot(object, ...)

S3 method for class 'lm'
mplot(
object,
which = c(1:3, 7),
system = c("ggplot2", "lattice", "base"),
ask = FALSE,
multiplot = "package:gridExtra" %in% search(),
par.settings = theme.mosaic(),

mplot 71

level = 0.95,
title = paste("model: ", deparse(object$call), "\n"),
rows = TRUE,
id.n = 3L,
id.size = 5,
id.color = "red",
id.nudge = 1,
add.smooth = TRUE,
smooth.color = "red",
smooth.alpha = 0.6,
smooth.size = 0.7,
span = 3/4,
...

)

S3 method for class 'data.frame'
mplot(
object,
format,
default = format,
system = c("ggformula", "ggplot2", "lattice"),
show = FALSE,
data_text = rlang::expr_deparse(substitute(object)),
title = "",
...

)

S3 method for class 'summary.lm'
mplot(
object,
system = c("ggplot2", "lattice"),
level = 0.95,
par.settings = trellis.par.get(),
rows = TRUE,
...

)

S3 method for class 'TukeyHSD'
mplot(
object,
system = c("ggplot2", "lattice"),
ylab = "",
xlab = "difference in means",
title = paste0(attr(object, "conf.level") * 100, "% family-wise confidence level"),
par.settings = trellis.par.get(),
order = c("asis", "pval", "difference"),
...

)

72 mplot

Arguments

object an R object from which a plot will be constructed.

... additional arguments. If object is an lm, subsets of these arguments are passed
to gridExtra::grid.arrange and to the lattice plotting routines; in particular,
nrow and ncol can be used to control the number of rows and columns used.

which a numeric vector used to select from 7 potential plots

system which graphics system to use (initially) for plotting (ggplot2 or lattice). A check
box will allow on the fly change of plotting system.

ask if TRUE, each plot will be displayed separately after the user responds to a
prompt.

multiplot if TRUE and ask == FALSE, all plots will be displayed together.

par.settings lattice theme settings

level a confidence level

title title for plot

rows rows to show. This may be a numeric vector, TRUE (for all rows), or a character
vector of row names.

id.n Number of id labels to display.

id.size Size of id labels.

id.color Color of id labels.

id.nudge a numeric used to increase (>1) or decrease (<1) the amount that observation
labels are nudged. Use a negative value to nudge down instead of up.

add.smooth A logicial indicating whether a LOESS smooth should be added (where this
makes sense to do). Currently ignored for lattice plots.

smooth.color, smooth.size, smooth.alpha

Color, size, and alpha used for LOESS curve. Currently ignored for lattice plots.

span A positive number indicating the amount of smoothing. A larger number indi-
cates more smoothing. See stats::loess() for details. Currently ignored for
lattice plots.

format, default

default type of plot to create; one of "scatter", "jitter", "boxplot", "violin",
"histogram", "density", "frequency polygon", or "map". Unique prefixes
suffice.

show a logical, if TRUE, the code will be displayed each time the plot is changed.

data_text text representation of the data set. In typical use cases, the default value should
suffice.

ylab label for y-axis

xlab label for x-axis

order one of "pval", "diff", or "asis" determining the order of the pair factor,
which determines the order in which the differences are displayed on the plot.

data a data frame containing the variables that might be used in the plot.

mplot 73

Details

The method for models (lm and glm) is still a work in progress, but should be usable for relatively
simple models. When the results for a logistic regression model created with glm() are satisfactory
will depend on the format and structure of the data used to fit the model.

Due to a bug in RStudio 1.3, the method for data frames may not display the controls consistently.
We have found that executing this code usually fixes the problem:

library(manipulate)
manipulate(plot(A), A = slider(1, 10))

Value

Nothing. Just for side effects.

Examples

lm(width ~ length * sex, data = KidsFeet) |>
mplot(which = 1:3, id.n = 5)

lm(width ~ length * sex, data = KidsFeet) |>
mplot(smooth.color = "blue", smooth.size = 1.2, smooth.alpha = 0.3, id.size = 3)

lm(width ~ length * sex, data = KidsFeet) |>
mplot(rows = 2:3, which = 7)

Not run:
mplot(HELPrct)
mplot(HELPrct, "histogram")

End(Not run)
lm(width ~ length * sex, data = KidsFeet) |>

summary() |>
mplot()

lm(width ~ length * sex, data = KidsFeet) |>
summary() |>
mplot(rows = c("sex", "length"))

lm(width ~ length * sex, data = KidsFeet) |>
summary() |>
mplot(rows = TRUE)

lm(age ~ substance, data = HELPrct) |>
TukeyHSD() |>
mplot()

lm(age ~ substance, data = HELPrct) |>
TukeyHSD() |>
mplot(system = "lattice")

74 mUSMap

mUSMap Make a US map with ggplot2

Description

mUSMap takes in one dataframe that includes information about different US states. It merges this
dataframe with a dataframe that includes geographical coordinate information. Depending on the
arguments passed, it returns this data or a ggplot object constructed with the data.

Usage

mUSMap(
data = NULL,
key,
fill = NULL,
plot = c("borders", "frame", "none"),
style = c("compact", "real")

)

Arguments

data A dataframe with US states as cases

key The column name in the data that holds the unique names of each state

fill A variable in the data used to specify the fill color of states in the map (note: if
fill is not null, then plot cannot be set to "none")

plot The plot desired for the output. plot = "none" returns the merged data that is the
result of merging the data and the dataframe with the geographical coordinate
information; plot = "frame" returns an empty (unplottable) ggplot object; plot
= "border" (the default) returns a ggplot object with one geom_polygon layer
that shows the borders of the states

style The style in which to display the map. compact gives a polyconic projection
with Alaska and Hawaii on the lower left corner; real gives the real size and
position of all states without any projection.

Examples

USArrests2 <- USArrests |> tibble::rownames_to_column("state")
mUSMap(USArrests2, key="state", fill = "UrbanPop")

Mustangs 75

Mustangs Mustang Prices

Description

Mustang Prices

Usage

data(Mustangs)

Format

A data frame with 25 observations on the following 3 variables.

Age age of vehicle in years

Miles 1000s of miles driven

Price selling price in 1000s USD

Details

#’ @docType data

A student collected data on the selling prices for a sample of used Mustang cars being offered for
sale at an internet website.

Source

These data were used in a "resampling bake-off" hosted by Robin Lock.

mWorldMap Make a world map with ggplot2

Description

mWorldMap takes in one dataframe that includes information about different countries. It merges
this dataframe with a dataframe that includes geographical coordinate information. Depending on
the arguments passed, it returns this data or a ggplot object constructed with the data.

Usage

mWorldMap(
data = NULL,
key = NA,
fill = NULL,
plot = c("borders", "frame", "none")

)

76 ntiles

Arguments

data A dataframe with countries as cases

key The column name in the data that holds the unique names of each country

fill A variable in the data used to specify the fill color of countries in the map (note:
if fill is not null, then plot cannot be set to "none")

plot The plot desired for the output. plot = "none" returns the merged data that is the
result of merging the data and the dataframe with the geographical coordinate
information; plot = "frame" returns an empty (unplottable) ggplot object; plot
= "border" (the default) returns a ggplot object with one geom_polygon layer
that shows the borders of the countries

Examples

Not run:
gdpData <- CIAdata("GDP") # load some world data

mWorldMap(gdpData, key="country", fill="GDP")

gdpData <- gdpData |> mutate(GDP5 = ntiles(-GDP, 5, format="rank"))
mWorldMap(gdpData, key="country", fill="GDP5")

mWorldMap(gdpData, key="country", plot="frame") +
geom_point()

mergedData <- mWorldMap(gdpData, key="country", plot="none")

ggplot(mergedData, aes(x=long, y=lat, group=group, order=order)) +
geom_polygon(aes(fill=GDP5), color="gray70", size=.5) + guides(fill=FALSE)

End(Not run)

ntiles Create vector based on roughly equally sized groups

Description

Create vector based on roughly equally sized groups

Usage

ntiles(
x,
n = 3,
format = c("rank", "interval", "mean", "median", "center", "left", "right"),
digits = 3

)

orrr 77

Arguments

x a numeric vector

n (approximate) number of quantiles

format a specification of desired output format.

digits desired number of digits for labeling of factors.

Value

a vector. The type of vector will depend on format.

Examples

if (require(mosaicData)) {
tally(~ ntiles(age, 4), data=HELPrct)
tally(~ ntiles(age, 4, format="center"), data=HELPrct)
tally(~ ntiles(age, 4, format="interval"), data=HELPrct)
tally(~ ntiles(age, 4, format="left"), data=HELPrct)
tally(~ ntiles(age, 4, format="right"), data=HELPrct)
tally(~ ntiles(age, 4, format="mean"), data=HELPrct)
tally(~ ntiles(age, 4, format="median"), data=HELPrct)
bwplot(i2 ~ ntiles(age, n=5, format="interval"), data=HELPrct)
}

orrr Odds Ratio and Relative Risk for 2 x 2 Contingency Tables

Description

This function calculates the odds ratio and relative risk for a 2 x 2 contingency table and a confidence
interval (default conf.level is 95 percent) for the each estimate. x should be a matrix, data frame
or table. "Successes" should be located in column 1 of x, and the treatment of interest should be
located in row 2. The odds ratio is calculated as (Odds row 2) / (Odds row 1). The confidence
interval is calculated from the log(OR) and backtransformed.

Usage

orrr(
x,
conf.level = 0.95,
verbose = !quiet,
quiet = TRUE,
digits = 3,
relrisk = FALSE

)

oddsRatio(x, conf.level = 0.95, verbose = !quiet, quiet = TRUE, digits = 3)

78 orrr

relrisk(x, conf.level = 0.95, verbose = !quiet, quiet = TRUE, digits = 3)

S3 method for class 'oddsRatio'
print(x, digits = 4, ...)

S3 method for class 'relrisk'
print(x, digits = 4, ...)

S3 method for class 'oddsRatio'
summary(object, digits = 4, ...)

S3 method for class 'relrisk'
summary(object, digits = 4, ...)

Arguments

x a 2 x 2 matrix, data frame, or table of counts

conf.level the confidence interval level

verbose a logical indicating whether verbose output should be displayed

quiet a logical indicating whether verbose output should be suppressed

digits number of digits to display

relrisk a logical indicating whether the relative risk should be returned instead of the
odds ratio

... additional arguments

object an R object to print or summarise. Here an object of class "oddsRatio" or
"relrisk".

Value

an odds ratio or relative risk. If verpose is true, more details and the confidence intervals are
displayed.

Author(s)

Kevin Middleton (<kmm@csusb.edu>); modified by R Pruim.

See Also

chisq.test(), fisher.test()

Examples

M1 <- matrix(c(14, 38, 51, 11), nrow = 2)
M1
oddsRatio(M1)

M2 <- matrix(c(18515, 18496, 1427, 1438), nrow = 2)
rownames(M2) <- c("Placebo", "Aspirin")

panel.levelcontourplot 79

colnames(M2) <- c("No", "Yes")
M2
oddsRatio(M2)
oddsRatio(M2, verbose = TRUE)
relrisk(M2, verbose = TRUE)
if (require(mosaicData)) {
relrisk(tally(~ homeless + sex, data = HELPrct))
do(3) * relrisk(tally(~ homeless + shuffle(sex), data = HELPrct))
}

panel.levelcontourplot

Lattice plot that draws a filled contour plot

Description

Used within plotFun

Usage

panel.levelcontourplot(
x,
y,
z,
subscripts = 1,
at,
shrink,
labels = TRUE,
label.style = c("mixed", "flat", "align"),
contour = FALSE,
region = TRUE,
col = add.line$col,
lty = add.line$lty,
lwd = add.line$lwd,
border = "transparent",
...,
col.regions = regions$col,
filled = TRUE,
alpha.regions = regions$alpha

)

Arguments

x x on a grid

y y on a grid

z zvalues for the x and y

subscripts which points to plot

80 panel.lmbands

at cuts for the contours

shrink what does this do?

labels draw the contour labels

label.style where to put the labels

contour logical draw the contours

region logical color the regions

col color for contours

lty type for contours

lwd width for contour

border type of border

... dots additional arguments

col.regions a vector of colors or a function (topo.colors by default) for generating such

filled whether to fill the contours with color

alpha.regions transparency of regions

panel.lmbands show confidence and prediction bands on plots

Description

show confidence and prediction bands on plots

Usage

panel.lmbands(
x,
y,
interval = "confidence",
level = 0.95,
model = lm(y ~ x),
band.col = c(conf = slcol[3], pred = slcol[2]),
band.lty = c(conf = slty[3], pred = slty[2]),
band.show = TRUE,
fit.show = TRUE,
band.alpha = 0.6,
band.lwd = 1,
npts = 100,
...

)

panel.plotFun 81

Arguments

x, y numeric vectors

interval a vector subset of 'confidence' and 'prediction'

level confidence level

model model to be used for generating bands

band.col a vector of length 1 or 2 giving the color of bands

band.lty a vector of length 1 or 2 giving the line type for bands

band.show logical vector of length 1 or 2 indicating whether confidence and prediction
bands should be shown

fit.show logical indicating whether the model fit should be shown

band.alpha a vector of length 1 or 2 alpha level for bands

band.lwd a vector of length 1 or 2 giving line width for bands

npts resolution parameter for bands (increase to get better resolution)

... additional arguments

panel.plotFun Panel function for plotting functions

Description

Panel function for plotting functions

Usage

panel.plotFun(
object,
...,
type = "l",
npts = NULL,
zlab = NULL,
filled = TRUE,
levels = NULL,
nlevels = 10,
surface = FALSE,
col.regions = topo.colors,
lwd = trellis.par.get("superpose.line")$lwd,
lty = trellis.par.get("superpose.line")$lty,
alpha = NULL,
discontinuity = NULL,
discontinuities = NULL

)

82 panel.plotFun

Arguments

object an object (e.g., a formula) describing a function

... additional arguments, typically processed by lattice panel functions such as
lattice::panel.xyplot() or lattice::panel.levelplot(). Frequently used
arguments include

lwd line width
lty line type
col a color

type type of plot ("l" by default)

npts an integer giving the number of points (in each dimension) to sample the func-
tion

zlab label for z axis (when in surface-plot mode)

filled fill with color between the contours (TRUE by default)

levels levels at which to draw contours

nlevels number of contours to draw (if levels not specified)

surface a logical indicating whether to draw a surface plot rather than a contour plot

col.regions a vector of colors or a function (topo.colors by default) for generating such

lwd width of the line

lty line type

alpha number from 0 (transparent) to 1 (opaque) for the fill colors

discontinuity a positive number determining how sensitive the plot is to potential discontinu-
ity. Larger values result in less sensitivity. The default is 1. Use discontinuity
= Inf to disable discontinuity detection. Discontinuity detection uses a crude
numerical heuristic and may not give the desired results in all cases.

discontinuities

a vector of input values at which a function is discontinuous or NULL to use a
heuristic to auto-detect.

See Also

plotFun

Examples

x <- runif(30,0,2*pi)
d <- data.frame(x = x, y = sin(x) + rnorm(30,sd=.2))
xyplot(y ~ x, data=d)
ladd(panel.plotFun(sin(x) ~ x, col='red'))
xyplot(y ~ x | rbinom(30,1,.5), data=d)
ladd(panel.plotFun(sin(x) ~ x, col='red', lty=2)) # plots sin(x) in each panel

panel.plotFun1 83

panel.plotFun1 Panel function for plotting functions

Description

Panel function for plotting functions

Usage

panel.plotFun1(
..f..,
...,
x,
y,
type = "l",
lwd = trellis.par.get("superpose.line")$lwd,
lty = trellis.par.get("superpose.line")$lty,
col = trellis.par.get("superpose.line")$col,
npts = NULL,
zlab = NULL,
filled = TRUE,
levels = NULL,
nlevels = 10,
surface = FALSE,
alpha = NULL,
discontinuity = NULL,
discontinuities = NULL

)

Arguments

..f.. an object (e.g., a formula) describing a function

... additional arguments, typically processed by lattice panel functions such as
lattice::panel.xyplot() or lattice::panel.levelplot(). Frequently used
arguments include

lwd line width
lty line type
col a color

x, y ignored, but there for compatibility with other lattice panel functions

type type of plot ("l" by default)

lwd width of the line

lty line type

col a vector of colors

npts an integer giving the number of points (in each dimension) to sample the func-
tion

84 pdist

zlab label for z axis (when in surface-plot mode)

filled fill with color between the contours (TRUE by default)

levels levels at which to draw contours

nlevels number of contours to draw (if levels not specified)

surface a logical indicating whether to draw a surface plot rather than a contour plot

alpha number from 0 (transparent) to 1 (opaque) for the fill colors

discontinuity a positive number determining how sensitive the plot is to potential discontinu-
ity. Larger values result in less sensitivity. The default is 1. Use discontinuity
= Inf to disable discontinuity detection. Discontinuity detection uses a crude
numerical heuristic and may not give the desired results in all cases.

discontinuities

a vector of input values at which a function is discontinuous or NULL to use a
heuristic to auto-detect.

See Also

plotFun

Examples

x <- runif(30,0,2*pi)
d <- data.frame(x = x, y = sin(x) + rnorm(30,sd=.2))
xyplot(y ~ x, data=d)
ladd(panel.plotFun1(sin, col='red'))
xyplot(y ~ x | rbinom(30,1,.5), data=d)
ladd(panel.plotFun1(sin, col='red', lty=2)) # plots sin(x) in each panel

pdist Illustrated probability calculations from distributions

Description

Illustrated probability calculations from distributions

Usage

pdist(
dist = "norm",
q,
plot = TRUE,
verbose = FALSE,
invisible = FALSE,
digits = 3L,
xlim,
ylim,
resolution = 500L,

pdist 85

return = c("values", "plot"),
...,
refinements = list()

)

xpgamma(
q,
shape,
rate = 1,
scale = 1/rate,
lower.tail = TRUE,
log.p = FALSE,
...

)

xpt(q, df, ncp, lower.tail = TRUE, log.p = FALSE, ...)

xpchisq(q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE, ...)

xpf(q, df1, df2, lower.tail = TRUE, log.p = FALSE, ...)

xpbinom(q, size, prob, lower.tail = TRUE, log.p = FALSE, ...)

xppois(q, lambda, lower.tail = TRUE, log.p = FALSE, ...)

xpgeom(q, prob, lower.tail = TRUE, log.p = FALSE, ...)

xpnbinom(q, size, prob, mu, lower.tail = TRUE, log.p = FALSE, ...)

xpbeta(q, shape1, shape2, ncp = 0, lower.tail = TRUE, log.p = FALSE, ...)

Arguments

dist a character description of a distribution, for example "norm", "t", or "chisq"

q a vector of quantiles

plot a logical indicating whether a plot should be created

verbose a logical

invisible a logical

digits the number of digits desired

xlim x limits

ylim y limits

resolution Number of points used for detecting discreteness and generating plots. The
default value of 5000 should work well except for discrete distributions that
have many distinct values, especially if these values are not evenly spaced.

return If "plot", return a plot. If "values", return a vector of numerical values.

... Additional arguments, typically for fine tuning the plot.

86 pdist

refinements A list of refinements to the plot. See ggformula::gf_refine().

shape, scale shape and scale parameters. Must be positive, scale strictly.

rate an alternative way to specify the scale.

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

log.p A logical indicating whether probabilities should be returned on the log scale.

df degrees of freedom (> 0, maybe non-integer). df = Inf is allowed.

ncp non-centrality parameter δ; currently except for rt(), only for abs(ncp) <=
37.62. If omitted, use the central t distribution.

df1, df2 degrees of freedom. Inf is allowed.

size number of trials (zero or more).

prob probability of success on each trial.

lambda vector of (non-negative) means.

mu alternative parametrization via mean: see ‘Details’.

shape1, shape2 non-negative parameters of the Beta distribution.

Details

The most general function is pdist which can work with any distribution for which a p-function
exists. As a convenience, wrappers are provided for several common distributions.

Value

A vector of probabilities; a plot is printed as a side effect.

See Also

qdist(), xpnorm(), xqnorm().

Examples

pdist("norm", -2:2)
pdist("norm", seq(80,120, by = 10), mean = 100, sd = 10)
pdist("chisq", 2:4, df = 3)
pdist("f", 1, df1 = 2, df2 = 10)
pdist("gamma", 2, shape = 3, rate = 4)

plotCumfreq 87

plotCumfreq Cumulative frequency plots

Description

A high-level function for producing a cumulative frequency plot using lattice graphics.

Usage

plotCumfreq(x, data, ...)

S3 method for class 'formula'
plotCumfreq(x, data = NULL, subscripts, ...)

Default S3 method:
plotCumfreq(x, ...)

prepanel.cumfreq(x, ...)

panel.cumfreq(x, type = c("smooth", "step"), groups = NULL, ...)

Arguments

x a formula or numeric vector

data a data frame in which x is evaluated if x is a formula.

... other lattice arguments

subscripts as in lattice plots

type smooth or step-function?

groups grouping variable

Value

A plot of the empirical cumulative distribution function for sample values specified in x.

See Also

histogram(), densityplot()

Examples

plotCumfreq(~eruptions, faithful, xlab = 'duration of eruptions')

88 plotDist

plotDist Plots of Discrete and Continuous Distributions

Description

Provides a simple way to generate plots of pdfs, probability mass functions, cdfs, probability his-
tograms, and normal-quantile plots for distributions known to R.

Usage

plotDist(
dist,
...,
xlim = NULL,
ylim = NULL,
add,
under = FALSE,
packets = NULL,
rows = NULL,
columns = NULL,
kind = c("density", "cdf", "qq", "histogram"),
xlab = "",
ylab = "",
breaks = NULL,
type,
resolution = 5000L,
params = NULL

)

Arguments

dist A string identifying the distribution. This should work with any distribution that
has associated functions beginning with ’d’, ’p’, and ’q’ (e.g, dnorm(), pnorm(),
and qnorm()). dist should match the name of the distribution with the initial
’d’, ’p’, or ’q’ removed.

... other arguments passed along to lattice graphing routines

xlim a numeric vector of length 2 or NULL, in which case the central 99.8 of the
distribution is used.

ylim a numeric vector of length 2 or NULL, in which case a heuristic is used to avoid
chasing asymptotes in distributions like the F distributions with 1 numerator
degree of freedom.

add a logical indicating whether the plot should be added to the previous lattice plot.
If missing, it will be set to match under.

under a logical indicating whether adding should be done in a layer under or over the
existing layers when add = TRUE.

plotDist 89

packets, rows, columns

specification of which panels will be added to when add is TRUE. See latticeExtra::layer().

kind one of "density", "cdf", "qq", or "histogram" (or prefix of any of these)

xlab, ylab as per other lattice functions

breaks a vector of break points for bins of histograms, as in histogram()

type passed along to various lattice graphing functions

resolution number of points to sample when generating the plots

params a list containing parameters for the distribution. If NULL (the default), this list is
created from elements of \dots that are either unnamed or have names among
the formals of the appropriate distribution function. See the examples.

Details

plotDist() determines whether the distribution is continuous or discrete by seeing if all the sam-
pled quantiles are unique. A discrete random variable with many possible values could fool this
algorithm and be considered continuous.

The plots are done referencing a data frame with variables x and y giving points on the graph of the
pdf, pmf, or cdf for the distribution. This can be useful in conjunction with the groups argument.
See the examples.

See Also

ggformula::gf_dist()

Examples

plotDist('norm')
plotDist('norm', type='h')
plotDist('norm', kind='cdf')
plotDist('exp', kind='histogram')
plotDist('binom', params=list(25, .25)) # explicit params
plotDist('binom', 25, .25) # params inferred
plotDist('norm', mean=100, sd=10, kind='cdf') # params inferred
plotDist('binom', 25, .25, xlim=c(-1,26)) # params inferred
plotDist('binom', params=list(25, .25), kind='cdf')
plotDist('beta', params=list(3, 10), kind='density')
plotDist('beta', params=list(3, 10), kind='cdf')
plotDist("binom", params=list(35,.25),

groups= y < dbinom(qbinom(0.05, 35, .25), 35,.25))
plotDist("binom", params=list(35,.25),

groups= y < dbinom(qbinom(0.05, 35, .25), 35,.25),
kind='hist')

plotDist("norm", mean=10, sd=2, col="blue", type="h")
plotDist("norm", mean=12, sd=2, col="red", type="h", under=TRUE)
plotDist("binom", size=100, prob=.30) +
plotDist("norm", mean=30, sd=sqrt(100 * .3 * .7))

plotDist("chisq", df=4, groups = x > 6, type="h")
plotDist("f", df1=1, df2 = 99)
if (require(mosaicData)) {

90 plotFun

histogram(~age|sex, data=HELPrct)
m <- mean(~age|sex, data=HELPrct)
s <- sd(~age|sex, data=HELPrct)
plotDist("norm", mean=m[1], sd=s[1], col="red", add=TRUE, packets=1)
plotDist("norm", mean=m[2], sd=s[2], col="blue", under=TRUE, packets=2)
}

plotFun Plotting mathematical expressions

Description

Plots mathematical expressions in one and two variables.

Usage

plotFun(
object,
...,
plot = trellis.last.object(),
add = NULL,
under = FALSE,
xlim = NULL,
ylim = NULL,
npts = NULL,
ylab = NULL,
xlab = NULL,
zlab = NULL,
filled = TRUE,
levels = NULL,
nlevels = 10,
labels = TRUE,
surface = FALSE,
groups = NULL,
col = trellis.par.get("superpose.line")$col,
col.regions = topo.colors,
type = "l",
lwd = trellis.par.get("superpose.line")$lwd,
lty = trellis.par.get("superpose.line")$lty,
alpha = NULL,
discontinuities = NULL,
discontinuity = 1,
interactive = rstudio_is_available()

)

plotFun 91

Arguments

object a mathematical expression or a function "of one variable" which will converted
to something intuitively equivalent to object(x) ~ x. (See examples)

... additional parameters, typically processed by lattice functions such as lattice::xyplot(),
lattice::levelplot() or their panel functions. Frequently used parameters
include

main main title for plot
sub subtitle for plot
lwd line width
lty line type
col a color or a (small) integer indicating which color in the current color

scheme is desired.

Additionally, these arguments can be used to specify parameters for the function
being plotted and to specify the plotting window with natural names. See the
examples for such usage.

plot a trellis object; by default, the most recently created trellis plot. When add is
TRUE, the new function will be plotted into a layer added to this object.

add if TRUE, then add a layer to an existing plot rather than creating a new plot. If
NULL, this will be determined by the value of under.

under if TRUE, then new layer is added beneath existing layers

xlim limits for x axis (or use variable names, see examples)

ylim limits for y axis (or use variable names, see examples)

npts number of points for plotting.

ylab label for y axis

xlab label for x axis

zlab label for z axis (when in surface-plot mode)

filled fill with color between the contours (TRUE by default)

levels levels at which to draw contours

nlevels number of contours to draw (if levels not specified)

labels if FALSE, don’t label contours

surface draw a surface plot rather than a contour plot

groups grouping argument ala lattice graphics

col vector of colors for line graphs and contours

col.regions a vector of colors or a function (topo.colors by default) for generating such

type type of plot ("l" by default)

lwd vector of line widths for line graphs

lty vector of line types for line graphs

alpha number from 0 (transparent) to 1 (opaque) for the fill colors
discontinuities

a vector of input values at which a function is discontinuous or NULL to use a
heuristic to auto-detect.

92 plotFun

discontinuity a positive number determining how sensitive the plot is to potential discontinu-
ity. Larger values result in less sensitivity. The default is 1. Use discontinuity
= Inf to disable discontinuity detection. Discontinuity detection uses a crude
numerical heuristic and may not give the desired results in all cases.

interactive a logical indicating whether the surface plot should be interactive.

Details

makes plots of mathematical expressions using the formula syntax. Will draw both line plots and
contour/surface plots (for functions of two variables). In RStudio, the surface plot comes with
sliders to set orientation. If the colors in filled surface plots are too blocky, increase npts beyond
the default of 50, though npts=300 is as much as you’re likely to ever need. See examples for
overplotting a constraint function on an objective function.

Value

a trellis object

Examples

plotFun(a*sin(x^2)~x, xlim=range(-5,5), a=2) # setting parameter value
plotFun(u^2 ~ u, ulim=c(-4,4)) # limits in terms of u
Note roles of ylim and y.lim in this example
plotFun(y^2 ~ y, ylim=c(-2,20), y.lim=c(-4,4))
Combining plot elements to show the solution to an inequality
plotFun(x^2 -3 ~ x, xlim=c(-4,4), grid=TRUE)
ladd(panel.abline(h=0,v=0,col='gray50'))
plotFun((x^2 -3) * (x^2 > 3) ~ x, type='h', alpha=.1, lwd=4, col='lightblue', add=TRUE)
plotFun(sin(x) ~ x,

groups=cut(x, findZeros(sin(x) ~ x, within=10)$x),
col=c('blue','green'), lty=2, lwd=3, xlim=c(-10,10))

plotFun(sin(x) ~ x,
groups=cut(x, findZeros(sin(x) ~ x, within=10)$x),
col=c(1,2), lty=2, lwd=3, xlim=c(-10,10))

plotFun(sin(2*pi*x/P)*exp(-k*t)~x+t, k=2, P=.3)
f <- rfun(~ u & v)
plotFun(f(u=u,v=v) ~ u & v, u.lim=range(-3,3), v.lim=range(-3,3))
plotFun(u^2 + v < 3 ~ u & v, add=TRUE, npts=200)
if (require(mosaicData)) {
display a linear model using a formula interface
model <- lm(wage ~ poly(exper,degree=2), data=CPS85)
fit <- makeFun(model)
xyplot(wage ~ exper, data=CPS85)
plotFun(fit(exper) ~ exper, add=TRUE, lwd=3, col="red")
Can also just give fit since it is a "function of one variable"
plotFun(fit, add=TRUE, lwd=2, col='white')
}
Attempts to find sensible axis limits by default
plotFun(sin(k*x)~x, k=0.01)
Plotting a linear model with multiple predictors.
mod <- lm(length ~ width * sex, data=KidsFeet)

plotModel 93

fitted.length <- makeFun(mod)
xyplot(length ~ width, groups=sex, data=KidsFeet, auto.key=TRUE)
plotFun(fitted.length(width, sex="B") ~ width, add=TRUE, col=1)
plotFun(fitted.length(width, sex="G") ~ width, add=TRUE, col=2)

plotModel Plot a regression model

Description

Visualize a regression model amid the data that generated it.

Usage

plotModel(mod, ...)

Default S3 method:
plotModel(mod, ...)

S3 method for class 'parsedModel'
plotModel(
mod,
formula = NULL,
...,
auto.key = NULL,
drop = TRUE,
max.levels = 9L,
system = c("ggplot2", "lattice")

)

Arguments

mod A model of type lm() or glm()

... arguments passed to xyplot() or rgl::plot3d.

formula a formula indicating how the variables are to be displayed. In the style of
lattice and ggformula.

auto.key If TRUE, automatically generate a key.

drop If TRUE, unused factor levels are dropped from interaction().

max.levels currently unused

system which of ggplot2 or lattice to use for plotting

94 plotModel

Details

The goal of this function is to assist with visualization of statistical models. Namely, to plot the
model on top of the data from which the model was fit.

The primary plot type is a scatter plot. The x-axis can be assigned to one of the predictors in the
model. Additional predictors are thought of as co-variates. The data and fitted curves are partitioned
by these covariates. When the number of components to this partition is large, a random subset of
the fitted curves is displayed to avoid visual clutter.

If the model was fit on one quantitative variable (e.g. SLR), then a scatter plot is drawn, and
the model is realized as parallel or non-parallel lines, depending on whether interaction terms are
present.

Eventually we hope to support 3-d visualizations of models with 2 quantitative predictors using the
rgl package.

Currently, only linear regression models and generalized linear regression models are supported.

Value

A lattice or ggplot2 graphics object.

Caution

This is still underdevelopment. The API is subject to change, and some use cases may not work yet.
Watch for improvements in subsequent versions of the package.

Author(s)

Ben Baumer, Galen Long, Randall Pruim

See Also

plotPoints(), plotFun()

Examples

require(mosaic)

mod <- lm(mpg ~ factor(cyl), data = mtcars)
plotModel(mod)

SLR
mod <- lm(mpg ~ wt, data = mtcars)
plotModel(mod, pch = 19)

parallel slopes
mod <- lm(mpg ~ wt + factor(cyl), data=mtcars)
plotModel(mod)

Not run:
multiple categorical vars

plotPoints 95

mod <- lm(mpg ~ wt + factor(cyl) + factor(vs) + factor(am), data = mtcars)
plotModel(mod)
plotModel(mod, mpg ~ am)

interaction
mod <- lm(mpg ~ wt + factor(cyl) + wt:factor(cyl), data = mtcars)
plotModel(mod)

polynomial terms
mod <- lm(mpg ~ wt + I(wt^2), data = mtcars)
plotModel(mod)

GLM
mod <- glm(vs ~ wt, data=mtcars, family = 'binomial')
plotModel(mod)

GLM with interaction
mod <- glm(vs ~ wt + factor(cyl), data=mtcars, family = 'binomial')
plotModel(mod)
3D model
mod <- lm(mpg ~ wt + hp, data = mtcars)
plotModel(mod)

parallel planes
mod <- lm(mpg ~ wt + hp + factor(cyl) + factor(vs), data = mtcars)
plotModel(mod)

interaction planes
mod <- lm(mpg ~ wt + hp + wt * factor(cyl), data = mtcars)
plotModel(mod)
plotModel(mod, system="g") + facet_wrap(~ cyl)

End(Not run)

plotPoints Scatter plot of points

Description

Make or add a scatter plot in a manner coordinated with plotFun.

Usage

plotPoints(
x,
data = parent.frame(),
add = NULL,
under = FALSE,
panelfun = panel.xyplot,
plotfun = xyplot,

96 plotPoints

...,
plot = trellis.last.object()

)

Arguments

x A formula specifying y ~ x or z ~ x&y

data Data frame containing the variables to be plotted. If not specified, the variables
will be looked up in the local environment

add If TRUE, add points as a new layer to an existing plot. If NULL, the value of under
will be used.

under If TRUE, the new layer will be underneath existing layers.

panelfun Lattice panel function to be used for adding. Set only if you want something
other than a scatter plot. Mainly, this is intended to add new functionality
through other functions.

plotfun Lattice function to be used for initial plot creation. Set only if you want some-
thing other than a scatter plot. Mainly, this is intended to add new functionality
through other functions.

... additional arguments

plot a trellis plot, by default the most recently created one. If add is TRUE, new points
will be added as a new layer to plot.

Value

A trellis graphics object

See Also

plotFun()

Examples

if (require(mosaicData)) {
plotPoints(width ~ length, data=KidsFeet, groups=sex, pch=20)
f <- makeFun(lm(width ~ length * sex, data=KidsFeet))
plotFun(f(length=length,sex="G")~length, add=TRUE, col="pink")
plotFun(f(length=length,sex="B")~length, add=TRUE)
}

project 97

project Projections

Description

Compute projections onto the span of a vector or a model space, dot products, and vector lengths in
Euclidean space.

Usage

project(x, ...)

S4 method for signature 'formula'
project(x, u = NULL, data = parent.frame(2), coefficients = TRUE, ...)

S4 method for signature 'numeric'
project(x, u = rep(1, length(x)), type = c("vector", "length", "coef"), ...)

S4 method for signature 'matrix'
project(x, u, data = parent.frame())

vlength(x, ...)

dot(u, v)

Arguments

x a numeric vector (all functions) or a formula (only for project). Left-hand
sides of formulas should be a single quantity

... additional arguments
u a numeric vector
data a data frame.
coefficients For project(y ~ x) indicates whether the projection coefficents should be re-

turned or the projection vector.
type one of "length" or "vector" determining the type of the returned value
v a numeric vector

Details

project (preferably pronounced "pro-JECT" as in "projection") does either of two related things:
(1) Given two vectors as arguments, it will project the first onto the second, returning the point in
the subspace of the second that is as close as possible to the first vector. (2) Given a formula as an
argument, will work very much like lm(), constructing a model matrix from the right-hand side of
the formula and projecting the vector on the left-hand side onto the subspace of that model matrix.
In (2), rather than returning the projected vector, project() returns the coefficients on each of the
vectors in the model matrix. UNLIKE lm(), the intercept vector is NOT included by default. If you
want an intercept vector, include +1 in your formula.

98 project

Value

project returns the projection of x onto u (or its length if u and v are numeric vectors and type ==
"length")

vlength returns the length of the vector (i.e., the square root of the sum of the squares of the
components)

dot returns the dot product of u and v

See Also

link{project}

Examples

x1 <- c(1,0,0); x2 <- c(1,2,3); y1 <- c(3,4,5); y2 <- rnorm(3)
projection onto the 1 vector gives the mean vector
mean(y2)
project(y2, 1)
return the length of the vector, rather than the vector itself
project(y2, 1, type='length')
project(y1 ~ x1 + x2) -> pr; pr
recover the projected vector
cbind(x1,x2) %*% pr -> v; v
project(y1 ~ x1 + x2, coefficients=FALSE)
dot(y1 - v, v) # left over should be orthogonal to projection, so this should be ~ 0
if (require(mosaicData)) {
project(width~length+sex, data=KidsFeet)
}
vlength(rep(1,4))
if (require(mosaicData)) {
m <- lm(length ~ width, data=KidsFeet)
These should be the same
vlength(m$effects)
vlength(KidsFeet$length)
So should these
vlength(tail(m$effects, -2))
sqrt(sum(resid(m)^2))
}
v <- c(1,1,1); w <- c(1,2,3)
u <- v / vlength(v) # make a unit vector
The following should be the same:
project(w,v, type="coef") * v
project(w,v)
The following are equivalent
abs(dot(w, u))
vlength(project(w, u))
vlength(project(w, v))
project(w, v, type='length')

prop.test 99

prop.test Exact and Approximate Tests for Proportions

Description

The mosaic prop.test provides wrapper functions around the function of the same name in stats.
These wrappers provide an extended interface (including formulas). prop.test performs an ap-
proximate test of a simple null hypothesis about the probability of success in a Bernoulli or multi-
nomial experiment from summarized data or from raw data.

Usage

prop.test(
x,
n,
p = NULL,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95,
data = NULL,
success = NULL,
...

)

Arguments

x count of successes, length 2 vector of success and failure counts, a formula, or a
character, numeric, or factor vector containing raw data.

n sample size (successes + failures) or a data frame (for the formula interface)

p a vector of probabilities of success. The length of p must be the same as the
number of groups specified by x, and its elements must be greater than 0 and
less than 1.

alternative character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less". You can specify just the initial letter. Only
used for testing the null that a single proportion equals a given value, or that two
proportions are equal; ignored otherwise.

conf.level confidence level of the returned confidence interval. Must be a single number
between 0 and 1. Only used when testing the null that a single proportion equals
a given value, or that two proportions are equal; ignored otherwise.

data a data frame (if missing, n may be a data frame)

success level of variable to be considered success. All other levels are considered failure.

... additional arguments (often ignored). When x is a formula, groups can be used
to compare groups: x = ~ var, groups=g is equivalent to x = var ~ g. na.rm
can be a logical or an integer vector of length 1 or 2 to indicate dimension along
which NA’s are removed before coputing the test. See the examples.

100 prop_test

Details

conf.level = 0.95, ...)

This is a wrapper around prop.test() to simplify its use when the raw data are available, in which
case an extended syntax for prop.test is provided.

Value

an htest object

Note

When x is a 0-1 vector, 0 is treated as failure and 1 as success. Similarly, for a logical vector TRUE
is treated as success and FALSE as failure.

See Also

binom.test(), stats::prop.test()

Examples

Several ways to get a confidence interval for the proportion of Old Faithful
eruptions lasting more than 3 minutes.
prop.test(faithful$eruptions > 3)
prop.test(97,272)
faithful$long <- faithful$eruptions > 3
prop.test(faithful$long)
prop.test(~long , data = faithful)
prop.test(homeless ~ sex, data = HELPrct)
prop.test(~ homeless | sex, data = HELPrct)
prop.test(~ homeless, groups = sex, data = HELPrct)
prop.test(anysub ~ link, data = HELPrct, na.rm = TRUE)
prop.test(link ~ anysub, data = HELPrct, na.rm = 1)
prop.test(link ~ anysub, data = HELPrct, na.rm = TRUE)

prop_test Internal function for testing proportion

Description

This function is wrapped by prop.test(), which most users should use instead.

qdata 101

Usage

prop_test(
x,
n,
p = NULL,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95,
...

)

Arguments

x a vector, count, or formula.

n a vector of counts of trials (not needed when x is a table or matrix).

p a vector of probabilities of success (for the null hypothesis). The length must be
the same as the number of groups specified by x.

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less". You can specify just the initial letter. Only
used for testing the null that a single proportion equals a given value, or that two
proportions are equal; ignored otherwise.

conf.level confidence level of the returned confidence interval. Must be a single number
between 0 and 1. Only used when testing the null that a single proportion equals
a given value, or that two proportions are equal; ignored otherwise.

... additional arguments passed to methods.

qdata The Data Distribution

Description

Density, distribution function, quantile function, and random generation from data.

Usage

qdata(formula, p = seq(0, 1, 0.25), data = NULL, ...)

cdata(formula, p = 0.95, data = NULL, ...)

pdata(formula, q, data = NULL, ...)

rdata(formula, n, data = NULL, ...)

ddata(formula, q, data = NULL, ...)

102 qdata

Arguments

formula a formula or a vector

p a vector of probabilities

data a data frame in which to evaluate formula

... additional arguments passed to quantile or sample

q a vector of quantiles

n number of values to sample

Value

For qdata, a vector of quantiles

for cdata, a data frame giving upper and lower limits and the central proportion requested

For pdata, a vector of probabilities

For rdata, a vector of sampled values.

For ddata, a vector of probabilities (empirical densities)

Examples

data(penguins, package = "palmerpenguins")
qdata(flipper_length_mm ~ species, 0.5, data = penguins)
qdata(~ flipper_length_mm, p = 0.5, groups = species, data = penguins)
qdata(penguins$flipper_length_mm, p = 0.5)
qdata(~ flipper_length_mm, p = 0.5, data = penguins)
qdata(~ flipper_length_mm, p = 0.5, groups = species, data = penguins)
data(penguins, package = 'palmerpenguins')
cdata(penguins$flipper_length_mm, 0.5)
cdata(~ flipper_length_mm, 0.5, data = penguins)
cdata(~ flipper_length_mm, 0.5, data = penguins)
cdata(~ flipper_length_mm | species, data = penguins, p = .5)
data(penguins, package = 'palmerpenguins')
pdata(penguins$flipper_length_mm, 3:6)
pdata(~ flipper_length_mm, 3:6, data = penguins)
data(penguins, package = 'palmerpenguins')
rdata(penguins$species, 10)
rdata(~ species, n = 10, data = penguins)
rdata(flipper_length_mm ~ species, n = 5, data = penguins)
data(penguins, package = 'palmerpenguins')
ddata(penguins$species, 'setosa')
ddata(~ species, 'setosa', data = penguins)

qdata_v 103

qdata_v The Data Distribution

Description

Utility functions for density, distribution function, quantile function, and random generation from
data.

Usage

qdata_v(x, p = seq(0, 1, 0.25), na.rm = TRUE, ...)

qdata_f(x, ..., data = NULL, groups = NULL, na.rm = TRUE)

cdata_v(x, p = 0.95, na.rm = TRUE, ...)

cdata_f(x, ..., data = NULL, groups = NULL, na.rm = TRUE)

pdata_v(x, q, lower.tail = TRUE, ...)

pdata_f(x, ..., data = NULL, groups = NULL, na.rm = TRUE)

rdata_v(x, n, replace = TRUE, ...)

rdata_f(x, ..., data = NULL, groups = NULL, na.rm = TRUE)

ddata_v(x, q, ..., data = NULL, log = FALSE, na.rm = TRUE)

ddata_f(x, ..., data = NULL, groups = NULL, na.rm = TRUE)

Arguments

x a vector containing the data

p a vector of probabilities

na.rm a logical indicating whether NAs should be removed before computing.

... additional arguments passed to quantile or sample

data a data frame in which to evaluate formula

groups a grouping variable, typically the name of a variable in data

q a vector of quantiles

lower.tail a logical indicating whether to use the lower or upper tail probability

n number of values to sample

replace a logical indicating whether to sample with replacement

log a logical indicating whether the result should be log transformed

104 qdist

See Also

ddata(), pdata(), qdata(), rdata(), cdata()

qdist Illustrated quantile calculations from distributions

Description

Illustrated quantile calculations from distributions

Usage

qdist(
dist = "norm",
p,
plot = TRUE,
verbose = FALSE,
invisible = FALSE,
resolution = 500L,
digits = 3L,
xlim,
ylim,
return = c("values", "plot"),
refinements = list(),
...

)

xqgamma(
p,
shape,
rate = 1,
scale = 1/rate,
lower.tail = TRUE,
log.p = FALSE,
...

)

xqt(p, df, ncp, lower.tail = TRUE, log.p = FALSE, ...)

xqchisq(p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE, ...)

xqf(p, df1, df2, lower.tail = TRUE, log.p = FALSE, ...)

xqbinom(p, size, prob, lower.tail = TRUE, log.p = FALSE, ...)

xqpois(p, lambda, lower.tail = TRUE, log.p = FALSE, ...)

qdist 105

xqgeom(p, prob, lower.tail = TRUE, log.p = FALSE, ...)

xqnbinom(p, size, prob, mu, lower.tail = TRUE, log.p = FALSE, ...)

xqbeta(p, shape1, shape2, ncp = 0, lower.tail = TRUE, log.p = FALSE, ...)

Arguments

dist a character description of a distribution, for example "norm", "t", or "chisq"

p a vector of probabilities

plot a logical indicating whether a plot should be created

verbose a logical

invisible a logical

resolution number of points used for detecting discreteness and generating plots. The de-
fault value of 5000 should work well except for discrete distributions that have
many distinct values, especially if these values are not evenly spaced.

digits the number of digits desired

xlim x limits. By default, these are chosen to show the central 99.8\ of the distribution.

ylim y limits

return If "plot", return a plot. If "values", return a vector of numerical values.

refinements A list of refinements to the plot. See ggformula::gf_refine().

... additional arguments, including parameters of the distribution and additional
options for the plot. To help with name collisions (eg size for binomial distri-
butions and shape for gamma distributions), argument names beginning plot_
will be renamed to remove plot_ and passed only to the plot. The unprefixed
version will used as a parameter for the the distribution.

shape, scale shape and scale parameters. Must be positive, scale strictly.

rate an alternative way to specify the scale.

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

log.p A logical indicating whether probabilities should be returned on the log scale.

df degrees of freedom (> 0, maybe non-integer). df = Inf is allowed.

ncp non-centrality parameter δ; currently except for rt(), only for abs(ncp) <=
37.62. If omitted, use the central t distribution.

df1, df2 degrees of freedom. Inf is allowed.

size number of trials (zero or more).

prob probability of success on each trial.

lambda vector of (non-negative) means.

mu alternative parametrization via mean: see ‘Details’.

shape1, shape2 non-negative parameters of the Beta distribution.

106 rand

Details

The most general function is qdist which can work with any distribution for which a q-function
exists. As a convenience, wrappers are provided for several common distributions.

Value

a vector of quantiles; a plot is printed as a side effect

Examples

qdist("norm", seq(.1, .9, by = 0.10),
title = "Deciles of a normal distribution", show.legend = FALSE,
pattern = "rings")

xqnorm(seq(.2, .8, by = 0.20), mean = 100, sd = 10)
qdist("unif", .5)
xqgamma(.5, shape = 3, scale = 4)
xqgamma(.5, shape = 3, scale = 4, color = "black")
xqbeta(.5, shape1 = .9, shape2 = 1.4, dlwd = 1)
xqchisq(c(.25,.5,.75), df = 3)
xcbinom(c(0.80, 0.90), size = 1000, prob = 0.40)
displayed as if continuous
xcbinom(c(0.80, 0.90), size = 5000, prob = 0.40)
xpbinom(c(480, 500, 520), size = 1000, prob = 0.48)
xpbinom(c(40, 60), size = 100, prob = 0.5)
xqpois(c(0.25, 0.5, 0.75), lambda = 12)
xcpois(0.50, lambda = 12)
xcpois(0.50, lambda = 12, refinements = list(scale_color_brewer(type = "qual", palette = 5)))

rand Random Regressors

Description

A utility function for producing random regressors with a specified number of degrees of freedom.

Usage

rand(df = 1, rdist = rnorm, args = list(), nrow, seed = NULL)

Arguments

df degrees of freedom, i.e., number of random regressors

rdist random distribution function for sampling

args arguments for rdist

nrow number of rows in resulting matrix. This can often be omitted in the context of
functions like lm where it is inferred from the data frame, if one is provided.

seed seed for random number generation

read.file 107

Value

A matrix of random variates with df columns. In its intended use, the number of rows will be
selected to match the size of the data frame supplied to lm

Examples

rand(2,nrow=4)
rand(2,rdist=rpois, args=list(lambda=3), nrow=4)
summary(lm(waiting ~ eruptions + rand(1), faithful))

read.file Read data files

Description

A wrapper around various file reading functions.

Usage

read.file(
file,
header = T,
na.strings = "NA",
comment.char = NULL,
filetype = c("default", "csv", "txt", "tsv", "fw", "rdata"),
stringsAsFactors = FALSE,
readr = FALSE,
package = NULL,
...

)

Arguments

file character: The name of the file which the data are to be read from. This may
also be a complete URL or a path to a compressed file. If it does not contain an
absolute path, the file name is relative to the current working directory, getwd().
Tilde-expansion is performed where supported. See read.table() for more
details.

header logical; For .txt and .csv files, this indicates whether the first line of the file
includes variables names.

na.strings character: strings that indicate missing data.

comment.char character: a character vector of length one containing a single character or an
empty string. Use "" to turn off the interpretation of comments altogether.

filetype one of "default", "csv", "txt", or "rdata" indicating the type of file being
loaded. The default is to use the filename to guess the type of file.

108 relm

stringsAsFactors

a logical indicating whether strings should be converted to factors. This has no
affect when using readr.

readr a logical indicating whether functions from the readr package should be used,
if available.

package if specified, files will be searched for among the documentation files provided
by the package.

... additional arguments passed on to read.table(), or load() or one of the func-
tions in the readr package. Note that a message will indicate which underlying
function is being used.

Details

Unless filetype is specified, read.file uses the (case insensitive) file extension to determine how
to read data from the file. If file ends in .rda or .rdata, then load() is used to load the file. If
file ends in .csv, then readr::read_csv() or read.csv() is used. Otherwise, read.table() is
used.

Value

A data frame, unless file unless filetype is "rdata", in which case arbitrary objects may be
loaded and a character vector holding the names of the loaded objects is returned invisibly.

See Also

read.csv(), read.table(), readr::read_table(), readr::read_csv(), load().

Examples

Not run:
Dome <- read.file("http://www.mosaic-web.org/go/datasets/Dome.csv")

End(Not run)

relm Resample a Linear Model

Description

Fit a new model to data created using resample(model).

Usage

relm(model, ..., envir = environment(formula(model)))

repeater-class 109

Arguments

model a linear model object produced using lm().

... additional arguments passed through to resample().

envir an environment in which to (re)evaluate the linear model.

See Also

resample()

Examples

mod <- lm(length ~ width, data = KidsFeet)
do(1) * mod
do(3) * relm(mod)
use residual resampling to estimate standard error (very crude because so few replications)
Boot <- do(100) * relm(mod)
sd(~ width, data = Boot)
standard error as produced by summary() for comparison
mod |> summary() |> coef()

repeater-class Repeater objects

Description

Repeater objects can be used with the * operator to repeat things multiple time using a different
syntax and different output format from that used by, for example, replicate().

Slots

n: Object of class "numeric" indicating how many times to repeat something.

cull: Object of class "function" that culls the output from each repetition.

mode: Object of class "character" indicating the output mode (’default’, ’data.frame’, ’matrix’,
’vector’, or ’list’). For most purposes ’default’ (the default) should suffice.

algorithm: an algorithm number.

parallel: a logical indicating whether to attempt parallel execution.

See Also

do()

110 resample

resample More Random Samples

Description

These functions simplify and unify sampling in various ways.

Usage

resample(..., replace = TRUE)

deal(...)

shuffle(x, replace = FALSE, prob = NULL, groups = NULL, orig.ids = FALSE)

sample(x, size, replace = FALSE, ...)

Default S3 method:
sample(

x,
size,
replace = FALSE,
prob = NULL,
groups = NULL,
orig.ids = FALSE,
...

)

S3 method for class 'data.frame'
sample(
x,
size,
replace = FALSE,
prob = NULL,
groups = NULL,
orig.ids = TRUE,
fixed = names(x),
shuffled = c(),
invisibly.return = NULL,
...

)

S3 method for class 'matrix'
sample(
x,
size,
replace = FALSE,

resample 111

prob = NULL,
groups = NULL,
orig.ids = FALSE,
...

)

S3 method for class 'factor'
sample(
x,
size,
replace = FALSE,
prob = NULL,
groups = NULL,
orig.ids = FALSE,
drop.unused.levels = FALSE,
...

)

S3 method for class 'lm'
sample(
x,
size,
replace = FALSE,
prob = NULL,
groups = NULL,
orig.ids = FALSE,
drop.unused.levels = FALSE,
parametric = FALSE,
transformation = NULL,
...

)

Arguments

... additional arguments passed to base::sample() or sample().

replace Should sampling be with replacement?

x Either a vector of one or more elements from which to choose, or a positive
integer.

prob A vector of probability weights for obtaining the elements of the vector being
sampled.

groups a vector (or variable in a data frame) specifying groups to sample within. This
will be recycled if necessary.

orig.ids a logical; should original ids be included in returned data frame?

size a non-negative integer giving the number of items to choose.

fixed a vector of column names. These variables are shuffled en masse, preserving
associations among these columns.

112 resample

shuffled a vector of column names. these variables are reshuffled individually (within
groups if groups is specified), breaking associations among these columns. ex-
amples.

invisibly.return

a logical, should return be invisible?

drop.unused.levels

a logical, should unused levels be dropped?

parametric A logical indicating whether the resampling should be done parametrically.

transformation NULL or a function providing a transformation to be applied to the synthetic
responses. If NULL, an attempt it made to infer the appropriate transformation
from the original call as recorded in x.

Details

These functions are wrappers around sample() providing different defaults and natural names.

Examples

100 Bernoulli trials -- no need for replace=TRUE
resample(0:1, 100)
tally(resample(0:1, 100))
if (require(mosaicData)) {
Small <- sample(KidsFeet, 10)
resample(Small)
tally(~ sex, data=resample(Small))
tally(~ sex, data=resample(Small))
fixed marginals for sex
tally(~ sex, data=Small)
tally(~ sex, data=resample(Small, groups=sex))
shuffled can be used to reshuffle some variables within groups
orig.id shows where the values were in original data frame.
Small <- mutate(Small,

id1 = paste(sex,1:10, sep=":"),
id2 = paste(sex,1:10, sep=":"))

resample(Small, groups=sex, shuffled=c("id1","id2"))
}
deal(Cards, 13) # A Bridge hand
shuffle(Cards)
model <- lm(width ~length * sex, data = KidsFeet)
KidsFeet |> head()
resample(model) |> head()
Boot <- do(500) * lm(width ~ length * sex, data = resample(KidsFeet))
df_stats(~ Intercept + length + sexG + length.sexG, data = Boot, sd)
head(Boot)
summary(coef(model))

rescale 113

rescale Rescale

Description

Rescale vectors or variables within data frames. This can be useful for comparing vectors that are
on different scales, for example in parallel plots or heatmaps.

Usage

rescale(x, range, domain = NULL, ...)

S3 method for class 'data.frame'
rescale(x, range = c(0, 1), domain = NULL, ...)

S3 method for class 'factor'
rescale(x, range, domain = NULL, ...)

S3 method for class 'numeric'
rescale(x, range = c(0, 1), domain = NULL, ...)

Default S3 method:
rescale(x, range = c(0, 1), domain = NULL, ...)

S3 method for class 'character'
rescale(x, range = c(0, 1), domain = NULL, ...)

Arguments

x an R object to rescale

range a numeric vector of length 2

domain a numeric vector of length 2 or NULL

... additional arguments

rflip Tossing Coins

Description

These functions simplify simulating coin tosses for those (students primarily) who are not yet fa-
miliar with the binomial distributions or just like this syntax and verbosity better.

114 rflip

Usage

rflip(
n = 1,
prob = 0.5,
quiet = FALSE,
verbose = !quiet,
summarize = FALSE,
summarise = summarize

)

S3 method for class 'cointoss'
print(x, ...)

nflip(n = 1, prob = 0.5, ...)

Arguments

n the number of coins to toss

prob probability of heads on each toss

quiet a logical. If TRUE, less verbose output is used.

verbose a logical. If TRUE, more verbose output is used.

summarize if TRUE, return a summary (as a data frame).

summarise alternative spelling for summarize.

x an object

... additional arguments

Value

for rflip, a cointoss object

for nflip, a numeric vector

Examples

rflip(10)
rflip(10, prob = 1/6, quiet = TRUE)
rflip(10, prob = 1/6, summarize = TRUE)
do(5) * rflip(10)
as.numeric(rflip(10))
nflip(10)

rfun 115

rfun Generate a natural-looking function

Description

Produce a random function that is the sum of Gaussian random variables

rpoly2 generates a random 2nd degree polynomial (as a function)

Usage

rfun(vars = ~x & y, seed = NULL, n = 0)

rpoly2(vars = ~x & y, seed = NULL)

Arguments

vars a formula; the LHS is empty and the RHS indicates the variables used for input
to the function (separated by &)

seed seed for random number generator, passed to set.seed().

n the number of Gaussians. By default, this will be selected randomly.

Details

rfun is an easy way to generate a natural-looking but random function with ups and downs much as
you might draw on paper. In two variables, it provides a good way to produce a random landscape
that is smooth. Things happen in the domain -5 to 5. The function is pretty flat outside of that. Use
seed to create a fixed function that will be the same for everybody

These functions are particularly useful for teaching calculus.

Value

a function with the appropriate number of inputs

a function defined by a 2nd degree polynomial with coefficients selected randomly according to a
Unif(-1,1) distribution.

Examples

f <- rfun(~ u & v)
plotFun(f(u,v)~u&v,u=range(-5,5),v=range(-5,5))
myfun <- rfun(~ u & v, seed=1959)
g <- rpoly2(~ x&y&z, seed=1964)
plotFun(g(x,y,z=2)~x&y,xlim=range(-5,5),ylim=range(-5,5))

116 rlatlon

rlatlon Sample longitude and latitude on a sphere

Description

Randomly samples longitude and latitude on earth so that equal areas are (approximately) equally
likely to be sampled. (Approximation assumes earth as a perfect sphere.)

Usage

rlatlon(...)

rlonlat(...)

rgeo(n = 1, latlim = c(-90, 90), lonlim = c(-180, 180), verbose = FALSE)

rgeo2(n = 1, latlim = c(-90, 90), lonlim = c(-180, 180), verbose = FALSE)

Arguments

... arguments passed through to other functions
n number of random locations
latlim, lonlim range of latitudes and longitudes to sample within, only implemented for rgeo.
verbose return verbose output that includes Euclidean coordinates on unit sphere as well

as longitude and latitude.

Details

rgeo and rgeo2 differ in the algorithms used to generate random positions. Each assumes a spher-
ical globe. rgeo uses that fact that each of the x, y and z coordinates is uniformly distributed (but
not independent of each other). Furthermore, the angle about the z-axis is uniformly distributed
and independent of z. This provides a straightforward way to generate Euclidean coordinates using
runif. These are then translated into latitude and longitude.

rlatlon is an alias for rgeo and rlonlat is too, expect that it reverses the order in which the
latitude and longitude values are returned.

rgeo2 samples points in a cube by independently sampling each coordinate. It then discards any
point outside the sphere contained in the cube and projects the non-discarded points to the sphere.
This method must oversample to allow for the discarded points.

Value

a data frame with variables long and lat. If verbose is TRUE, then x, y, and z coordinates are also
included in the data frame.

See Also

deg2rad(), googleMap() and latlon2xyz().

rspin 117

Examples

rgeo(4)
sample from a region that contains the continental US
rgeo(4, latlim = c(25,50), lonlim = c(-65, -125))
rgeo2(4)

rspin Simulate spinning a spinner

Description

This is essentially rmultinom with a different interface.

Usage

rspin(n, probs, labels = 1:length(probs))

Arguments

n number of spins of spinner

probs a vector of probabilities. If the sum is not 1, the probabilities will be rescaled.

labels a character vector of labels for the categories

Examples

rspin(20, prob=c(1,2,3), labels=c("Red", "Blue", "Green"))
do(2) * rspin(20, prob=c(1,2,3), labels=c("Red", "Blue", "Green"))

rsquared Extract r-squared value

Description

Attempts to extract an r-squared value from a model or model-like object.

Usage

rsquared(x, ...)

Arguments

x an object

... additional arguments

118 set.rseed

rstudio_is_available Check whether RStudio is in use

Description

This functions checks that RStudio is in use. It will likely be removed from this package once the
versions of RStudio in popular use rely on the manipulate package on CRAN which will provide its
own version.

Usage

rstudio_is_available()

Value

a logical

set.rseed Set seed in parallel compatible way

Description

When the parallel package is used, setting the RNG seed for reproducibility involves more than
simply calling set.seed(). set.rseed takes care of the additional overhead.

Usage

set.rseed(seed)

Arguments

seed seed for the random number generator

Details

If the parallel package is not on the search path, then set.seed() is called. If parallel is on the
search path, then the RNG kind is set to "L'Ecuyer-CMRG", the seed is set and mc.reset.stream
is called.

Examples

These should give identical results, even if the `parallel' package is loaded.
set.rseed(123); do(3) * resample(1:10, 2)
set.rseed(123); do(3) * resample(1:10, 2)

Sleep 119

Sleep Sleep and Memory

Description

Sleep and Memory

Usage

data(Sleep)

Format

A data.frame with 24 observations on the following 2 variables.

Group treatment group of the subject

Words number of words recalled

Details

In an experiment on memory (Mednicj et al, 2008), students were given lists of 24 words to mem-
orize. After hearing the words they were assigned at random to different groups. One group of 12
students took a nap for 1.5 hours while a second group of 12 students stayed awake and was given a
caffeine pill. The data set records the number of words each participant was able to recall after the
break.

Source

These data were used in a "resampling bake-off" hosted by Robin Lock.

sp2df Transforms a shapefile into a dataframe

Description

This function takes in a shapefile (formal class of SpatialPolygonsDataFrame) and transforms it
into a dataframe

Usage

sp2df(map, ...)

Arguments

map A map object of class SpatialPolygonsDataFrame

... Other arguments, currently ignored

120 standardName

Value

A dataframe, in which the first 7 columns hold geographical information (ex: long and lat)

Examples

Not run:
if(require(maptools)) {

data(wrld_simpl)
worldmap <- sp2df(wrld_simpl)

}

if (require(ggplot2) && require(maptools)) {
data(wrld_simpl)
World <- sp2df(wrld_simpl)
World2 <- merge(World, Countries, by.x="NAME", by.y="maptools", all.y=FALSE)
Mdata <- merge(Alcohol, World2, by.x="country", by.y="gapminder", all.y=FALSE)
Mdata <- Mdata[order(Mdata$order),]
qplot(x=long, y=lat, fill=ntiles(alcohol,5),

data=subset(Mdata, year==2008), group = group,
geom="polygon")

}

End(Not run)

standardName Standardization of Geographic Names

Description

Often different sources of geographical data will use different names for the same region. These
utilities make it easier to merge data from different sources by converting names to standardized
forms.

Usage

standardName(
x,
standard,
ignore.case = TRUE,
returnAlternatives = FALSE,
quiet = FALSE

)

standardCountry(
x,
ignore.case = TRUE,
returnAlternatives = FALSE,

statTally 121

quiet = FALSE
)

standardState(x, ignore.case = TRUE, returnAlternatives = FALSE, quiet = FALSE)

Arguments

x A vector with the region names to standardize

standard a named vector providing the map from non-standard names (names of vector)
to standard names (values of vector)

ignore.case a logical indicating whether case should be ignored when matching.
returnAlternatives

a logical indicating whether all alternatives should be returned in addition to the
standard name.

quiet a logical indicating whether warnings should be suppressed

Details

standardName This is the most general standardizing function. In addition to x, this function
requires another argument: standard - a named vector in which each name is a particular
spelling of the region name in question and the corresponding value is the standardized version
of that region name

standardCountry This function will standardize the country names in x to the standard ISO_a3
country code format. If returnAlternatives is set to TRUE, this function will also return the
the named vector used to standardize the country names

standardState This function will standardize the US state names in x to the standard two-letter
abbreviations. If returnAlternatives is set to TRUE, this function will also return the the
named vector used to standardize the state names

In all three cases, any names not found in standard will be left unaltered. Unless supressed, a
warning message will indicate the number of such cases, if there are any.

statTally Tally test statistics

Description

Tally test statistics from data and from multiple draws from a simulated null distribution

Usage

statTally(
sample,
rdata,
FUN,
direction = NULL,

122 statTally

alternative = c("default", "two.sided", "less", "greater"),
sig.level = 0.1,
system = c("gg", "lattice"),
shade = "navy",
alpha = 0.1,
binwidth = NULL,
bins = NULL,
fill = "gray80",
color = "black",
center = NULL,
stemplot = dim(rdata)[direction] < 201,
q = c(0.5, 0.9, 0.95, 0.99),
fun = function(x) x,
xlim,
quiet = FALSE,
...

)

Arguments

sample sample data

rdata a matrix of randomly generated data under null hypothesis.

FUN a function that computes the test statistic from a data set. The default value does
nothing, making it easy to use this to tabulate precomputed statistics into a null
distribution. See the examples.

direction 1 or 2 indicating whether samples in rdata are in rows (1) or columns (2).

alternative one of default, two.sided, less, or greater

sig.level significance threshold for wilcox.test used to detect lack of symmetry

system graphics system to use for the plot

shade a color to use for shading.

alpha opacity of shading.

binwidth bin width for histogram.

bins number of bins for histogram.

fill fill color for histogram.

color border color for histogram.

center center of null distribution

stemplot indicates whether a stem plot should be displayed

q quantiles of sampling distribution to display

fun same as FUN so you don’t have to remember if it should be capitalized

xlim limits for the horizontal axis of the plot.

quiet a logicial indicating whether the text output should be suppressed

... additional arguments passed to lattice::histogram() or ggplot2::geom_histogram()

surround 123

Value

A lattice or ggplot showing the sampling distribution.

As side effects, information about the empirical sampling distribution and (optionally) a stem plot
are printed to the screen.

Examples

is my spinner fair?
x <- c(10, 18, 9, 15) # counts in four cells
rdata <- rmultinom(999, sum(x), prob = rep(.25, 4))
statTally(x, rdata, fun = max, binwidth = 1) # unusual test statistic
statTally(x, rdata, fun = var, shade = "red", binwidth = 2) # equivalent to chi-squared test
Can also be used with test stats that are precomputed.
if (require(mosaicData)) {
D <- diffmean(age ~ sex, data = HELPrct); D
nullDist <- do(999) * diffmean(age ~ shuffle(sex), data = HELPrct)
statTally(D, nullDist)
statTally(D, nullDist, system = "lattice")
}

surround Format strings for pretty output

Description

Format strings for pretty output

Usage

surround(x, pre = " ", post = " ", width = 8, ...)

Arguments

x a vector
pre text to prepend onto string
post text to postpend onto string
width desired width of string
... additional arguments passed to format()

Value

a vector of strings padded to the desired width

Examples

surround(rbinom(10,20,.5), " ", " ", width=4)
surround(rnorm(10), " ", " ", width=8, digits = 2, nsmall = 2)

124 theme.mosaic

swap Swap values among columns of a data frame

Description

Swap values among columns of a data frame

Usage

swap(data, which)

Arguments

data a data frame

which a formula or an integer or character vector specifying columns in data

Details

swap is not a particularly speedy function. It is intended primarily as an aid for teaching random-
ization for paired designs. Used this way, the number of randomizations should be kept modest
(approximately 1000) unless you are very patient.

Examples

if (require(tidyr)) {
Sleep2 <- sleep |> spread(key=group, val=extra)
names(Sleep2) <- c("subject", "drug1", "drug2")
swap(Sleep2, drug1 ~ drug2)
mean(~(drug1 - drug2), data=Sleep2)
do(3) * mean(~(drug1 - drug2), data=Sleep2 |> swap(drug1 ~ drug2))

}

theme.mosaic Lattice Theme

Description

A theme for use with lattice graphics.

Usage

theme.mosaic(bw = FALSE, lty = if (bw) 1:7 else 1, lwd = 2, ...)

col.mosaic(bw = FALSE, lty = if (bw) 1:7 else 1, lwd = 2, ...)

theme_map 125

Arguments

bw whether color scheme should be "black and white"

lty vector of line type codes

lwd vector of line widths

... additional named arguments passed to trellis.par.set()

Value

Returns a list that can be supplied as the theme to trellis.par.set().

Note

These two functions are identical. col.mosaic is named similarly to lattice::col.whitebg(),
but since more than just colors are set, theme.mosaic is a preferable name.

See Also

trellis.par.set(), show.settings()

Examples

trellis.par.set(theme=theme.mosaic())
show.settings()
trellis.par.set(theme=theme.mosaic(bw=TRUE))
show.settings()

theme_map ggplot2 theme for maps

Description

A very plain ggplot2 theme that is good for maps.

Usage

theme_map(base_size = 12)

Arguments

base_size the base font size for the theme.

Details

This theme is largely based on an example posted by Winston Chang at the ggplot2 Google group
forum.

126 TukeyHSD.lm

TukeyHSD.lm Additional interfaces to TukeyHSD

Description

TukeyHSD() requires use of aov(). Since this is a hindrance for beginners, wrappers have been
provided to remove this need.

Usage

S3 method for class 'lm'
TukeyHSD(x, which, ordered = FALSE, conf.level = 0.95, ...)

S3 method for class 'formula'
TukeyHSD(
x,
which,
ordered = FALSE,
conf.level = 0.95,
data = parent.frame(),
...

)

Arguments

x an object, for example of class lm or formula

which, ordered, conf.level, ...

just as in TukeyHSD() from the base package

data a data frame. NB: This does not come second in the argument list.

Examples

These should all give the same results
if (require(mosaicData)) {

model <- lm(age ~ substance, data=HELPrct)
TukeyHSD(model)
TukeyHSD(age ~ substance, data=HELPrct)
TukeyHSD(aov(age ~ substance, data=HELPrct))

}

t_test 127

t_test Student’s t-Test

Description

Performs one and two sample t-tests. The mosaic t.test provides wrapper functions around the
function of the same name in stats. These wrappers provide an extended interface that allows for a
more systematic use of the formula interface.

Usage

t_test(x, ...)

t.test(x, ...)

S3 method for class 'formula'
t_test(formula, data, ..., groups = NULL)

Default S3 method:
t_test(
x,
y = NULL,
alternative = c("two.sided", "less", "greater"),
mu = 0,
paired = FALSE,
var.equal = FALSE,
conf.level = 0.95,
...

)

Arguments

x a (non-empty) numeric vector of data values.

... further arguments to be passed to or from methods.

formula a formula of the form lhs ~ rhs where lhs is a numeric variable giving the data
values and rhs either 1 for a one-sample or paired test or a factor with two levels
giving the corresponding groups. If lhs is of class "Pair" and rhs is 1, a paired
test is done

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

groups When x is a formula, groups can be used to compare groups: x = ~ var, groups = g
is equivalent to x = var ~ g. See the examples.

y an optional (non-empty) numeric vector of data values.

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less". You can specify just the initial letter.

128 update_ci

mu a number indicating the true value of the mean (or difference in means if you
are performing a two sample test).

paired a logical indicating whether you want a paired t-test.

var.equal a logical variable indicating whether to treat the two variances as being equal.
If TRUE then the pooled variance is used to estimate the variance otherwise the
Welch (or Satterthwaite) approximation to the degrees of freedom is used.

conf.level confidence level of the interval.

Details

This is a wrapper around stats::t.test() from the stats package to extend the functionality of
the formula interface. In particular, one can now use the formula interface for a 1-sample t-test.
Before, the formula interface was only permitted for a 2-sample test. The type of formula that can
be used for the 2-sample test has also be broadened. See the examples.

Value

an object of class htest

See Also

prop.test(), binom.test(), stats::t.test()

Examples

t.test(HELPrct$age)
We can now do this with a formula
t.test(~ age, data = HELPrct)
data = can be omitted, but it is better to use it
t.test(~ age, HELPrct)
the original 2-sample formula
t.test(age ~ sex, data = HELPrct)
alternative 2-sample formulas
t.test(~ age | sex, data = HELPrct)
t.test(~ age, groups = sex, data = HELPrct)
2-sample t from vectors
with(HELPrct, t.test(age[sex == "male"], age[sex == "female"]))
just the means
mean(age ~ sex, data = HELPrct)

update_ci Update confidence interval

Description

Update the confidence interval portion of an object returned from binom.test using one of several
alternative methods.

value 129

Usage

update_ci(
object,
method = c("clopper-pearson", "wald", "agresti-coull", "plus4", "score", "prop.test")

)

Arguments

object An "htest" object produced by binom.test()

method a method for computing a confidence interval for a proportion.

Value

an "htest" object with an updated confidence interval

See Also

binom.test()

value Extract value from an object

Description

Functions like integrate() and nlm() return objects that contain more information that simply the
value of the integration or optimization. value() extracts the primary value from such objects. Cur-
rently implemented situations include the output from integrate(), nlm(), cubature::adaptIntegrate(),
and uniroot().

Usage

value(object, ...)

S3 method for class 'integrate'
value(object, ...)

Default S3 method:
value(object, ...)

Arguments

object an object from which a "value" is to be extracted.

... additional arguments (currently ignored).

130 xchisq.test

Examples

integrate(sin, 0, 1) |> value()
nlm(cos, p = 0) |> value()
uniroot(cos, c(0, 2)) |> value()

xchisq.test Augmented Chi-squared test

Description

This augmented version of chisq.test() provides more verbose output.

Usage

xchisq.test(
x,
y = NULL,
correct = TRUE,
p = rep(1/length(x), length(x)),
rescale.p = FALSE,
simulate.p.value = FALSE,
B = 2000,
data = environment(x)

)

Arguments

x, y, correct, p, rescale.p, simulate.p.value, B

as in chisq.test(), but x may also be a formula, in which case x is replaced
by tally(x, data) prior to the call to chisq.test().

data a data frame for use when x is a formula.

See Also

chisq.test()

Examples

Physicians' Health Study data
phs <- cbind(c(104,189),c(10933,10845))
rownames(phs) <- c("aspirin","placebo")
colnames(phs) <- c("heart attack","no heart attack")
phs
xchisq.test(phs)
xchisq.test(sex ~ substance, data = HELPrct)

xhistogramBreaks 131

xhistogramBreaks Augmented histograms

Description

The mosaic package adds some additional functionality to lattice::histogram(), making it sim-
pler to obtain certain common histogram adornments. This is done be resetting the default panel
and prepanel functions used by histogram.

Usage

xhistogramBreaks(x, center = NULL, width = NULL, nint, ...)

prepanel.xhistogram(x, breaks = xhistogramBreaks, ...)

panel.xhistogram(
x,
dcol = trellis.par.get("plot.line")$col,
dalpha = 1,
dlwd = 2,
gcol = trellis.par.get("add.line")$col,
glwd = 2,
fcol = trellis.par.get("superpose.polygon")$col,
dmath = dnorm,
verbose = FALSE,
dn = 100,
args = NULL,
labels = FALSE,
density = NULL,
under = FALSE,
fit = NULL,
start = NULL,
type = "density",
v,
h,
groups = NULL,
center = NULL,
width = NULL,
breaks,
nint = round(1.5 * log2(length(x)) + 1),
stripes = c("vertical", "horizontal", "none"),
alpha = 1,
...

)

Arguments

x a formula or a numeric vector

132 xhistogramBreaks

center center of one of the bins

width width of the bins

nint approximate number of bins

... additional arguments passed from lattice::histogram() to the panel func-
tion; by default when the mosaic package has been loaded this will be panel.xhistogram().

breaks break points for histogram bins, a function for computing such, or a method
hist() knows about given as a character string. When using the mosaic pack-
age defaults, xhistogramBreaks() is used.

dcol color of density curve

dalpha alpha for density curve

dlwd, glwd like lwd but affecting the density line and guide lines, respectively

gcol color of guidelines

fcol fill colors for histogram rectangles when using groups. (Use col, which is
passed through to the histogram panel function, when not using groups.)

dmath density function for density curve overlay

verbose be verbose?

dn number of points to sample from density curve

args a list of additional arguments for dmath

labels should counts/densities/percents be displayed or each bin?

density a logical indicating whether to overlay a density curve

under a logical indicating whether the density layers should be under or over other
layers of the plot.

fit a character string describing the distribution to fit. Known distributions include
"exponential", "normal", "lognormal" , "poisson", "beta", "geometric",
"t", "weibull", "cauchy", "gamma", "chisq", and "chi-squared"

start numeric value passed to MASS::fitdistr()

type one of 'density', 'count', or 'percent'

h, v a vector of values for additional horizontal and vertical lines

groups as per lattice::histogram()

stripes one of "vertical", "horizontal", or "none", indicating how bins should be
striped when groups is not NULL

alpha transparency level

panel a panel function

Details

The primary additional functionality added to histogram() are the arguments width and center
which provide a simple way of describing equal-sized bins, and fit which can be used to overlay
the density curve for one of several distributions. The groups argument can be used to color the
bins. The primary use for this is to shade tails of histograms, but there may be other uses as well.

xpnorm 133

Value

xhistogramBreaks returns a vector of break points

Note

Versions of lattice since 0.20-21 support setting custom defaults for breaks, panel, and prepanel
used by histogram(), so xhistogram() is no longer needed. As a result, xhistogram() (which
was required in earlier versions of mosaic is no longer needed and has been removed.

See Also

lattice::histogram(), mosaicLatticeOptions(), and restoreLatticeOptions().

Examples

if (require(mosaicData)) {
histogram(~age | substance, HELPrct, v=35, fit='normal')
histogram(~age, HELPrct, labels=TRUE, type='count')
histogram(~age, HELPrct, groups=cut(age, seq(10,80,by=10)))
histogram(~age, HELPrct, groups=sex, stripes='horizontal')
histogram(~racegrp, HELPrct, groups=substance,auto.key=TRUE)
xhistogramBreaks(1:10, center=5, width=1)
xhistogramBreaks(1:10, center=5, width=2)
xhistogramBreaks(0:10, center=15, width=3)
xhistogramBreaks(1:100, center=50, width=3)
xhistogramBreaks(0:10, center=5, nint=5)
}

xpnorm Augmented versions of pnorm and qnorm

Description

These functions behave similarly to the functions with the initial x removed from their names but
add more verbose output and graphics.

Usage

xpnorm(
q,
mean = 0,
sd = 1,
plot = TRUE,
verbose = TRUE,
invisible = FALSE,
digits = 4,
lower.tail = TRUE,
log.p = FALSE,

134 xpnorm

xlim = mean + c(-4, 4) * sd,
ylim = c(0, 1.4 * dnorm(mean, mean, sd)),
manipulate = FALSE,
...,
return = c("value", "plot")

)

xqnorm(
p,
mean = 0,
sd = 1,
plot = TRUE,
verbose = TRUE,
digits = getOption("digits"),
lower.tail = TRUE,
log.p = FALSE,
xlim,
ylim,
invisible = FALSE,
...,
return = c("value", "plot"),
pattern = c("stripes", "rings")

)

xcnorm(
p,
mean = 0,
sd = 1,
plot = TRUE,
verbose = TRUE,
digits = getOption("digits"),
lower.tail = TRUE,
log.p = FALSE,
xlim,
ylim,
invisible = FALSE,
...,
return = c("value", "plot"),
pattern = "rings"

)

Arguments

q quantile

mean, sd parameters of normal distribution.

plot logical. If TRUE, show an illustrative plot.

verbose logical. If TRUE, display verbose output.

invisible logical. If TRUE, return value invisibly.

xqqmath 135

digits number of digits to display in output.

lower.tail logical. If FALSE, use upper tail probabilities.

log.p logical. If TRUE, uses the log of probabilities.

xlim, ylim limits for plotting.

manipulate logical. If TRUE and in RStudio, then sliders are added for interactivity.

... additional arguments.

return If "plot", return a plot. If "values", return a vector of numerical values.

p probability

pattern One of "stripes" or "rings". In the latter case, pairs of regions (from inside
to outside) are grouped together for coloring and probability calculation.

See Also

histogram(), chisq.test(), pnorm(), qnorm(), qqmath(), and plot().

Examples

xpnorm(650, 500, 100)
xqnorm(.75, 500, 100)
xpnorm(-3:3, return = "plot", system = "gg") |>

gf_labs(title = "My Plot", x = "") |>
gf_theme(theme_bw())

Not run:
if (rstudio_is_available() & require(manipulate)) {

manipulate(xpnorm(score, 500, 100, verbose = verbose),
score = slider(200, 800),
verbose = checkbox(TRUE, label = "Verbose Output")
)

}

End(Not run)

xqqmath Augmented version of qqmath

Description

Augmented version of qqmath

136 xqqmath

Usage

xqqmath(x, data = NULL, panel = "panel.xqqmath", ...)

panel.xqqmath(
x,
qqmathline = !(fitline || idline),
idline = FALSE,
fitline = NULL,
slope = NULL,
intercept = NULL,
overlines = FALSE,
groups = NULL,
...,
col.line = trellis.par.get("add.line")$col,
pch = 16,
lwd = 2,
lty = 2

)

Arguments

x, data, panel, ...

as in lattice::qqmath()

qqmathline a logical: should line be displayed passing through first and third quartiles?

idline a logical; should the line y=x be added to the plot?

fitline a logical; should a fitted line be added to plot? Such a line will use slope and
intercept if provided, else the standard deviation and mean of the data. If
slope is specified, the line will be added unless fitline is FALSE.

slope slope for added line

intercept intercept for added line

overlines a logical: should lines be on top of qq plot?
groups, pch, lwd, lty

as in lattice plots

col.line color to use for added lines

Value

a trellis object

Examples

x <- rnorm(100)
xqqmath(~ x) # with quartile line
xqqmath(~ x, fitline = TRUE) # with fitted line
xqqmath(~ x, idline = TRUE) # with y = x
x <- rexp(100, rate = 10)
xqqmath(~ x, distribution = qexp) # with quartile line

xyz2latlon 137

xqqmath(~ x, distribution = qexp, slope = 1/10)
xqqmath(~ x, distribution = qexp, slope = mean(x))

xyz2latlon Convert back and forth between latitude/longitude and XYZ-space

Description

Convert back and forth between latitude/longitude and XYZ-space

Usage

xyz2latlon(x, y, z)

latlon2xyz(latitude, longitude)

lonlat2xyz(longitude, latitude)

Arguments

x, y, z numeric vectors

latitude, longitude

vectors of latitude and longitude values

Value

a matrix each row of which describes the latitudes and longitudes

a matrix each row of which contains the x, y, and z coordinates of a point on a unit sphere

See Also

deg2rad(), googleMap(), and rgeo().

Examples

xyz2latlon(1, 1, 1) # point may be on sphere of any radius
xyz2latlon(0, 0, 0) # this produces a NaN for latitude
latlon2xyz(30, 45)
lonlat2xyz(45, 30)

138 zscore

zscore Compute z-scores

Description

Compute z-scores

Usage

zscore(x, na.rm = getOption("na.rm", FALSE))

Arguments

x a numeric vector

na.rm a logical indicating whether missing values should be removed

Examples

data(penguins, package = "palmerpenguins")
penguins |>

group_by(species) |>
mutate(zbill_length_mm = zscore(bill_length_mm, na.rm = TRUE)) |>
head()

Index

∗ calculus
findZeros, 41

∗ datasets
Mustangs, 75
Sleep, 119

∗ distribution
qdata, 101
rand, 106

∗ geometry
rlatlon, 116

∗ graphics
dotPlot, 36
ladd, 57
plotCumfreq, 87
plotDist, 88
theme.mosaic, 124

∗ inference
CIsim, 19
confint.htest, 25
statTally, 121

∗ iteration
do, 34

∗ manipulate
as.xtabs, 9
cross, 27

∗ map
rlatlon, 116

∗ package
mosaic-package, 4

∗ random
rfun, 115
rlatlon, 116

∗ regression
rand, 106

∗ simulation
CIsim, 19

∗ stats
binom.test, 13
confint.htest, 25

fav_stats, 40
orrr, 77
plotDist, 88
prop.test, 99

∗ util
read.file, 107

*,repeater,ANY-method (do), 34

adapt_seq, 5
after_stat(), 18
aggregatingFunction1, 6
aggregatingFunction1or2, 7
aggregatingFunction2, 8
aov(), 126
as.xtabs, 9
ashplot, 10

bargraph, 11
base::sample(), 111
binom.test, 13
binom.test(), 100, 128, 129
Broyden, 15

cdata (qdata), 101
cdata(), 104
cdata_f (qdata_v), 103
cdata_v (qdata_v), 103
cdist, 15
cdist(), 21
chisq, 18
chisq.test(), 78, 130, 135
CIAdata, 19
CIsim, 19
cnorm, 21
coef.nlsfunction (fitModel), 44
col.mosaic (theme.mosaic), 124
compareMean, 22
compareProportion (compareMean), 22
confint, 23
confint.htest, 25

139

140 INDEX

connector (FunctionsFromData), 52
cor (mean_), 65
cor.test (cor_test.formula), 26
cor_test (cor_test.formula), 26
cor_test.formula, 26
cov (mean_), 65
cross, 27
ct (cnorm), 21
cubature::adaptIntegrate(), 129
cull_for_do, 28

ddata (qdata), 101
ddata(), 104
ddata_f (qdata_v), 103
ddata_v (qdata_v), 103
deal (resample), 110
deg2rad, 29
deg2rad(), 55, 59, 116, 137
deltaMethod (compareMean), 22
densityplot(), 51, 87
derivedFactor (derivedVariable), 29
derivedVariable, 29
design_plot, 31
diffmean, 33
diffprop (diffmean), 33
dnorm(), 88
Do (do), 34
do, 34
do(), 25, 28, 109
docFile, 36
dot (project), 97
dotPlot, 36
dplyr::do(), 35
dplyr::mutate(), 30
dpqrdist, 37

eval(), 32, 69
expandFun, 38

factorise (factorize), 39
factorize, 39
fav_stats, 40
favstats (mean_), 65
favstats(), 24, 40
fetchData, 40
fetchGapminder (fetchData), 40
fetchGapminder1 (fetchData), 40
fetchGoogle (fetchData), 40
findZeros, 41

findZerosMult, 43
fisher.test(), 78
fitModel, 44
fitSpline, 45
fivenum (mean_), 65
format(), 123
fortify.hclust, 47
fortify.summary.glm

(fortify.summary.lm), 48
fortify.summary.lm, 48
fortify.TukeyHSD (fortify.summary.lm),

48
freqpoly, 49
freqpolygon, 50
FunctionsFromData, 52

getVarFormula, 54
ggformula::gf_dist(), 89
ggformula::gf_refine(), 17, 86, 105
ggplot2::geom_histogram(), 122
glm(), 73, 93
googleMap, 54
googleMap(), 29, 116, 137
gwm (compareMean), 22

hist(), 49, 132
hist2freqpolygon (freqpoly), 49
histogram (xhistogramBreaks), 131
histogram(), 37, 51, 87, 89, 132, 135

inferArgs, 55
integrate(), 129
IQR (mean_), 65
iqr (mean_), 65
is.integer(), 56
is.wholenumber, 56

jitter(), 11

ladd, 57
latlon2xyz (xyz2latlon), 137
latlon2xyz(), 29, 55, 59, 116
lattice::barchart(), 11, 12
lattice::col.whitebg(), 125
lattice::histogram(), 122, 131–133
lattice::levelplot(), 91
lattice::panel.levelplot(), 82, 83
lattice::panel.xyplot(), 82, 83
lattice::qqmath(), 136

INDEX 141

lattice::xyplot(), 91
latticeExtra::layer(), 57, 89
leaflet::addCircles(), 58
leaflet_map, 58
leaflet_map(), 54, 55
library(), 36
linear.algebra, 59
linearModel (FunctionsFromData), 52
linearModel(), 45, 60
lm(), 53, 93, 109
load(), 108
lonlat2xyz (xyz2latlon), 137

MAD, 60
mad(), 61
MAD_, 61
MAD_(), 61
maggregate, 62
makeColorscheme, 63
makeFun(), 53
makeMap, 64
MASS::fitdistr(), 132
mat (linear.algebra), 59
max (mean_), 65
mean (mean_), 65
mean(), 33
mean_, 65
median (mean_), 65
merge(), 32, 69
mid, 67
min (mean_), 65
mm (compareMean), 22
mMap (mPlot), 68
model (fitModel), 44
model.frame, 127
mosaic (mosaic-package), 4
mosaic-package, 4
mosaic.getOption (mosaic.options), 67
mosaic.options, 67
mosaic.par.get (mosaic.options), 67
mosaic.par.set (mosaic.options), 67
mosaicGetOption (mosaic.options), 67
mosaicLatticeOptions (mosaic.options),

67
mosaicLatticeOptions(), 133
mPlot, 68
mplot, 70
mplot(), 70
mplot.hclust (fortify.hclust), 47

mScatter (mPlot), 68
mUniplot (mPlot), 68
mUSMap, 74
Mustangs, 75
mWorldMap, 75

nflip (rflip), 113
nlm(), 129
nls(), 45
ntiles, 76

oddsRatio (orrr), 77
orrr, 77

panel.ashplot (ashplot), 10
panel.cumfreq (plotCumfreq), 87
panel.dotPlot (dotPlot), 36
panel.freqpolygon (freqpolygon), 50
panel.levelcontourplot, 79
panel.lmbands, 80
panel.plotFun, 81
panel.plotFun1, 83
panel.xhistogram (xhistogramBreaks), 131
panel.xhistogram(), 132
panel.xqqmath (xqqmath), 135
pdata (qdata), 101
pdata(), 104
pdata_f (qdata_v), 103
pdata_v (qdata_v), 103
pdist, 84
perctable (compareMean), 22
plot(), 135
plot.freqpolygon (freqpoly), 49
plotCumfreq, 87
plotDist, 88
plotFun, 90
plotFun(), 38, 94, 96
plotModel, 93
plotPoints, 95
plotPoints(), 94
pnorm(), 88, 135
prepanel.cumfreq (plotCumfreq), 87
prepanel.default.ashplot (ashplot), 10
prepanel.default.freqpolygon

(freqpolygon), 50
prepanel.xhistogram (xhistogramBreaks),

131
print.cointoss (rflip), 113
print.oddsRatio (orrr), 77

142 INDEX

print.relrisk (orrr), 77
print.repeater (do), 34
prod (mean_), 65
project, 97
project(), 53, 60
project,formula-method (project), 97
project,matrix-method (project), 97
project,numeric-method (project), 97
prop(), 33
prop.test, 14, 99
prop.test(), 14, 100, 128
prop_test, 100
proptable (compareMean), 22
pval (confint.htest), 25

qdata, 101
qdata(), 104
qdata_f (qdata_v), 103
qdata_v, 103
qdist, 104
qdist(), 86
qnorm(), 88, 135
qqmath(), 135
quantile (mean_), 65

r.squared (compareMean), 22
rad2deg (deg2rad), 29
rand, 106
range (mean_), 65
rdata (qdata), 101
rdata(), 104
rdata_f (qdata_v), 103
rdata_v (qdata_v), 103
read.csv(), 108
read.file, 107
read.table(), 107, 108
readr::read_csv(), 108
readr::read_table(), 108
relm, 108
relrisk (orrr), 77
repeater-class, 109
replicate(), 35, 109
resample, 110
resample(), 109
rescale, 113
restoreLatticeOptions (mosaic.options),

67
restoreLatticeOptions(), 133
rflip, 113

rfun, 115
rgeo (rlatlon), 116
rgeo(), 29, 55, 58, 59, 137
rgeo2 (rlatlon), 116
rlatlon, 116
rlonlat (rlatlon), 116
rpoly2 (rfun), 115
rspin, 117
rsquared, 117
rstudio_is_available, 118

SAD (MAD), 60
SAD_ (MAD_), 61
sample (resample), 110
sample(), 111, 112
sd (mean_), 65
set.rseed, 118
set.rseed(), 35
set.seed(), 115, 118
show.settings(), 125
shuffle (resample), 110
singvals (linear.algebra), 59
Sleep, 119
smoother (FunctionsFromData), 52
solve.formula (findZeros), 41
sp2df, 119
sp2df(), 32, 69
spline(), 53
spliner (FunctionsFromData), 52
splines::bs(), 46
splines::ns(), 46
standardCountry (standardName), 120
standardName, 120
standardState (standardName), 120
stat (confint.htest), 25
stats::binom.test(), 13, 14
stats::cor.test(), 26, 27
stats::lm(), 53
stats::loess(), 53, 72
stats::mad(), 60
stats::prop.test(), 14, 100
stats::qnorm(), 21
stats::quantile(), 40
stats::t.test(), 128
statTally, 121
sum (mean_), 65
summary.nlsfunction (fitModel), 44
summary.oddsRatio (orrr), 77
summary.relrisk (orrr), 77

INDEX 143

surround, 123
swap, 124

t.test (t_test), 127
t_test, 127
tally(), 18
theme.mosaic, 124
theme_map, 125
transform(), 30
trellis.par.set(), 125
TukeyHSD(), 126
TukeyHSD.formula (TukeyHSD.lm), 126
TukeyHSD.lm, 126

uniroot(), 129
update_ci, 128

value, 129
var (mean_), 65
var(), 7
vlength (project), 97

xcbeta (cdist), 15
xcbinom (cdist), 15
xcchisq (cdist), 15
xcf (cdist), 15
xcgamma (cdist), 15
xcgeom (cdist), 15
xchisq.test, 130
xcnbinom (cdist), 15
xcnorm (xpnorm), 133
xcpois (cdist), 15
xct (cdist), 15
xhistogram (compareMean), 22
xhistogramBreaks, 131
xhistogramBreaks(), 132
xpbeta (pdist), 84
xpbinom (pdist), 84
xpchisq (pdist), 84
xpf (pdist), 84
xpgamma (pdist), 84
xpgeom (pdist), 84
xpnbinom (pdist), 84
xpnorm, 133
xpnorm(), 86
xppois (pdist), 84
xpt (pdist), 84
xqbeta (qdist), 104
xqbinom (qdist), 104

xqchisq (qdist), 104
xqf (qdist), 104
xqgamma (qdist), 104
xqgeom (qdist), 104
xqnbinom (qdist), 104
xqnorm (xpnorm), 133
xqnorm(), 86
xqpois (qdist), 104
xqqmath, 135
xqt (qdist), 104
xtabs(), 11
xyplot(), 93
xyz2latlon, 137

zscore, 138

	mosaic-package
	adapt_seq
	aggregatingFunction1
	aggregatingFunction1or2
	aggregatingFunction2
	as.xtabs
	ashplot
	bargraph
	binom.test
	Broyden
	cdist
	chisq
	CIAdata
	CIsim
	cnorm
	compareMean
	confint
	confint.htest
	cor_test.formula
	cross
	cull_for_do
	deg2rad
	derivedVariable
	design_plot
	diffmean
	do
	docFile
	dotPlot
	dpqrdist
	expandFun
	factorize
	fav_stats
	fetchData
	findZeros
	findZerosMult
	fitModel
	fitSpline
	fortify.hclust
	fortify.summary.lm
	freqpoly
	freqpolygon
	FunctionsFromData
	getVarFormula
	googleMap
	inferArgs
	is.wholenumber
	ladd
	leaflet_map
	linear.algebra
	MAD
	MAD_
	maggregate
	makeColorscheme
	makeMap
	mean_
	mid
	mosaic.options
	mPlot
	mplot
	mUSMap
	Mustangs
	mWorldMap
	ntiles
	orrr
	panel.levelcontourplot
	panel.lmbands
	panel.plotFun
	panel.plotFun1
	pdist
	plotCumfreq
	plotDist
	plotFun
	plotModel
	plotPoints
	project
	prop.test
	prop_test
	qdata
	qdata_v
	qdist
	rand
	read.file
	relm
	repeater-class
	resample
	rescale
	rflip
	rfun
	rlatlon
	rspin
	rsquared
	rstudio_is_available
	set.rseed
	Sleep
	sp2df
	standardName
	statTally
	surround
	swap
	theme.mosaic
	theme_map
	TukeyHSD.lm
	t_test
	update_ci
	value
	xchisq.test
	xhistogramBreaks
	xpnorm
	xqqmath
	xyz2latlon
	zscore
	Index

