Package 'musica'

October 13, 2022

Type Package

Version 0.1.3

Title Multiscale Climate Model Assessment

Description Provides functions allowing for (1) easy aggregation of multivariate time series into custom time scales, (2) comparison of statistical summaries between different data sets at multiple time scales (e.g. observed and bias-corrected data), (3) comparison of relations between variables and/or different data sets at multiple time scales (e.g. correlation of precipitation and temperature in control and scenario simulation) and (4) transformation of time series at custom time scales.
License GPL-2
LazyData TRUE
Depends R (>= 2.15.1), data.table
Imports magrittr, qmap, lubridate
RoxygenNote 5.0.1
Suggests knitr, rmarkdown, ggplot2
VignetteBuilder knitr
NeedsCompilation yes
Author Martin Hanel [aut, cre]
Maintainer Martin Hanel hanel@fzp.czu.cz
Repository CRAN
Date/Publication 2016-09-03 10:01:12
R topics documented:
musica-package
basin_PT
codes
compare
decomp
difs
m2s

2 basin_PT

III de la companya de																	
Index																	14
	vcompare																. 12
	tscale																
	Q																. 11
	prob																. 10
	msTrans_dif																
	msTrans_abs .																. 8

Description

Contains functions for flexible assessment of climate model bias and changes at multiple time scales. See documentation for decomp, compare and vcompare. In addition, musica provides functions for multiscale transformations of time series (see msTrans_abs and msTrans_dif)

Package options

Following option(s) are available:

additive_variables At several places the package compares values. The character vector additive_values specifies for which variables difference should be used for comparison instead of ratio. Defaults to additive_values = "TAS". See options for setting or examining options.

Author(s)

Martin Hanel hanel@fzp.czu.cz

References

Hanel, M., Kozin, R. (2016) Bias correction for hydrological modelling, submitted.

basin_PT	Basin average observed and simulated daily precipitation and temper-
	ature

Description

A list of three data.tables with observed (obs_ctrl) and RCM simulated data for the control (sim_ctrl) and scenario (sim_scen) periods for Oslava basin (downto Cucice) in the Czech Republic. The basin average precipitation and temperature were obtained from griddedb observations and RCM simulation (EUR-11_CNRM-CERFACS-CNRM-CM5_rcp45_rli1p1_CLMcom-CCLM4-8-17 simulation conducted within the CORDEX project).

codes 3

Usage

basin_PT

Format

List of 3 data.tables:

```
obs_ctrl observed data for the basin for a period 1981-01-01 – 2005-21-31 sim_ctrl simulated data for the basin for a period 1981-01-01 – 2005-21-31 sim_scen simulated data for the basin for a period 2070-01-01 – 2099-21-31
```

Each data.table contains 3 variables:

DTM date

PR precipitation, mm

TAS temperature, degrees C

codes

Conversion between period specification and codes

Description

Conversion between period specification and codes

Usage

```
period2code(periods)
code2period(code)
```

Arguments

periods period specification code period code

Details

Periods are specified using keywords "day", "month", "year" preceded by an integer and a space and optionally followed by "s" (the specification is further passed to cut.Date, see cut.Date for details). To fit in figures and for simplicity, periods can be also specified by codes, i.e. by D, M, Y (for "day", "month" and "year", respectively) and followed by integer specifying the number of intervals. The functions period2code and code2period provide conversion between the two alternatives.

Examples

```
period2code(c('1 day', '23 days', '3 month', '2 years'))
code2period(c('D1', 'D23', 'M3', 'Y2'))
```

4 compare

com	na	re

Compare decomposed variables

Description

The function evaluates distance between statistical characteristics of specified data sets. Distance is measured as difference for variables included in getOption('additive_variables'), i.e. temperature (TAS) by default, and as a ratio for other variables.

Usage

```
compare(x, compare_to, fun = mean, wet_int_only = TRUE, wet_int_thr = 0.1,
   exclude_below = 0.9)
```

Arguments

x	List of decomposed variables to be compared
compare_to	Decomposed variable used as a reference
fun	Function used for comparison
wet_int_only	(logical) Should only the wet intervals be considered?
wet_int_thr	Numeric value specifying the minimum depth to be considered wet
exclude_below	Some of the intervals might not be of required length, e.g. D10 interval may have less than 10 days available. The exclude_below argument controls the minimum fraction of the interval that has to be available in order to be considered in the summary statistics.

Value

data.table summarizing the differences with columns:

```
variable factor indicating the variable
```

period specification of the averaging length with 'D' - day(s), 'M' - month(s), 'Y' - year(s) and 'G1' - the overall mean

TS averaging length in hours

sub_period indication of the aggregating scale specified by agg_by argument

comp factor indicating the data sets from x with labels given by names(x)

DIF distance between data sets from x and compare_to. Distance is measured as difference for variables included in getOption('additive_variables'), i.e. temperature (TAS) by default, and as a ratio for other variables, see dif

decomp 5

Examples

```
library(ggplot2)
data(basin_PT)
## Not run:
dobs = decomp(basin_PT[['obs_ctrl']])
dctrl = decomp(basin_PT[['sim_ctrl']])
dscen = decomp(basin_PT[['sim_scen']])
d = compare(x = list(CTRL = dctrl, SCEN = dscen), compare_to = dobs, fun = max)
ggplot(d) +
geom_line(aes(x = TS, y = DIF, col = factor(sub_period))) +
facet_grid(variable ~ comp, scale = 'free') +
scale_x_log10()
## End(Not run)
```

decomp

Decomposition of time-series

Description

Calculate series of averages over the periods specified in the period argument into the inpur data.table.

Usage

```
decomp(x, period = c("Y1", "M6", "M3", "M1", "D15", "D1"), agg_by = quarter,
full_return = FALSE, remove_incomplete = TRUE)
```

Arguments

Х	data.table with columns DTM (date), variable and value. Any number of variables are in principle allowed.
period	The periods over which the averages will be calculated, see Details
agg_by	Function for specification of the period (season, month) to be additionaly included in output, see Details
full_return	(logical) Should the average be repeated for each scale along with original time series? Default is FALSE (e.g. for M1 only monthly and not daily time series is returned)
remove_incompl	ete

Should the incomplete years be removed from results? Default is TRUE

Details

The original time series in daily time step is decomposed into series of averages ove periods specified in periods argument using letter codes 'D' - day(s), 'M' - month(s), 'Y' - year(s) followed by number corresponding to number of periods and 'G1' the overall mean. The periods must be given

6 difs

in order from longest to shortest, the overall mean is always included (and needs not to be specified in period). Shorter periods are always identified within the closest longer periods, i.e. each shorter period is included in exactly one longer period. As a result, the averages may be calculated over shorter periods than specified. This is due to varying length of "month" and "year" periods. The actual length used for averaging is included in the output. To make further assessment of the decomposed objects easier, indicator of period within the year (e.g. quarter or month) as specified by agg_by argument is included in the output.

Value

```
data.table with variables:
```

```
variable factor indicating the variable
```

DTM date

```
period specification of the averaging length with 'D' - day(s), 'M' - month(s), 'Y' - year(s) and 'G1' - the overall mean
```

value value of the variable for given averaging length

sub_period indication of the aggregating scale specified by agg_by argument

period_pos average date of the interval

N real length of the vectors used for calculating averages

TS averaging length in hours

Examples

```
data(basin_PT)
str(basin_PT)
basin_PT[['obs_ctrl']]
dobs = decomp(basin_PT[['obs_ctrl']], period = c('1 year', '1 month', '1 day'))
```

difs

Functions for evaluating distance between variables

Description

Functions for evaluating distance between variables

Usage

```
dif(x, y, var)
rev_dif(x, y, var)
rev_difv(x, var)
```

m2s 7

Arguments

x, y variables to be compared var variable code

Value

Difference or ratio of x and y (for dif) and sum or product (for rev_dif and rev_difv). Distance is measured as difference for variables included in getOption('additive_variables'), i.e. temperature (TAS) by default, and as a ratio for other variables.

While rev_dif returns sum(x, y) or prod(x, y), rev_difv takes single vector x and returns sum(x) or prod(x).

Used mainly in other functions of the package.

Examples

```
getOption('additive_variables')

# calculate distance of 2 vectors
dif(c(10, 20, 30), c(11, 18, 3), 'TAS')
dif(c(10, 20, 30), c(11, 18, 3), 'PR')

# inverse for 2 vectors
rev_dif(c(10, 20, 30), c(11, 18, 3), 'TAS')

# inverse for 1 vector
rev_difv(c(10, 1.1, .9), 'TAS')
```

m2s

Indication of a season

Description

Indication of a season

Usage

```
month2sea(dtm, year_starts = months(0))
sscale2sea(sub_scale, year_starts = months(0))
```

Arguments

dtm a Date object

sub_scale integer indicating the season

8 msTrans_abs

Value

3 letter code (as DJF, JJA etc.) specifying the season

Examples

```
month2sea(as.Date('2000-01-01') + months(1:10) )
sscale2sea(c(1, 1, 2, 2, 2, 3, 3), year_starts = months(-1))
```

msTrans_abs

Multiscale quantile mapping bias correction

Description

Applies standard quantile mapping at custom time scales.

Usage

```
msTrans_abs(dta, agg_by = month, wet_int_thr = 0.1, maxiter = 10, tol = 1e-04, qstep = 0.001, period = c("G1", "Y1", "M3", "M1", "D1"))
```

Arguments

dta	List with components FROM (simulated data for the control period), TO (observed data) and NEWDATA (data to be corrected). Each component is a data.table with columns DTM (date) and the climate variables (typically PR - precipitation and TAS - temperature)
agg_by	Function for specification of the period (season, month) to be additionaly included in output, see Details
wet_int_thr	Numeric value specifying the minimum depth to be considered wet
maxiter	Maximum number of iterations, see Details
tol	Stoping criterion of the iteration cycle, see Details
qstep	A numeric value between 0 and 1. The quantile mapping is fitted only for the quantiles defined by quantile(0,1,probs=seq(0,1,by=qstep). Passed to doQmapQUANT.
period	Specification of the aggregation lengths the correction is applied at with 'D' - day(s), 'M' - month(s), 'Y' - year(s) and 'G1' - the overall mean

Details

The procedure utilizes standard quantile mapping from the qmap-package, but at multiple time scales. Since correction at particular temporal scale influences values at other aggregations, the procedure is applied iterativelly until the maximum number of iterations (maxiter) is reached or the difference between succesive iteration step is smaller than tol. Differences between corrected and uncorrected variable at longer time scales are used to modify daily values after each iteration step (see e.g. Mehrorta and Sharma, 2016; Pegram et al. 2009). To make further assessment of the decomposed objects easier, indicator of period within the year (e.g. quarter or month) as specified by agg_by argument is included in the output.

msTrans_dif

Value

data.table with corrected data

References

Hanel, M., Kozin, R., 2016. Bias and projected changes in climate model simulations at multiple time scales: consequences for hydrological impact assessment. Environmental Modelling and Software, submitted.

Mehrotra, R., Sharma, A., 2016. A multivariate quantile-matching bias correction approach with auto-and cross-dependence across multiple time scales: Implications for downscaling. Journal of Climate 29, 3519-3539.

Pegram, G.G., et al., 2009. A nested multisite daily rainfall stochastic generation model. Journal of Hydrology 371, 142-153.

Examples

```
data("basin_PT")
scen = basin_PT$sim_scen
ctrl = basin_PT$sim_ctrl
obs = basin_PT$obs_ctrl
dta = list(TO = obs, FROM = ctrl, NEWDATA = scen)
## Not run:
msTrans_abs(dta, maxiter = 10, period = 'D1')
## End(Not run)
```

msTrans_dif

Multiscale delta method

Description

Transforms observed data such that the changes in summary statistics of variables at custom time scales are similar to those obtained from climate model simulation. Number of functions can be used to summarize the variables.

Usage

```
msTrans_dif(dta, model = "const", model_par = list(NULL), agg_by = month,
  wet_int_thr = 0.1, maxiter = 10, tol = 1e-04, period = c("G1", "Y1",
  "M1", "D1"), qstep = 0.001)
```

Arguments

dta

List with components FROM (simulated data for the control period), TO (simulated data for the scenario period) and NEWDATA (observed data to be transformed). Each component is a data. table with columns DTM (date) and the climate variables (typically PR - precipitation and TAS - temperature)

10 prob

One of loess, const, identity, lm, smooth, runmed, smooth.spline. The model model is used to provide statistical summary of the empirical cumulative distribution function. model_par optional parameters of the model Function for specification of the period (season, month) to be additionaly inagg_by cluded in output, see Details Numeric value specifying the minimum depth to be considered wet wet_int_thr Maximum number of iterations, see Details maxiter tol Stoping criterion of the iteration cycle, see Details Specification of the aggregation lengths the correction is applied at with 'D' period day(s), 'M' - month(s), 'Y' - year(s) and 'G1' - the overall mean A numeric value between 0 and 1. The ecdf is calculated only for the quantiles

defined by quantile(0, 1, probs = seq(0, 1, by = qstep)).

Value

transformed data.table

References

qstep

Hanel, M., Kozin, R., 2016. Bias and projected changes in climate model simulations at multiple time scales: consequences for hydrological impact assessment. Environmental Modelling and Software, submitted.

Examples

```
data("basin_PT")
scen = basin_PT$sim_scen
ctrl = basin_PT$sim_ctrl
obs = basin_PT$obs_ctrl
dta = list(TO = scen, FROM = ctrl, NEWDATA = obs)
msTrans_dif(dta, maxiter = 10, period = 'D1')
## End(Not run)
```

prob

Evaluation of empirical cumulative distribution function

Description

Evaluation of empirical cumulative distribution function

Usage

prob(x)

Q 11

Arguments

x vector of values

Value

value of the empirical distribution function evaluated at x

Examples

```
prob(rnorm(10))
```

Q

Convenience function for calculation of quantiles

Description

The typical use is in compare to avoid anonymous functions in specification of its fun argument.

Usage

```
Q(p, ...)
```

Arguments

- p Specification of the quantile
- ... other arguments passed to quantile

Value

function calculating the p-th quantile

Examples

```
q90 = Q(.9)
class(q90)
q90(rnorm(10))
```

12 vcompare

tscale

Convert averaging length code to hours

Description

Period durations are calculated by the lubridate package.

Usage

```
tscale(x, nyears = 30)
```

Arguments

x Vector of the averaging period codes

nyears Overall number of years - used for conversion of the overall mean

Value

numerical vector of durations in hours

Examples

```
tscale('M1')
tscale('G1', nyears = 25)
```

vcompare

Assess the relations between two decomposed variables

Description

Assess the relations between two decomposed variables

Usage

```
vcompare(x, fun = cor, wet_int_only = TRUE, wet_int_thr = 0.1,
  exclude_below = 0.9)
```

Arguments

Χ .	List of	decon	nposed	objects
-----	---------	-------	--------	---------

fun Function to sumarize dependence (like cor, cov)
wet_int_only (logical) Should only the wet intervals be considered?

exclude_below Some of the intervals might not be of required length, e.g. D10 interval may

have less than 10 days available. The exclude_below argument controls the minimum fraction of the interval that has to be available in order to be consid-

ered in the summary statistics.

vcompare 13

Details

vcompare compares the relation between all pairs of variables included in x, typically precipitation and temperature, but other variables may be included also (e.g. runoff).

Value

data.table summarizing the relation with columns:

```
variable factor indicating the variable
period specification of the averaging length with 'D' - day(s), 'M' - month(s), 'Y' - year(s) and 'G1' - the overall mean
TS averaging length in hours
sub_period indication of the aggregating scale specified by agg_by argument
comp factor indicating the data sets from x with labels given by names(x)
```

DIF distance between data sets from x and compare_to. Distance is measured as difference for variables included in getOption('additive_variables'), i.e. temperature (TAS) by default, and as a ratio for other variables, see dif

Examples

```
library(ggplot2)
data(basin_PT)
## Not run:
dobs = decomp(basin_PT[['obs_ctrl']])
dctrl = decomp(basin_PT[['sim_ctrl']])
d = vcompare(x = list(OBS = dobs, CTRL = dctrl), fun = cov)
ggplot(d[period!='G1']) +
geom_line(aes(x = TS, y = value, col = factor(sub_period))) +
facet_grid(VARS~ID) +
scale_x_log10()
## End(Not run)
```

Index

```
* datasets
     basin_PT, 2
{\tt basin\_PT, \textcolor{red}{2}}
code2period(codes), 3
codes, 3
compare, 2, 4, 11
cut.Date, 3
decomp, 2, 5
dif, 4, 13
dif(difs), 6
difs, 6
{\tt doQmapQUANT}, \textcolor{red}{8}
lubridate, 12
m2s, 7
month2sea (m2s), 7
msTrans_abs, 2, 8
msTrans_dif, 2, 9
\verb|musica-package|, 2
options, 2
period2code (codes), 3
prob, 10
Q, 11
qmap, 8
quantile, 11
rev_dif(difs), 6
rev_difv (difs), 6
sscale2sea (m2s), 7
tscale, 12
vcompare, 2, 12
```