
Package Vignette for ndtv: Network Dynamic

Temporal Visualizations (Version 0.13.3)

Skye Bender-deMoll

November 20, 2022

Contents

1 Introduction 2

2 A quick example 2

2.1 Reinventing the wheel . 2
2.2 What just happened? . 3

3 A tergm simulation example 5

3.1 Data Setup . 5
3.2 Animation Setup . 7
3.3 Playing an animation in R plot window 7
3.4 Saving an animation as video . 8
3.5 Viewing animation as an interactive web page 8
3.6 Viewing interactive animation in RStudio 8
3.7 Other views . 9

4 Slicing time 10

5 Layout algorithms for animations 14

5.1 Kamada-Kawai adaptation . 14
5.2 MDSJ (Multidimensional Scaling for Java) 14
5.3 Use a TEA attribute . 15
5.4 Graphviz . 15
5.5 User-generated layout functions 16
5.6 Other techniques . 16

6 Vertex dynamics 16

7 Animating graphic attributes 19

7.1 Using dynamic attributes (TEAs) 19
7.2 Functional plot arguments . 20
7.3 Special e�ects functions . 21

1

8 Exploring proximity with timelines 21

9 Dependencies for Animations 28

9.1 Java (for MDSJ) . 28
9.2 FFmpeg . 29

10 Compressing video 29

11 Reference for the main commands 29

11.1 compute.animation() . 29
11.2 render.animation() . 30
11.3 saveVideo() . 31
11.4 render.d3movie . 32

12 Limitations 32

12.1 Size limits . 32

1 Introduction

The Network Dynamic Temporal Visualization (ndtv) package provides tools
for visualizing changes in network structure and attributes over time. It works
with longitudinal network information encoded in networkDynamic (Butts et al.
, 2022) objects as its input, and outputs animated movies. The package includes
timelines and other types of dynamic visualizations of evolving relational struc-
tures. The core use-case for development is examining the output of statistical
network models (such as those produced by the tergm (Krivitsky, et al , 2021)
package in statnet (Handcock et al , 2003)) and simulations of disease spread
across networks. The ndtv (Bender-deMoll , 2022) package relies on many other
packages to do much of the heavy lifting, especially animation (Yihui, Xie et al.
, 2013) and networkDynamic and optionally relies external libraries (FFmpeg)
to save movies out of the R environment. To use ndtv e�ectively you must be
already familiar with the functionality and assumptions of networkDynamic.

A more in-depth tutorial is located at http://statnet.csde.washington.
edu/workshops/SUNBELT/current/ndtv/ndtv_workshop.html

This work was supported by grant R01HD68395 from the National Institute
of Health.

2 A quick example

2.1 Reinventing the wheel

Lets get started! We can render a trivially simple animation in the R plot
window.

> library(ndtv) # also loads animation and networkDynamic

> wheel <- network.initialize(10) # create a toy network

2

http://statnet.csde.washington.edu/workshops/SUNBELT/current/ndtv/ndtv_workshop.html
http://statnet.csde.washington.edu/workshops/SUNBELT/current/ndtv/ndtv_workshop.html

> add.edges.active(wheel,tail=1:9,head=c(2:9,1),onset=1:9, terminus=11)

> add.edges.active(wheel,tail=10,head=c(1:9),onset=10, terminus=12)

> plot(wheel) # peek at the static version

> render.animation(wheel) # compute and render

slice parameters:

start:1

end:12

interval:1

aggregate.dur:1

rule:latest

> ani.replay() # play back in plot window

Hopefully, when you ran ani.replay() you saw a bunch of labeled nodes
moving smoothly around in the R plot window, with edges slowly appearing to
link them into a circle. Finally a set of �spoke� edges appear to draw a vertex
into the center. If that didn't work, the footnote has a link to an example of
the movie 1 you are supposed to see. For some kinds of networks the animated
version gives a very di�erent impression of the connectivity of the network that
a static plot of the same network (Figure 1)

2.2 What just happened?

Simple right? Yes, but that is because most of the di�cult parts happened
under the hood using default values. In a nutshell, this is how it worked:

1. We created a networkDynamic object named wheel containing informa-
tion about the timing of edge activity.

2. render.animation() asked the package to create an animation for wheel
but we didn't include any arguments indicating what should be rendered
or how.

3. Since render.animation() didn't �nd any stored coordinate informa-
tion about where to draw the vertices and edges, it (invisibly) called
compute.animation() with default arguments to �gure out where to po-
sition the vertices at each time step.

4. Because we didn't tell compute.animation() what time points to look at
when doing its computations, it reported this, "No slice.par found",
and made a guess as to when the animation should start and end (the
earliest and latest observed times in the network) and how much time
should be incremented between each set of layout coordinate calculations.

1http://statnet.csde.washington.edu/movies/ndtv_vignette/wheel.mp4

3

http://statnet.csde.washington.edu/movies/ndtv_vignette/wheel.mp4

1

2

3

4
5

6

7

8

9

10

Figure 1: Standard network plot of our trivial �wheel� network does not re-
veal dynamics. Compare with animated movie version: http://statnet.csde.
washington.edu/movies/ndtv_vignette/wheel.mp4

4

http://statnet.csde.washington.edu/movies/ndtv_vignette/wheel.mp4
http://statnet.csde.washington.edu/movies/ndtv_vignette/wheel.mp4

5. compute.animation() then stepped through the wheel network, com-
puting coordinates for each time step and storing them. (This was the
"Calculating layout for network slice from time 1 to 2" ... part.)

6. render.animation() also stepped through the network, using the stored
coordinates, plot.network() and ani.record() functions to cache snap-
shots of the network. It also caches a number of �tweening� images be-
tween each time step to smoothly interpolate the positions of the vertices.
"rendering 10 frames for slice 1" ...

7. ani.replay() quickly redraws the sequence of cached images in the plot
window as an animation.

Of course, using defaults doesn't give much control of what should be ren-
dered and how it should look. For more precise control of the processes, layout
algorithms, etc, we can call each of the steps in sequence.

3 A tergm simulation example

Lets look at a more realistic example using output from the simulation of a crude
dynamic model. This uses the statnet tergm package to estimate the parameters
for an edge formation and dissolution process which produces a network similar
to the Florentine business network (?ergm::flobusiness) given as input. Once
the model has been estimated, we can take a number of sequential draws from it
to see how the network might �evolve� over time. When we generate the movie,
we can include the model statistics on screen to see how they are in�uenced
by edge additions and deletions. This example also assumes you have some of
the external libraries working (Java and FFmpeg) so you run into problems, try
skipping to Dependencies (section 9) and come back.

Note that while the tergm package is not required to use ndtv, it is required
for many of the examples in this vignette. If you are not interested in run-
ning the model, you can just load a corresponding example data object with
data(stergm.sim.1).

3.1 Data Setup

First load in the main necessary libraries (each of which loads a bunch of addi-
tional R libraries).

> require(ndtv) # dynamic network animations

> require(tergm) # dynamic ergm simulations

Load in the original Florentine business network.

> if (require('ergm')){ # this example only works if ergm installed

+

+ data("florentine", package='ergm') # an example network

5

+ plot(flobusiness,displaylabels=TRUE)

+

+ }

Acciaiuoli

Albizzi

Barbadori

Bischeri

Castellani

Ginori

Guadagni Lamberteschi

Medici

Pazzi

Peruzzi

Pucci

Ridolfi

Salviati

Strozzi

Tornabuoni

De�ne basic stergm model with formation and dissolution parameters.

> if (require('tergm')){ # this example only works if tergm installed

+

+ theta.diss <- log(9)

+ stergm.fit.1 <- stergm(flobusiness,

+ formation= ~edges+gwesp(0,fixed=TRUE),

+ dissolution = ~offset(edges),

+ targets="formation",

+ offset.coef.diss = theta.diss,

+ estimate = "EGMME")

+

+ }

6

(time passes, lots simulation status output hidden)
Now we can simulate 100 discrete time steps from the model and save them

as a dynamicNetwork object.

> if (require('tergm')){ # this example only if tergm installed

+

+ stergm.sim.1 <- simulate(stergm.fit.1,

+ nsim=1, time.slices = 100)

+

+ } else { # if no tergm, we can use pre-generated example output

+

+ data(stergm.sim.1)

+

+ }

3.2 Animation Setup

Since this isn't a terribly exciting simulation, lets only calculate coordinates for
part of the simulated time period by using the start and end parameters of
slice.par to specify a time range.

> slice.par<-list(start=75,end=100,interval=1,

+ aggregate.dur=1,rule="latest")

> compute.animation(stergm.sim.1,slice.par=slice.par)

3.3 Playing an animation in R plot window

Now that we have all the coordinates stored, we can de�ne some parameters for
render.par to specify how many tween.frames to render, and tell it to display
the time and the summary statistics formula.

> render.par=list(tween.frames=5,show.time=TRUE,

+ show.stats="~edges+gwesp(0,fixed=TRUE)")

Then we ask it to graphically render the animation, passing in some of the
standard plot.network graphics arguments to change the color of the edges
and show the labels with a smaller size and blue color.

> render.animation(stergm.sim.1,render.par=render.par,

+ edge.col="darkgray",displaylabels=TRUE,

+ label.cex=.6,label.col="blue")

This takes some time and produces many lines output which we are not showing.
The output could also be suppressed by adding a verbose=FALSE argument.

After it has �nished, replay the movie in an R plot window.

> ani.replay()

7

Notice that in addition to the labels on the bottom of the plot indicating
which time step is being viewed, it also displays the network statistics of interest
for the time step. When the �edges� parameter increases up, you can see the
density on the graph increase and the number of isolates decrease. Eventually
the model corrects, and the parameter drifts back down.

3.4 Saving an animation as video

We can also use the animation library to save out the movie in .mp4 format
(assuming that the FFmpeg or avconv library is installed on your machine).

> saveVideo(ani.replay(),video.name="stergm.sim.1.mp4",

+ other.opts="-b 5000k",clean=TRUE)

This should produce a movie2 in an R working directory on disk. The
other.opts parameter is set here to generate a higher-quality video than the
default, but this will result in a large �le size. For more information on com-
pressing videos for the web, see Compressing Video (section 10).

3.5 Viewing animation as an interactive web page

An alternate way to view the animation is to render it out as an HTML5 an-
imation embedded in a web page using the ndtv-d3 player (Michalec, G., et
al. , 2014). This has the advantage of not requiring any external libraries,
but does need a modern web browser to display properly. render.d3movie

operates similarly to render.animation, using the same coordinates stored by
compute.animation.

> render.d3movie(stergm.sim.1,render.par=render.par,

+ edge.col="darkgray",displaylabels=TRUE,

+ label.cex=.6,label.col="blue",

+ filename='stergm.sim1.html')

This should open web browser displaying the page with a Javascript anima-
tion player and an interactive version of the network. There is an additional
vignette demoing the features (such as interactive tooltips, and embedding in
Rmarkdown documents) of the ndtv-d3 player included in the ndtv package.
For an example, see http://statnet.github.io/ndtv-d3/

3.6 Viewing interactive animation in RStudio

If you use the RStudio IDE, you can view the interactive animation on the built
in viewer with

2http://statnet.csde.washington.edu/movies/ndtv_vignette/stergm.sim.1.mp4

8

http://statnet.github.io/ndtv-d3/
http://statnet.csde.washington.edu/movies/ndtv_vignette/stergm.sim.1.mp4

> render.d3movie(stergm.sim.1,render.par=render.par,

+ edge.col="darkgray",displaylabels=TRUE,

+ label.cex=.6,label.col="blue",

+ output.mode = 'htmlWidget')

3.7 Other views

There is also a filmstrip() function that will create a �small multiple� plot
using frames of the animation to construct a visual summary of the network
changes as a static plot.

> filmstrip(stergm.sim.1,displaylabels=FALSE)

t=75−76 t=78.125−79.125 t=81.25−82.25

t=84.375−85.375 t=87.5−88.5 t=90.625−91.625

t=93.75−94.75 t=96.875−97.875 t=100−101

Or plot the �lmstrip frames in an orthagonal projection with time

> timePrism(stergm.sim.1,at = c(75,87,100))

9

 7
5

 8
0

 8
5

 9
0

 9
5

10
0

tim
e

4 Slicing time

The basic network layout algorithms we are using, like most �traditional' network
metrics, don't really know what to do with dynamic networks. They need to be
fed a static set of relationships which can be used to compute a set of distances in
a Euclidean space suitable for plotting. A common way to apply static metrics
to a time-varying object is to sample it, taking a sequence static observations
at a series of time points and using these to describe the changes over time. In
the case of networks, we call this �extracting� or �slicing�.

Slicing up a dynamic network created from discrete panels may be fairly
straightforward but it is much less clear how to do it when working with con-
tinuous time or streaming relations. How often should we slice? Should the
slices measure the state of the network at a speci�c instant, or aggregate over
a longer time period? The answer probably depends on what the important
features to visualize are in your data-set. The slice.par parameters make it

10

possible to experiment with various slicing options. In many situations we have
even found (Bender-deMoll and McFarland , 2006) it useful to let slices mostly
overlap � incrementing each one by a small value to help show �uid changes on a
moderate timescale instead of the rapid changes happening on a �ne timescale.

As an example, lets look at the McFarland (McFarland , 2001) data-set of
streaming classroom interactions and see what happens when we chop it up in
various ways. First, we can animate at the �ne time scale, viewing the �rst
half-hour of class using instantaneous slices.

> data(McFarland_cls33_10_16_96)

> slice.par<-list(start=0,end=30,interval=2.5,

+ aggregate.dur=0,rule="latest")

> compute.animation(cls33_10_16_96,

+ slice.par=slice.par,animation.mode='MDSJ')

> render.animation(cls33_10_16_96,

+ displaylabels=FALSE,vertex.cex=1.5)

> ani.replay()

We can also get an idea of how we are slicing up the network by using the
timeline() function to plot the slice.par parameters against the vertex and
edge spells. Our very thin slices (gray vertical lines) (aggregate.dur=0) are
not intersecting many edge events (purple numbers) at once.

> timeline(cls33_10_16_96,slice.par=slice.par)

11

0 10 20 30 40 50

time

ed
ge

 a
nd

 v
er

te
x

sp
el

ls
 o

f n
et

w
or

k
 c

ls
33

_1
0_

16
_9

6

1 1 1 1 1 1 12 2 2 23 3 3 34 4 4 4 456
77 7 7 78 8 89 9 9 9 9 9 910 1011 11 1112 12 12 12 12 1213 13 13 13 13 1314 14 1415 15 1516 1617 17 1717 17 1718 18 18 18 18 1819 19 1920 20 2021 21 2122 22 22 2223 23 23 23 23 2324 2425 25 25 2526 26262626 26 26 26 2627 27272727 27 2728 28282828 28 28 2829 29 29292929 29 29 2930 30 30303030 30 30 3031 31313131 31 31 31 3132 32323232 32 32 3233 33333333 33 33 33 3334 34 34343434 34 34 3435 35353535 35 35 35 3536 36 36363636 36 36 3637 37373737 37 37 3738 38383838 38 3839 39393939 39 39 39 393940 40404040 40 40 40 4041 4141414141 41 41 41 4142 42424242 42 42 42 4243 43434343 43 4344 44444444 44 44 44 4445 4545 45 45 4545 45 4545 45 45 45 454546 46 46 46 4646 46 4646 46 46 46 464647 47 47 47 47 47 47 474747 4748 48 48 48 48 48 48 4848 4849 49 4949 49 49 49 49 49 494950 50 50 5050 50 50 50 50 50 5050 50 5051 51 51 5151 51 5151 51 51 515152 52 5252 52 5252 52 52 52 5253 53 53 53 53 53 5354 54 54 54 54 54 5455 55 5556 56 565757 57 57 57 57 57 57 57 5757 57575858 58 58 58 58 58 58 58 5858 585859 59 5960 606060 60 60 60 6060 606060 6061 616161 61 61 61 6161 616161 616262 62 62 62 6262 62 62 626363 63 63 63 6363 63 63 636465666768 686970717273 73 73 73747576 76777879 7980 80 80 80 80 8080 80 8081 81 81 81 81 8181 81 8182 82 82 82 82 8283 83 83 83 83 8384 84 8484 8484 84 84 84 84 84 8485 85 8585 8585 85 85 85 85 85 8586 86 86 8687 87 87 87 8788 88 88 8889 89 899090 90 9090 90 909191 91 9191 91 9192 92 92 92 92 9293 93 93 93 93 9394 94 9495 9596 9697 97 97 97 979798 98 98 98 989899 99 9999 99 99 9999 99 999999100 100 100100100 100 100100 100 100100100101 101 101102 102103 103104 104104 104104 104104 104104105 105105 105105 105105 105105106 106106106 106 106 106 106106107 107107107 107 107 107 107107108 108109 109110 110 110111 111112112113114115116117118119 119120 120121122123124125 12612712812812912

34
56
78
91011121314151617181920

Notice that in the animation most of the vertices are isolates, occasionally
linked into brief pairs or stars by speech acts3. However, if we aggregate over a
longer time period of 2.5 minutes we start to see the individual acts form into
triads and groups4.

> slice.par<-list(start=0,end=30,interval=2.5,

+ aggregate.dur=2.5,rule="latest")

> compute.animation(cls33_10_16_96,

+ slice.par=slice.par,animation.mode='MDSJ')

> render.animation(cls33_10_16_96,

+ displaylabels=FALSE,vertex.cex=1.5)

> ani.replay()

To reveal slower structural patterns we can make the aggregation period even
longer, and let the slices overlap (by making interval less than aggregate.dur)

3http://statnet.csde.washington.edu/movies/ndtv_vignette/cls33_10_16_96v1.mp4
4http://statnet.csde.washington.edu/movies/ndtv_vignette/cls33_10_16_96v2.mp4

12

http://statnet.csde.washington.edu/movies/ndtv_vignette/cls33_10_16_96v1.mp4
http://statnet.csde.washington.edu/movies/ndtv_vignette/cls33_10_16_96v2.mp4

so that the changes will be less dramatic between successive views5.

> slice.par<-list(start=0,end=30,interval=1,

+ aggregate.dur=5,rule="latest")

> timeline(cls33_10_16_96,slice.par=slice.par)

> compute.animation(cls33_10_16_96,

+ slice.par=slice.par,animation.mode='MDSJ')

> render.animation(cls33_10_16_96,

+ displaylabels=FALSE,vertex.cex=1.5)

> ani.replay()

0 10 20 30 40 50

time

ed
ge

 a
nd

 v
er

te
x

sp
el

ls
 o

f n
et

w
or

k
 c

ls
33

_1
0_

16
_9

6

1 1 1 1 1 1 12 2 2 23 3 3 34 4 4 4 456
77 7 7 78 8 89 9 9 9 9 9 910 1011 11 1112 12 12 12 12 1213 13 13 13 13 1314 14 1415 15 1516 1617 17 1717 17 1718 18 18 18 18 1819 19 1920 20 2021 21 2122 22 22 2223 23 23 23 23 2324 2425 25 25 2526 26262626 26 26 26 2627 27272727 27 2728 28282828 28 28 2829 29 29292929 29 29 2930 30 30303030 30 30 3031 31313131 31 31 31 3132 32323232 32 32 3233 33333333 33 33 33 3334 34 34343434 34 34 3435 35353535 35 35 35 3536 36 36363636 36 36 3637 37373737 37 37 3738 38383838 38 3839 39393939 39 39 39 393940 40404040 40 40 40 4041 4141414141 41 41 41 4142 42424242 42 42 42 4243 43434343 43 4344 44444444 44 44 44 4445 4545 45 45 4545 45 4545 45 45 45 454546 46 46 46 4646 46 4646 46 46 46 464647 47 47 47 47 47 47 474747 4748 48 48 48 48 48 48 4848 4849 49 4949 49 49 49 49 49 494950 50 50 5050 50 50 50 50 50 5050 50 5051 51 51 5151 51 5151 51 51 515152 52 5252 52 5252 52 52 52 5253 53 53 53 53 53 5354 54 54 54 54 54 5455 55 5556 56 565757 57 57 57 57 57 57 57 5757 57575858 58 58 58 58 58 58 58 5858 585859 59 5960 606060 60 60 60 6060 606060 6061 616161 61 61 61 6161 616161 616262 62 62 62 6262 62 62 626363 63 63 63 6363 63 63 636465666768 686970717273 73 73 73747576 76777879 7980 80 80 80 80 8080 80 8081 81 81 81 81 8181 81 8182 82 82 82 82 8283 83 83 83 83 8384 84 8484 8484 84 84 84 84 84 8485 85 8585 8585 85 85 85 85 85 8586 86 86 8687 87 87 87 8788 88 88 8889 89 899090 90 9090 90 909191 91 9191 91 9192 92 92 92 92 9293 93 93 93 93 9394 94 9495 9596 9697 97 97 97 979798 98 98 98 989899 99 9999 99 99 9999 99 999999100 100 100100100 100 100100 100 100100100101 101 101102 102103 103104 104104 104104 104104 104104105 105105 105105 105105 105105106 106106106 106 106 106 106106107 107107107 107 107 107 107107108 108109 109110 110 110111 111112112113114115116117118119 119120 120121122123124125 12612712812812912

34
56
78
91011121314151617181920

Note that when we use a long duration slice, it is quite likely that the edge
between a pair of vertices has more than one active period. How should this
condition be handled? If the edge has attributes, which ones should be shown?
Ideally we might want to aggregate the edges in some way, perhaps adding the
weights together. Currently edge attributes are not aggregated and the rule

5http://statnet.csde.washington.edu/movies/ndtv_vignette/cls33_10_16_96v3.mp4

13

http://statnet.csde.washington.edu/movies/ndtv_vignette/cls33_10_16_96v3.mp4

element of the slice.par argument controls which attribute should be returned
for an edge when multiple elements are encountered. Generally rule='latest'

gives reasonable results, returning the most recent value found within the query
spell.

5 Layout algorithms for animations

Producing �good� (for an admittedly ambiguous de�nition of good) layouts of
networks is generally a computationally di�cult problem. There are a wide vari-
ety of algorithms and approaches being developed. Doing layouts for animations
adds additional challenges because it is usually desirable that the layouts remain
stable over time. Ideally this means that the layouts don't change much unless
the network structure changes, and that small changes in the network structure
should lead to small changes in the layouts. Many otherwise excellent static
layout algorithms are not stable in this sense, or they may require very speci�c
parameter settings to improve their results for animation applications.

The network.layout.animate.* layouts included in ndtv are adaptations
or wrappers for existing static layout algorithms with some appropriate pa-
rameter presets. They all accept the coordinates of the previous layout as an
argument so that they can try to construct a suitably smooth sequence of node
positions. They also include the default.dist parameter which can be tweaked
to increase or decrease the spacing between isolates and disconnected compo-
nents. The default value for default.dist is sqrt(network.size(net)), see
?layout.dist for more information.

It is important to remember that there are many types of networks for
which these methods will probably not produce useful visualizations. We've
had the most success with networks that are fairly sparse, where a relatively
small number of ties are changing between time slices, and node turnover is not
too high.

5.1 Kamada-Kawai adaptation

The function network.layout.animate.kamadakawai is essentially a wrapper
for network.layout.kamadakawai. It computes a symmetric geodesic distance
matrix from the input network (replacing in�nite values with default.dist),
and seeds the initial coordinates for each slice with the results of the previous
slice in an attempt to �nd solutions that are as close as possible to the previous
positions. It is not as fast as MDSJ, and the layouts it produces are not as
smooth. But it has the advantage of being written entirely in R, so it doesn't
have the pesky external dependencies of MDSJ. For this reason it is the default
layout algorithm.

5.2 MDSJ (Multidimensional Scaling for Java)

According to its authors:

14

MDSJ (MDSJ , 2009) is a free Java library for Multidimensional
Scaling (MDS). It is a free, non-graphical, self-contained, lightweight
implementation of basic MDS algorithms and intended to be used
both as a standalone application and as a building block in Java-
based data analysis and visualization software.

MDSJ is a very e�cient implementation of MDS so network.layout.animate.MDSJ
gives the best performance of any of the algorithms tested so far � despite the
overhead of writing matrices out to a Java program and reading coordinates
back in. Like all of the MDS-variants, MDSJ will check and give errors if you
try to call it with a non-symmetric distance matrix. Currently max_iter is the
only user argument that is passed through to the Java wrapper. It controls the
maximum number of optimization steps. The default value is 50 which is usu-
ally su�cient. But it can be increased for layouts that appear to be not entirely
converging, or perhaps decreased to save some speed on simpler layouts.

Please note that the MDSJ library is released under Creative Commons
License �by-nc-sa� 3.0. This means using the algorithm for commercial purposes
would be a violation of the license. Due to CRAN's license restrictions, the
MDSJ binary is not distributed along with the (GPL-licensed) ndtv package.
Instead, the �rst time the layout is called, it will ask if you want to automatically
download and install the library. More information about the MDSJ library
and its licensing can be found at http://www.inf.uni-konstanz.de/algo/

software/mdsj/.

5.3 Use a TEA attribute

The useAttribute layout is useful if you already know exactly where each
vertex should be drawn at each timestep, and you just want to render out the
network. It just needs to know the names of the dynamic attribute holding the
x coordinate and the y coordinate for each time step.

5.4 Graphviz

The Graphviz layout is a wrapper for the Graphviz http://http://www.graphviz.
org software library (John Ellson et al , 2001). If the library is installed on
your system (see ?install.graphviz), it provides a number of additional high-
quality layouts. When layout is called it checks for a working Graphviz installa-
tion (falling back to Kamada-Kawai if Graphviz cannot be found) and writes the
network to a temp �le using export.dot. Then the appropriate Graphviz lay-
out engine (default is neato) is executed via a system call, and the coordinates
of the vertices are parsed from the output.

Currently, the arguments to layout.par can be used to specify the Graphviz
layout engine to use (i.e. gv.engine='neato' for stress-minimized, gv.engine='dot'
for hierarchical, gv.engine='fdp' for force-directed, etc) and additional command-
line control parameters can be passed in via gv.args. For example, to use the
'dot' layout, but change layout rank direction to Left-Right:

15

http://www.inf.uni-konstanz.de/algo/software/mdsj/
http://www.inf.uni-konstanz.de/algo/software/mdsj/
http://http://www.graphviz.org
http://http://www.graphviz.org

> layout.par=list(gv.engine='dot',gv.args='-Grankdir=LR')

See http://www.graphviz.org/content/command-line-invocation. Note that
Graphviz's graphic rendering parameters are not used to control network plot
rendering (but they may impact layout positions).

5.5 User-generated layout functions

We can de�ne new layout functions by following the appropriate naming struc-
ture. For example, if we wanted a layout that just arranged all the active vertices
in a circle we could de�ne a new function network.layout.animate.circle.

> network.layout.animate.circle <- function(net, dist.mat = NULL,

+ default.dist = NULL, seed.coords = NULL, layout.par = list(),

+ verbose=FALSE){

+

+ n<-network.size(net)

+ x<-10*cos(seq(0,2*pi, length.out=n))

+ y<-10*sin(seq(0,2*pi, length.out=n))

+ return(cbind(x,y))

+ }

We can then re-compute a new animation for the simulation output using
our new �circle' layout function.

> stergm.sim.1<-compute.animation(stergm.sim.1,

+ slice.par=slice.par,animation.mode='circle')

> render.animation(stergm.sim.1)

> ani.replay()

5.6 Other techniques

We have tested some layouts using R libraries for doing SMACOF (de Leeuw
, 2009) and standard MDS optimization. The former gave high-quality results
but was extremely slow, the later often didn't give stable results. Both may be
included in future releases of ndtv if the performance issues improve.

6 Vertex dynamics

Edges are not the only things that can change in networks. In some dynamic
network data-sets vertices also enter or leave the network (become active or
inactive). Lin Freeman's windsurfer social interaction data-set (Almquist et
all, 2011) is a good example of this. In this data-set there are di�erent people
present on the beach on di�erent days, and there is even a day of missing data.
These networks also have a lot of isolates, which tends to scrunch up the rest
of the components so they are hard to see. Setting a lower default.dist can
help with this.

16

http://www.graphviz.org/content/command-line-invocation

> data(windsurfers)

> slice.par<-list(start=1,end=31,interval=1,

+ aggregate.dur=1,rule="latest")

> windsurfers<-compute.animation(windsurfers,slice.par=slice.par,

+ default.dist=3,

+ animation.mode='MDSJ',

+ verbose=FALSE)

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

> render.animation(windsurfers,vertex.col="group1",

+ edge.col="darkgray",

+ displaylabels=TRUE,label.cex=.6,

+ label.col="blue", verbose=FALSE)

> ani.replay()

17

In this example6 the turnover of people on the beach is so great that structure
appears to change chaotically, and it is quite hard to see what is going on. Notice
also the blank period at day 25 where the network data is missing. There is
also a lot of periodicity, since a lot more people go to the beach on weekends.
So in this case, lets try a week-long slice by setting aggregate.dur=7 to try to
smooth it out so we can see some structure.

> slice.par<-list(start=0,end=24,interval=1,

+ aggregate.dur=7,rule="latest")

> windsurfers<-compute.animation(windsurfers,slice.par=slice.par,

+ default.dist=3,

+ animation.mode='MDSJ',

+ verbose=FALSE)

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

Do you want to automatically download and install the MDSJ Java library? (y/N):

> render.animation(windsurfers,vertex.col="group1",

+ edge.col="darkgray",

+ displaylabels=TRUE,label.cex=.6,

+ label.col="blue", verbose=FALSE)

> ani.replay()

6http://statnet.csde.washington.edu/movies/ndtv_vignette/windsurfers_v1.mp4

18

http://statnet.csde.washington.edu/movies/ndtv_vignette/windsurfers_v1.mp4

This new rolling��who interacted this week� network7 is larger and more
dense (which is to be expected) and also far more stable. There is still some
turnover due to people who don't make it to the beach every week but is possible
to see some of the sub-groups and the the various bridging individuals.

7 Animating graphic attributes

7.1 Using dynamic attributes (TEAs)

If a network has dynamic attributes de�ned, they can be used to de�ne graphic
properties of the network which change over time. We can activate some at-
tributes on our earlier �wheel� example, setting a dynamic attribute for edge
widths:

> activate.edge.attribute(wheel,'width',1,onset=0,terminus=3)

> activate.edge.attribute(wheel,'width',5,onset=3,terminus=7)

> activate.edge.attribute(wheel,'width',10,onset=3,terminus=Inf)

We must make sure the attributes are always de�ned for each time period
that the network will be plotted or else an error will occur. So we �rst set a
default value from -Inf to Inf before de�ning which elements we wanted to
take a special value.

> activate.vertex.attribute(wheel,'mySize',1, onset=-Inf,terminus=Inf)

> activate.vertex.attribute(wheel,'mySize',3, onset=5,terminus=10,v=4:8)

We can set values for vertex colors.

> activate.vertex.attribute(wheel,'color','gray',onset=-Inf,terminus=Inf)

> activate.vertex.attribute(wheel,'color','red',onset=5,terminus=6,v=4)

> activate.vertex.attribute(wheel,'color','green',onset=6,terminus=7,v=5)

> activate.vertex.attribute(wheel,'color','blue',onset=7,terminus=8,v=6)

> activate.vertex.attribute(wheel,'color','pink',onset=8,terminus=9,v=7)

Finally we render it, giving the names of the dynamic attributes to be used
to control the plotting parameters for edge with, vertex size, and vertex color.

> render.animation(wheel,edge.lwd='width',vertex.cex='mySize',

+ vertex.col='color',verbose=FALSE)

> ani.replay()

The attribute values for the time points are de�ned using network.collapse,
which controls the behavior if multiple values are active for the plot period.

7http://statnet.csde.washington.edu/movies/ndtv_vignette/windsurfers_v2.mp4

19

http://statnet.csde.washington.edu/movies/ndtv_vignette/windsurfers_v2.mp4

7.2 Functional plot arguments

Sometimes it is awkward or ine�cient to pre-generate dynamic attribute values.
Why create and another attribute for color if it is just a simple transformation
of an existing attribute or measure? The render.animation function has the
ability to accept the plot.network arguments as functions with special argu-
ments to be evaluated on the �y at each time point as the network is rendered.
So, for example, if we wanted to use our previously created �width� attribute to
control the color of edges along with their width:

> render.animation(wheel,edge.lwd=3,

+ edge.col=function(slice){rgb((slice%e%'width')/10,0,0)},

+ verbose=FALSE)

> ani.replay()

Notice the use of the slice argument to the function instead of the original
name of the network. The arguments of plot control functions must draw from
a speci�c set of named arguments which will be substituted in and evaluated at
each time point before plotting. The set of valid argument names is:

� net is the original (un-collapsed) network

� slice is the network collapsed to be rendered with the appropriate onset
and terminus

� s is the slice number in the sequence to be rendered

� onset is the onset (start time) of the slice to be rendered

� terminus is the terminus (end time) of the slice to be rendered

So in the example above, at each time point the edge attribute �width� is
extracted and used to control the red component of the RGB color. We can also
de�ne functions based on network measures such as betweenness:

> require(sna)

> wheel%n%'slice.par'<-list(start=1,end=10,interval=1,

+ aggregate.dur=1,rule='latest')

> render.animation(wheel,

+ vertex.cex=function(slice){(betweenness(slice)+1)/5},

+ verbose=FALSE)

> ani.replay()

In this example we had to modify the start time using the slice.par setting to
avoid time 0 because the betweenness function will give an error for a network
with no edges. The main plot commands accept functions as well, so it is
possible to do fun things like implement a crude zoom e�ect by setting xlim

and ylim parameters to be dependent on the time.

20

> render.animation(wheel,

+ xlim=function(onset){c(-5/(onset*.5),5/(onset*.5))},

+ ylim=function(onset){c(-5/(onset*.5),5/(onset*.5))},

+ verbose=FALSE)

> ani.replay()

7.3 Special e�ects functions

The package also includes some pre-written �special e�ects� functions that can
be used for common plotting tasks, such as coloring edges by their age. For
example, we can have an animation where edges start out red and fade to green
as they age.

> render.animation(wheel,

+ edge.col=effectFun('edgeAgeColor',fade.dur=5,

+ start.color='red',end.color='green'),

+ edge.lwd=4,

+ verbose=FALSE)

> ani.replay()

8 Exploring proximity with timelines

We've already introduced the timeline function in the section of slicing time.
Although it can be helpful for debugging and revealing the over density of events
in a dynamic network, it is di�cult to understand what those events imply for
changes in network structure and connectivity. The movies do a reasonably
good job (at least for sparse networks) of illustrating the moment-to-moment
changes in structure, but it is often hard to grasp the overall shifts without
rewinding and replaying the movie over-and-over.

The proximity.timeline attempts a sort of compromise. It collapses all
the momentary structure information down to a single vertical dimension, and
uses the horizontal axis for time. More precisely, the network is extracted at
each time bin and the geodesic distances are computed. But instead of creating
a 2-dimensional layout as compute.animation does, the network layout is a
single dimension indicating how relatively `close' or `far' the vertices are from
each other. Each vertex's positions in the the time steps are linked together by
a spline. So, like the timeline, each vertex traces out a horizontal trajectory,
but in this case it can swerve diagonally up and down as it moves from group
to group.

For example, if we return to the Stergm simulation example, we can contrast
the (entirely �ctional, simulated) histories of the Tornabouni and Strozzi family
marriage alliances as a blue and green lines on the proximity timeline. First we
load in a short example dataset of the �omarriage simulation.

21

> data(short.stergm.sim) # load a short example dataset of the flomarriage simulation

> proximity.timeline(short.stergm.sim,mode='sammon',

+ default.dist=10,

+ labels.at=c(1,16,25),

+ label.cex=0.7,

+ vertex.col=c(rep('gray',14),'green','blue'))

0 5 10 15 20 25

−
10

−
5

0
5

10

time

ap
pr

ox
. d

is
ta

nc
e

am
on

g
ve

rt
ic

es
 o

f s
ho

rt
.s

te
rg

m
.s

im

Acciaiuoli

Albizzi

Barbadori

Bischeri

Castellani

Ginori

Guadagni
Lamberteschi

Medici

Pazzi

Peruzzi

Pucci

Ridolfi

Salviati

Strozzi

Tornabuoni

Acciaiuoli

Albizzi

Barbadori

Bischeri
Castellani

Ginori

Guadagni

Lamberteschi

Medici
Pazzi

Peruzzi

Pucci

Ridolfi

Salviati

Strozzi

Tornabuoni

Acciaiuoli

Albizzi

Barbadori

Bischeri
Castellani

Ginori

Guadagni

Lamberteschi

Medici
Pazzi

Peruzzi

Pucci

Ridolfi

Salviati

Strozzi

Tornabuoni

Initially, Tornabouni is part of the component many of the other fami-
lies. Around t=9, they split o� and become isolated, but then pair up with
Laberteschi at t=21, and then rejoin one of the groups from the big compo-
nent (which itself split in half at t=19). For most of the simulation the Strozzi
(green), trace out a relatively horizontal existence as an isolate, but eventually
connect with the Acciaiuoli near the end.

Perhaps another way to illustrate how the proximity.timeline works is to
combine it with several static snapshots of the network (like those produced by
filmstrip).

The toy_epi_sim dataset is an example network of a trivial simulated dis-

22

ease process spreading over a simulated dynamic contact network among 100
individuals for 25 discrete time steps. It was produced by the EpiModel pack-
age, and it includes an attribute named 'ndtvcol' corresponding to the simulated
infection status of the vertices. The infection status changes over time.

> data(toy_epi_sim)

> # set up layout to draw plots under timeline

> layout(matrix(c(1,1,1,2,3,4),nrow=2,ncol=3,byrow=TRUE))

> # plot a proximity.timeline illustrating infection spread

> proximity.timeline(toy_epi_sim,vertex.col = 'ndtvcol',

+ spline.style='color.attribute',

+ mode = 'sammon',default.dist=100,

+ chain.direction='reverse')

> # plot 3 static cross-sectional networks

> # (beginning, middle and end) underneath for comparison

> plot(network.collapse(toy_epi_sim,at=1),vertex.col='ndtvcol',

+ vertex.cex=2,main='toy_epi_sim network at t=1')

> plot(network.collapse(toy_epi_sim,at=17),vertex.col='ndtvcol',

+ vertex.cex=2,main='toy_epi_sim network at=17')

> plot(network.collapse(toy_epi_sim,at=25),vertex.col='ndtvcol',

+ vertex.cex=2,main='toy_epi_sim network at t=25')

> layout(1)

23

0 5 10 15 20 25

−
10

0
−

50
0

50
10

0

time

ap
pr

ox
. d

is
ta

nc
e

am
on

g
ve

rt
ic

es
 o

f t
oy

_e
pi

_s
im

toy_epi_sim network at t=1 toy_epi_sim network at=17 toy_epi_sim network at t=25

This plot can be hard to read as a small image, it is worth rendering it in a
big plot window. In the �rst network snapshot we see a few scattered infections
(in red), some small components and a medium size component. These groups
show up in the the beginning of the timeline as bundles of lines, with larger
bundles corresponding to the larger components. There are several red lines
indicating the infections mixed in with the blue threads. As time progresses,
the bundles untwist and braid as vertices split o� to join other components.
Some vertices become isolates and tend to �y o� to the top and bottom of the
chart.

The number of red lines grows as the infection spreads. By t=17 (the sec-
ond snapshot) the network has brie�y formed a large component, viable in the
timeline as a fat bundle in the center. At the end of the simulation (t=25) most
of the network has become infected, and the large component has broken up
again into multiple medium-sized components.

Of course there are quite a few vertices (100) so it it is di�cult to see exactly
what is going on in detail, especially when they cross over each other. But the
proximity timeline is sometimes able to illustrate the features of the forward

24

reachable paths and changes in overall network structure in ways that can be
missed when viewing a movie.

Naturally the proximity.timeline plots su�er from some of the same noise
and reproduceability problems that challenge the network layouts. The geodesic
distance information is tightly compressed onto a single dimension, so the exact
ordering of the vertices in any speci�c region may be due to chance, just as the
rotation and relative positions of components in a network plot are not directly
meaningful. This is also a fairly experimental tool, so getting good results
still requires playing around a bit with the various algorithms and adjusting
default.dist to a value larger enough to force clusters close enough together
without making them overlap too much.

This inactive vertex spells present a challenge when tracing out the vertex
trajectories. This plot shows the timeline view vertex activity spells for the
�windsurfer� dataset.

> timeline(windsurfers,plot.edge.spells = FALSE)

0 5 10 15 20 25 30

time

 v
er

te
x

sp
el

ls
 o

f n
et

w
or

k
 w

in
ds

ur
fe

rs

1 1 1 12 2 2 2 2 23 3 3 3 3 3 3 34 4 4 4 4 4 45 5 5 56 6 6 6 67 7 78 8910 10 1011 11 11 1112 12 12 1213 13 13 13 13 1314 14 14 14 1415 15 15 15 15 1516 16 16 16 16 16 16 16 1617 17 17 17 17 17 1718 18 1819 1920 21 21 21 2122 2223 23 2324 24 24 2425 25 2526 26 2627 27 27 27 2728 28 28 2829 29 29 29 2930 30 30 3031 31 3132333435 35 3536 37 37 37 37 3738 38 3839 39 39 39 39 39 39 3940 40 40 40 40 40 4041 41 41 41 41 4142 4243 43 4344 44 44 44 4445 4546 46 4647 48 48 48 48 48 4849 4950 5051 51 51 5152 52 52 5253 53 53545556 56 5657 58 58 5859 59 59 59 59 5960 60 60 606162 62 6263 63 6364 6465 65 65 6566 66 66 66 6667 67 6768 6869 69 69 69 6970 70 70 7071 717273 74 74 74 74 74 74 7475 7576 7677 7778 78 78 7879 79 7980 8081 8182 83 8384 8485 8586 87 87 8788 89 89 8990 9091 92 9293 94 95

25

Notice that in contrast to the McFarland classroom dataset we saw earlier,
many of the vertices are almost entirely unobserved (have very short activity
spells).

The proximity.timeline function uses the spline.style argument to con-
trol how the spline segments corresponding to vertex inactivity should be ren-
dered. To help make the plot more legible, we can use the start and end

paramter to zoom in and render only a portion of the time range.

> proximity.timeline(windsurfers,start=20,end=31,mode='sammon',

+ spline.style='inactive.gaps')

20 22 24 26 28 30

−
10

−
5

0
5

10

time

ap
pr

ox
. d

is
ta

nc
e

am
on

g
ve

rt
ic

es
 o

f w
in

ds
ur

fe
rs

> proximity.timeline(windsurfers,start=20,end=31,

+ mode='sammon',spline.style='inactive.ignore')

26

20 22 24 26 28 30

−
10

−
5

0
5

10

time

ap
pr

ox
. d

is
ta

nc
e

am
on

g
ve

rt
ic

es
 o

f w
in

ds
ur

fe
rs

> proximity.timeline(windsurfers,start=20,end=31,mode='sammon',

+ spline.style='inactive.ghost')

>

27

20 22 24 26 28 30

−
10

−
5

0
5

10

time

ap
pr

ox
. d

is
ta

nc
e

am
on

g
ve

rt
ic

es
 o

f w
in

ds
ur

fe
rs

The ghost version (which is the default when gaps in vertex activity are
detected) o�ers a compromise by linking the observed spells with a faint dotted
line, making it possible to trace the trajectories across time without it ap-
pearing that there is much more data availible than is actually the case. The
'inactive.ignore' option (the default when vertex activity gaps are not de-
tected) will always be the fastest because it isn't necesary to break the splines
up into segments.

9 Dependencies for Animations

9.1 Java (for MDSJ)

In order to use the MDSJ layout algorithm, you must have Java installed on
your system. If it is not installed, you can download it from http://www.java.

com/en/download/index.jsp. On Windows, you may need to edit your `Path'
environment variable to make Java executable from the command-line.

28

http://www.java.com/en/download/index.jsp
http://www.java.com/en/download/index.jsp

9.2 FFmpeg

FFmpeg http://ffmpg.org (or Libab https://libav.org/) are a cross-platform
tools for converting and rendering video content in various formats. It is used
as an external library by the animation package to save out the animation as a
movie �le on disk. (see ?saveVideo for more information.) Since FFmpeg is not
part of R, you will need to install it separately on your system for the save video
functionality to work. The instructions for how to do this will be di�erent on
each platform. You can also access these instructions using ?install.ffmpeg

10 Compressing video

The saved video output of the animation often produces very large �les. These
may cause problems for your viewers if you upload them directly to the web. It
is almost always a good idea to compress the video, as a dramatically smaller
�le can usually be created with little or no loss of quality. Although it may be
possible to give saveVideo() various other.opts to control video compression8,
determining the right settings can be a trial and error process. Handbrake
http://handbrake.fr/ is an excellent and easy to use tool for doing video
compression into the web-standard H.264 codec with appropriate presets.

11 Reference for the main commands

Included here are more complete explanations of the main function. You can
also refer to the man pages ?compute.animation and ?render.animation.

11.1 compute.animation()

The compute.animation() function computes a sequence of vertex layouts suit-
able for rendering a network animation. It steps through a networkDynamic ob-
ject and applies layout algorithms at speci�ed intervals, storing the calculated
coordinates in the network for later use by the render.animation function.
Generally the layouts are done in a sequence with each using the previously cal-
culated positions as initial seed coordinates in order to smooth out the resulting
movie.

The command takes several important arguments as named elements of the
slice.par list. The parameters indicate it how �slice up' the network when com-
puting layouts (start, end, aggregate.dur and rule), what type of layout algo-
rithm to use (animation.mode), possible parameters to control the layouts (as a
list named layout.par) and how much to try to separate nodes or disconnected
components (default.dist). The computed coordinates are stored as dynamic
vertex attributes named animation.x.active and animation.y.active. The

8The default settings for �mpeg di�er quite a bit depending on platform, some installations

may give decent compression without tweaking the settings

29

http://ffmpg.org
https://libav.org/
http://handbrake.fr/

slice slice.par list is stored as a standard network attribute. The network
argument is modi�ed in place, and returned invisibly

For each time slice, new coordinates are only computed for the active set
of vertices, so the function usually behaves appropriately for networks with
changing vertex sets.

The other parameters are as follows

� seed.coords an (optional) array of initial coordinates to be used for the
very �rst layout in the sequence or when vertices �rst pop into existance.

� weight.attr can provide the name of a numeric edge attribute de�ning
weights for edges to be interpreted by the layout algorithm. The values
activity.duration or activity.count can be used to weight edges by
the duration or count of the edge's activity spells in the time slice. the
weight.dist parameter determines if the weights should be treated as
similarities (larger values means closer vertices) or distances.

� chain.direction a value of 'forward' indicates the chain of layouts should
be computes in forward temporal order. A value 'reverse' runs the chain
backwards. For some layouts, reverse-chaining means that isolated vertices
are more likely to have positions close to the partners they will be tied to.

11.2 render.animation()

This function is designed to step through a network object extracting slice
networks according to the previously cached slice.par settings. It retrieves
the animation.x and animation.y coordinates for each slice and passes them
to plot.network to render the frame. If no slice.par network attribute is
found to de�ne the time range to render it will make one up using the smallest
and largest non-Inf time values and unit-length non-overlapping time steps. If
no stored coordinates are found it will call compute.animation. Additional
plot.network control parameters (to set colors, line widths, etc) can be passed
in via the ... arguments. See ?plot.network for the full list.

As mentioned earlier, a number of �tweening� animation frames are gener-
ated between each network slice with the positions of the vertices interpolated
between the slices. This creates the illusion of smooth motion as the vertices
change position, making it much easier to visually track changes in the network
structure. As each slice (and tweening slice) is plotted, ani.record is called to
store the image as a frame of the animation for later output.

Parameters to control the animation are read from a list passed in via the
render.par argument.

� tween.frames is the number of interpolated frames to generate between
each pre-calculated network layout. Default is 10. Increasing this will
make the animation appear smoother and slower, but will make the �le
sizes much larger.

30

� show.time defaults to TRUE, in which case the x-axis of the plot will be
labeled with the onset and terminus time for each slice as it is shown.

� show.stats does nothing with its default value of NULL. But if it is set to
a string, it is assumed to be a formula and will passed to summary.stergm
and the results used to display the network statistics for the current slice
on the plot.

� extraPlotCmds provides a way to present additional information (such as
annotations) on the plot. The value of this argument will be passed to
eval() after each frame has been plotted, so drawing commands can be
added here.

There are also several lists of arguments that give default values that will be
passed to the appropriate lower-level commands. The plot.par list is passed to
the par() command and provides a way to con�gure some of the general plot de-
tails such as background color, margins, fonts, etc. Similarly, the ani.options
list is passed to the ani.options() command to con�gure settings for the an-
imation package such as interval to control the time between frames in play-
back.

The render.cache argument provides a way to control the caching of the
plot frames. The default value of verb@render.cache='plot.list'@ causes each
frame of the animation to be stored in an internal list by the ani.record func-
tion of the animation library. This is very useful for testing and replaying
animations in R's plot window, but can be very slow (or cause out-of-memory
errors) for large animations. If the value is set to verb@render.cache='none'@,
the plot will not be recorded (but can be saved directly to disk via saveVideo())
and cannot be replayed via the ani.replay() function.

11.3 saveVideo()

The animation package provides several neat tools for storing animations once
they have been rendered.

� ani.replay() plays the animation back in the R plot window. (see
?ani.options for more parameters)

� saveVideo() saves the animation as a movie �le on disk (if the FFmpeg
library is installed).

� saveGIF() creates an animated GIF (if ImageMagick installed)

� saveLatex() creates an animation embedded in a pdf (didn't work for
me...)

Please see ?animation and each function's help �les for more details. With the
exception of ani.replay() each of these requires the presence of some external
library software which may need to be installed on your system as described in
Dependencies (section 9).

31

11.4 render.d3movie

The render.d3movie can save out a network animation an interactive HTML5
SVG to display in a web browser. Animations are generated using a process
nearly identical to render.animation. However, instead of using R's plotting
functions and the animation library, the relevant information is cached and writ-
ten into a JSON-formatted �le, embedded into a web page along with ndtv-d3
player, and displayed in a web browser. Details and additional examples are in-
cluded in the ndtv-d3 vignette, availible at: http://statnet.org/Workshops/
ndtv-d3_vignette.html

12 Limitations

12.1 Size limits

Like most network algorithms, the time to compute layouts for animations tends
to scale quite badly with network size. We generally have only had enough
patience to generate movies for networks of less than 1000 vertices. There also
seems to be quite a bit of overhead in the animation package, so the generation
process seems to slow down considerably for longer duration networks or when
slice or render parameters cause lots of slices to be generated.

References

Algorithmics Group, University of Konstanz (2009) MDSJ: Java Library for
Multidimensional Scaling (Version 0.2). http://www.inf.uni-konstanz.

de/algo/software/mdsj/.

Almquist, Zack W. and Butts, Carter T. (2011). �Logistic Network Regression
for Scalable Analysis of Networks with Joint Edge/Vertex Dynamics.� IMBS
Technical Report MBS 11-03, University of California, Irvine.

Bender-deMoll, Skye and McFarland, Daniel A. (2006) The Art and Sci-
ence of Dynamic Network Visualization. Journal of Social Structure. Vol-
ume 7, Number 2 http://www.cmu.edu/joss/content/articles/volume7/

deMollMcFarland/

Bender-deMoll, S., Morris, M. and Moody, J. (2008) Prototype Packages for
Managing and Animating Longitudinal Network Data: dynamicnetwork and
rSoNIA Journal of Statistical Software 24:7.

Butts CT (2008). network: A Package for Managing Relational Data in R. Jour-
nal of Statistical Software, 24(2). https://doi.org/10.18637/jss.v024.

i02.

Butts C, Leslie-Cook A, Krivitsky P, Bender-deMoll S (2022). networkDynamic:
Dynamic Extensions for Network Objects. R package version 0.11.2, https:
//CRAN.R-project.org/package=networkDynamic.

32

http://statnet.org/Workshops/ndtv-d3_vignette.html
http://statnet.org/Workshops/ndtv-d3_vignette.html
http://www.inf.uni-konstanz.de/algo/software/mdsj/
http://www.inf.uni-konstanz.de/algo/software/mdsj/
http://www.cmu.edu/joss/content/articles/volume7/deMollMcFarland/
http://www.cmu.edu/joss/content/articles/volume7/deMollMcFarland/
https://doi.org/10.18637/jss.v024.i02
https://doi.org/10.18637/jss.v024.i02
https://CRAN.R-project.org/package=networkDynamic
https://CRAN.R-project.org/package=networkDynamic

de Leeuw J and Mair P (2009). �Multidimensional Scaling Using Majorization:
SMACOF in R.� Journal of Statistical Software, 31(3), pp. 1�30. https:
//doi.org/10.18637/jss.v031.i03

Bender-deMoll S (2022). ndtv: Network Dynamic Temporal Visualizations. R
package version 0.13.3, https://github.com/statnet/ndtv.

John Ellson et al (2001) Graphviz � open source graph drawing tools Lec-
ture Notes in Computer Science. Springer-Verlag. p483-484 http://www.

graphviz.org

Handcock MS, Hunter DR, Butts CT, Goodreau SM, Morris M (2003b). statnet:
Software tools for the Statistical Modeling of Network Data. Statnet Project,
Seattle, WA. Version 3, http://www.statnetproject.org.

Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008b). ergm:
A Package to Fit, Simulate and Diagnose Exponential-Family Models for Net-
works. Journal of Statistical Software, 24(3). https://doi.org/10.18637/
jss.v024.i03.

Krivitsky P, Handcock M (2021). tergm: Fit, Simulate and Diagnose Models
for Network Evolution Based on Exponential-Family Random Graph Mod-
els. The Statnet Project (https://statnet.org). R package version 4.0.1,
https://CRAN.R-project.org/package=tergm.

McFarland, Daniel A. (2001) �Student Resistance: How the Formal and Informal
Organization of Classrooms Facilitate Everyday Forms of Student De�ance.�
American Journal of Sociology 107 (3): 612-78.

Greg Michalec, Skye Bender-deMoll, Martina Morris (2014) �ndtv-d3: an
HTML5 network animation player for the ndtv package� The statnet project.
http://statnet.org

Newcomb T. (1961) The acquaintance process New York: Holt, Reinhard and
Winston.

Xie Y (2013). �animation: An R Package for Creating Animations and Demon-
strating Statistical Methods.� Journal of Statistical Software, 53(1), pp. 1�27.
https://doi.org/10.18637/jss.v053.i01.

33

https://doi.org/10.18637/jss.v031.i03
https://doi.org/10.18637/jss.v031.i03
https://github.com/statnet/ndtv
http://www.graphviz.org
http://www.graphviz.org
http://www.statnetproject.org.
https://doi.org/10.18637/jss.v024.i03
https://doi.org/10.18637/jss.v024.i03
https://statnet.org
https://CRAN.R-project.org/package=tergm
https://doi.org/10.18637/jss.v053.i01

	Introduction
	A quick example
	Reinventing the wheel
	What just happened?

	A tergm simulation example
	Data Setup
	Animation Setup
	Playing an animation in R plot window
	Saving an animation as video
	Viewing animation as an interactive web page
	Viewing interactive animation in RStudio
	Other views

	Slicing time
	Layout algorithms for animations
	Kamada-Kawai adaptation
	MDSJ (Multidimensional Scaling for Java)
	Use a TEA attribute
	Graphviz
	User-generated layout functions
	Other techniques

	Vertex dynamics
	Animating graphic attributes
	Using dynamic attributes (TEAs)
	Functional plot arguments
	Special effects functions

	Exploring proximity with timelines
	Dependencies for Animations
	Java (for MDSJ)
	FFmpeg

	Compressing video
	Reference for the main commands
	compute.animation()
	render.animation()
	saveVideo()
	render.d3movie

	Limitations
	Size limits

