
Package ‘personalized’
October 14, 2022

Type Package

Title Estimation and Validation Methods for Subgroup Identification
and Personalized Medicine

Version 0.2.7

Description Provides functions for fitting and validation of models for subgroup
identification and personalized medicine / precision medicine under the general subgroup
identification framework of Chen et al. (2017) <doi:10.1111/biom.12676>.
This package is intended for use for both randomized controlled trials and
observational studies and is described in detail in Huling and Yu (2021)
<doi:10.18637/jss.v098.i05>.

URL https://jaredhuling.org/personalized/,

https://arxiv.org/abs/1809.07905

BugReports https://github.com/jaredhuling/personalized/issues

License GPL-2

Encoding UTF-8

LazyData true

Suggests knitr, rmarkdown, testthat, nnet

Imports survival, methods, kernlab, foreach, xgboost

Depends glmnet (>= 2.0-13), mgcv, ggplot2, plotly

RoxygenNote 7.2.0

VignetteBuilder knitr

NeedsCompilation no

Author Jared Huling [aut, cre] (<https://orcid.org/0000-0003-0670-4845>),
Aaron Potvien [ctb],
Alexandros Karatzoglou [cph],
Alex Smola [cph]

Maintainer Jared Huling <jaredhuling@gmail.com>

Repository CRAN

Date/Publication 2022-06-27 20:20:03 UTC

1

https://doi.org/10.1111/biom.12676
https://doi.org/10.18637/jss.v098.i05
https://jaredhuling.org/personalized/
https://arxiv.org/abs/1809.07905
https://github.com/jaredhuling/personalized/issues
https://orcid.org/0000-0003-0670-4845

2 check.overlap

R topics documented:

check.overlap . 2
create.augmentation.function . 4
create.propensity.function . 6
fit.subgroup . 8
LaLonde . 19
plot.subgroup_fitted . 21
plotCompare . 23
predict.subgroup_fitted . 25
print.individual_treatment_effects . 27
print.subgroup_fitted . 28
subgroup.effects . 29
summarize.subgroups . 30
summary.subgroup_fitted . 32
treatment.effects . 32
validate.subgroup . 35
weighted.ksvm . 39

Index 41

check.overlap Check propensity score overlap

Description

Results in a plot to check whether the propensity score has adequate overlap between treatment
groups

Usage

check.overlap(
x,
trt,
propensity.func,
type = c("histogram", "density", "both"),
bins = 50L,
alpha = ifelse(type == "both", 0.35, 0.5)

)

Arguments

x The design matrix (not including intercept term)

trt treatment vector with each element equal to a 0 or a 1, with 1 indicating treat-
ment status is active.

check.overlap 3

propensity.func

function that inputs the design matrix x and the treatment vector trt and outputs
the propensity score, ie Pr(trt = 1 | X = x). Function should take two arguments
1) x and 2) trt. See example below. For a randomized controlled trial this can
simply be a function that returns a constant equal to the proportion of patients
assigned to the treatment group, i.e.: propensity.func = function(x, trt)
0.5.

type Type of plot to create. Options are either a histogram (type = "histogram") for
each treatment group, a density (type = "density") for each treatment group,
or to plot both a density and histogram (type = "code")

bins integer number of bins for histograms when type = "histogram"

alpha value between 0 and 1 indicating transparency level (1 for solid, 0 for fully
transparent)

Examples

library(personalized)

set.seed(123)
n.obs <- 250
n.vars <- 15
x <- matrix(rnorm(n.obs * n.vars, sd = 3), n.obs, n.vars)

simulate non-randomized treatment
xbetat <- 0.25 + 0.5 * x[,11] - 0.5 * x[,12]
trt.prob <- exp(xbetat) / (1 + exp(xbetat))
trt01 <- rbinom(n.obs, 1, prob = trt.prob)

create function for fitting propensity score model
prop.func <- function(x, trt)
{

fit propensity score model
propens.model <- cv.glmnet(y = trt,

x = x, family = "binomial")
pi.x <- predict(propens.model, s = "lambda.min",

newx = x, type = "response")[,1]
pi.x

}

check.overlap(x = x,
trt = trt01,
propensity.func = prop.func)

now add density plot with histogram
check.overlap(x = x,

trt = trt01,
type = "both",
propensity.func = prop.func)

4 create.augmentation.function

simulated non-randomized treatment with multiple levels
xbetat_1 <- 0.15 + 0.5 * x[,9] - 0.25 * x[,12]
xbetat_2 <- 0.15 - 0.5 * x[,11] + 0.25 * x[,15]
trt.1.prob <- exp(xbetat_1) / (1 + exp(xbetat_1) + exp(xbetat_2))
trt.2.prob <- exp(xbetat_2) / (1 + exp(xbetat_1) + exp(xbetat_2))
trt.3.prob <- 1 - (trt.1.prob + trt.2.prob)
prob.mat <- cbind(trt.1.prob, trt.2.prob, trt.3.prob)
trt <- apply(prob.mat, 1, function(rr) rmultinom(1, 1, prob = rr))
trt <- apply(trt, 2, function(rr) which(rr == 1))

use multinomial logistic regression model with lasso penalty for propensity
propensity.multinom.lasso <- function(x, trt)
{

if (!is.factor(trt)) trt <- as.factor(trt)
gfit <- cv.glmnet(y = trt, x = x, family = "multinomial")

predict returns a matrix of probabilities:
one column for each treatment level
propens <- drop(predict(gfit, newx = x, type = "response", s = "lambda.min",

nfolds = 5, alpha = 0))

return the probability corresponding to the
treatment that was observed
probs <- propens[,match(levels(trt), colnames(propens))]

probs
}

check.overlap(x = x,
trt = trt,
type = "histogram",
propensity.func = propensity.multinom.lasso)

create.augmentation.function

Creation of augmentation functions

Description

Creates an augmentation function that optionally utilizes cross-fitting

Usage

create.augmentation.function(
family,
crossfit = TRUE,
nfolds.crossfit = 10,

create.augmentation.function 5

cv.glmnet.args = NULL
)

Arguments

family The response type (see options in glmnet help file)

crossfit A logical value indicating whether to use cross-fitting (TRUE) or not (FALSE).
Cross-fitting is more computationally intensive, but helps to prevent overfitting,
see Chernozhukov, et al. (2018)

nfolds.crossfit

An integer specifying the number of folds to use for cross-fitting. Must be
greater than 1

cv.glmnet.args A list of NAMED arguments to pass to the cv.glmnet function. For example,
cv.glmnet.args = list(type.measure = "mse", nfolds = 10). See cv.glmnet
and glmnet for all possible options.

Value

A function which can be passed to the augment.func argument of the fit.subgroup function.

References

Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W., & Robins,
J. (2018). Double/debiased machine learning for treatment and structural parameters https://
arxiv.org/abs/1608.00060

See Also

fit.subgroup for estimating ITRs and create.propensity.function for creation of propensity
functions

Examples

library(personalized)

set.seed(123)
n.obs <- 500
n.vars <- 15
x <- matrix(rnorm(n.obs * n.vars, sd = 3), n.obs, n.vars)

simulate non-randomized treatment
xbetat <- 0.5 + 0.5 * x[,7] - 0.5 * x[,9]
trt.prob <- exp(xbetat) / (1 + exp(xbetat))
trt01 <- rbinom(n.obs, 1, prob = trt.prob)

trt <- 2 * trt01 - 1

simulate response
delta below drives treatment effect heterogeneity

https://arxiv.org/abs/1608.00060
https://arxiv.org/abs/1608.00060

6 create.propensity.function

delta <- 2 * (0.5 + x[,2] - x[,3] - x[,11] + x[,1] * x[,12])
xbeta <- x[,1] + x[,11] - 2 * x[,12]^2 + x[,13] + 0.5 * x[,15] ^ 2
xbeta <- xbeta + delta * trt

continuous outcomes
y <- drop(xbeta) + rnorm(n.obs, sd = 2)

aug.func <- create.augmentation.function(family = "gaussian",
crossfit = TRUE,
nfolds.crossfit = 10,
cv.glmnet.args = list(type.measure = "mae",

nfolds = 5))

prop.func <- create.propensity.function(crossfit = TRUE,
nfolds.crossfit = 10,
cv.glmnet.args = list(type.measure = "auc",

nfolds = 5))
Not run:
subgrp.model <- fit.subgroup(x = x, y = y,

trt = trt01,
propensity.func = prop.func,
augment.func = aug.func,
loss = "sq_loss_lasso",
nfolds = 10) # option for cv.glmnet (for ITR estimation)

summary(subgrp.model)

End(Not run)

create.propensity.function

Creation of propensity fitting function

Description

Creates an propensity function that optionally utilizes cross-fitting

Usage

create.propensity.function(
crossfit = TRUE,
nfolds.crossfit = 10,
cv.glmnet.args = NULL

)

Arguments

crossfit A logical value indicating whether to use cross-fitting (TRUE) or not (FALSE).
Cross-fitting is more computationally intensive, but helps to prevent overfitting,
see Chernozhukov, et al. (2018)

create.propensity.function 7

nfolds.crossfit

An integer specifying the number of folds to use for cross-fitting. Must be
greater than 1

cv.glmnet.args A list of NAMED arguments to pass to the cv.glmnet function. For example,
cv.glmnet.args = list(type.measure = "mse", nfolds = 10). See cv.glmnet
and glmnet for all possible options.

Value

A function which can be passed to the augment.func argument of the fit.subgroup function.

References

Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W., & Robins,
J. (2018). Double/debiased machine learning for treatment and structural parameters https://
arxiv.org/abs/1608.00060

See Also

fit.subgroup for estimating ITRs and create.propensity.function for creation of propensity
functions

Examples

library(personalized)

set.seed(123)
n.obs <- 500
n.vars <- 15
x <- matrix(rnorm(n.obs * n.vars, sd = 3), n.obs, n.vars)

simulate non-randomized treatment
xbetat <- 0.5 + 0.5 * x[,7] - 0.5 * x[,9]
trt.prob <- exp(xbetat) / (1 + exp(xbetat))
trt01 <- rbinom(n.obs, 1, prob = trt.prob)

trt <- 2 * trt01 - 1

simulate response
delta below drives treatment effect heterogeneity
delta <- 2 * (0.5 + x[,2] - x[,3] - x[,11] + x[,1] * x[,12])
xbeta <- x[,1] + x[,11] - 2 * x[,12]^2 + x[,13] + 0.5 * x[,15] ^ 2
xbeta <- xbeta + delta * trt

continuous outcomes
y <- drop(xbeta) + rnorm(n.obs, sd = 2)

aug.func <- create.augmentation.function(family = "gaussian",
crossfit = TRUE,
nfolds.crossfit = 10,
cv.glmnet.args = list(type.measure = "mae",

https://arxiv.org/abs/1608.00060
https://arxiv.org/abs/1608.00060

8 fit.subgroup

nfolds = 5))

prop.func <- create.propensity.function(crossfit = TRUE,
nfolds.crossfit = 10,
cv.glmnet.args = list(type.measure = "mae",

nfolds = 5))

subgrp.model <- fit.subgroup(x = x, y = y,
trt = trt01,
propensity.func = prop.func,
augment.func = aug.func,
loss = "sq_loss_lasso",
nfolds = 10) # option for cv.glmnet (for ITR estimation)

summary(subgrp.model)

fit.subgroup Fitting subgroup identification models

Description

Fits subgroup identification model class of Chen, et al (2017)

Usage

fit.subgroup(
x,
y,
trt,
propensity.func = NULL,
loss = c("sq_loss_lasso", "logistic_loss_lasso", "poisson_loss_lasso",
"cox_loss_lasso", "owl_logistic_loss_lasso", "owl_logistic_flip_loss_lasso",
"owl_hinge_loss", "owl_hinge_flip_loss", "sq_loss_lasso_gam",
"poisson_loss_lasso_gam", "logistic_loss_lasso_gam", "sq_loss_gam",
"poisson_loss_gam", "logistic_loss_gam", "owl_logistic_loss_gam",
"owl_logistic_flip_loss_gam", "owl_logistic_loss_lasso_gam",
"owl_logistic_flip_loss_lasso_gam", "sq_loss_xgboost", "custom"),

method = c("weighting", "a_learning"),
match.id = NULL,
augment.func = NULL,
fit.custom.loss = NULL,
cutpoint = 0,
larger.outcome.better = TRUE,
reference.trt = NULL,
retcall = TRUE,
...

)

fit.subgroup 9

Arguments

x The design matrix (not including intercept term)

y The response vector

trt treatment vector with each element equal to a 0 or a 1, with 1 indicating treat-
ment status is active.

propensity.func

function that inputs the design matrix x and the treatment vector trt and outputs
the propensity score, ie Pr(trt = 1 | X = x). Function should take two arguments
1) x and 2) trt. See example below. For a randomized controlled trial this can
simply be a function that returns a constant equal to the proportion of patients
assigned to the treatment group, i.e.: propensity.func = function(x, trt)
0.5.

loss choice of both the M function from Chen, et al (2017) and potentially the penalty
used for variable selection. All loss options starting with sq_loss use M(y, v)
= (v - y) ^ 2, all options starting with logistic_loss use the logistic loss:
M(y, v) = y * log(1 + exp{-v}), and all options starting with cox_loss use
the negative partial likelihood loss for the Cox PH model. All options end-
ing with lasso have a lasso penalty added to the loss for variable selection.
sq_loss_lasso_gam and logistic_loss_lasso_gam first use the lasso to se-
lect variables and then fit a generalized additive model with nonparametric addi-
tive terms for each selected variable. sq_loss_gam involves a squared error loss
with a generalized additive model and no variable selection. sq_loss_xgboost
involves a squared error loss with a gradient-boosted decision trees model us-
ing xgboost for the benefit score; this allows for flexible estimation using ma-
chine learning and can be useful when the underlying treatment-covariate in-
teraction is complex. Must specify params, nrounds, nfold, and optionally,
early_stopping_rounds; see xgb.train for details

• Continuous Outcomes
– "sq_loss_lasso" - M(y, v) = (v - y) ^ 2 with linear model and lasso

penalty
– "owl_logistic_loss_lasso" - M(y, v) = ylog(1 + exp{-v}) (method

of Regularized Outcome Weighted Subgroup Identification)
– "owl_logistic_flip_loss_lasso" - M(y, v) = |y|log(1 + exp{-sign(y)v})
– "owl_hinge_loss" - M(y, v) = ymax(0, 1 - v) (method of Estimating

individualized treatment rules using outcome weighted learning)
– "owl_hinge_flip_loss" - M(y, v) = |y|max(0, 1 - sign(y)v)
– "sq_loss_lasso_gam" - M(y, v) = (v - y) ^ 2 with variables selected

by lasso penalty and generalized additive model fit on the selected vari-
ables

– "sq_loss_gam" - M(y, v) = (v - y) ^ 2 with generalized additive model
fit on all variables

– "owl_logistic_loss_gam" - M(y, v) = ylog(1 + exp{-v}) with gener-
alized additive model fit on all variables

– "owl_logistic_flip_loss_gam" - M(y, v) = |y|log(1 + exp{-sign(y)v})
with generalized additive model fit on all variables

10 fit.subgroup

– "owl_logistic_loss_lasso_gam" - M(y, v) = ylog(1 + exp{-v}) with
variables selected by lasso penalty and generalized additive model fit
on the selected variables

– "owl_logistic_flip_loss_lasso_gam" - M(y, v) = |y|log(1 + exp{-
sign(y)v}) with variables selected by lasso penalty and generalized ad-
ditive model fit on the selected variables

– "sq_loss_xgboost" - M(y, v) = (v - y) ^ 2 with gradient-boosted de-
cision trees model

• Binary Outcomes
– All losses for continuous outcomes can be used plus the following:
– "logistic_loss_lasso" - M(y, v) = -[yv - log(1 + exp{-v})] with

with linear model and lasso penalty
– "logistic_loss_lasso_gam" - M(y, v) = -[yv - log(1 + exp{-v})]

with variables selected by lasso penalty and generalized additive model
fit on the selected variables

– "logistic_loss_gam" - M(y, v) = -[yv - log(1 + exp{-v})] with gen-
eralized additive model fit on all variables

• Count Outcomes
– All losses for continuous outcomes can be used plus the following:
– "poisson_loss_lasso" - M(y, v) = -[yv - exp(v)] with with linear

model and lasso penalty
– "poisson_loss_lasso_gam" - M(y, v) = -[yv - exp(v)] with variables

selected by lasso penalty and generalized additive model fit on the se-
lected variables

– "poisson_loss_gam" - M(y, v) = -[yv - exp(v)] with generalized ad-
ditive model fit on all variables

• Time-to-Event Outcomes
– "cox_loss_lasso" - M corresponds to the negative partial likelihood

of the cox model with linear model and additionally a lasso penalty

method subgroup ID model type. Either the weighting or A-learning method of Chen et
al, (2017)

match.id a (character, factor, or integer) vector with length equal to the number of obser-
vations in x indicating using integers or levels of a factor vector which patients
are in which matched groups. Defaults to NULL and assumes the samples are
not from a matched cohort. Matched case-control groups can be created using
any method (propensity score matching, optimal matching, etc). If each case
is matched with a control or multiple controls, this would indicate which case-
control pairs or groups go together. If match.id is supplied, then it is unecessary
to specify a function via the propensity.func argument. A quick usage exam-
ple: if the first patient is a case and the second and third are controls matched
to it, and the fouth patient is a case and the fifth through seventh patients are
matched with it, then the user should specify match.id = c(1,1,1,2,2,2,2)
or match.id = c(rep("Grp1", 3),rep("Grp2", 4))

augment.func function which inputs the response y, the covariates x, and trt and outputs pre-
dicted values (on the link scale) for the response using a model constructed with
x. augment.func() can also be simply a function of x and y. This function is

fit.subgroup 11

used for efficiency augmentation. When the form of the augmentation function
is correct, it can provide efficient estimation of the subgroups. Some examples
of possible augmentation functions are:
Example 1: augment.func <- function(x, y) {lmod <- lm(y ~ x); return(fitted(lmod))}

Example 2:

augment.func <- function(x, y, trt) {
data <- data.frame(x, y, trt)
lmod <- lm(y ~ x * trt)
get predictions when trt = 1
data$trt <- 1
preds_1 <- predict(lmod, data)

get predictions when trt = -1
data$trt <- -1
preds_n1 <- predict(lmod, data)

return predictions averaged over trt
return(0.5 * (preds_1 + preds_n1))

}

For binary and time-to-event outcomes, make sure that predictions are returned
on the scale of the predictors
Example 3:

augment.func <- function(x, y) {
bmod <- glm(y ~ x, family = binomial())
return(predict(bmod, type = "link"))

}

fit.custom.loss

A function which minimizes a user-specified custom loss function M(y,v) to be
used in model fitting. If provided, fit.custom.loss should take the modi-
fied design matrix (which includes an intercept term) as an argument and the
responses and optimize a custom weighted loss function.
The loss function M(y, v) to be minimized MUST meet the following two cri-
teria:

1. DM (y, v) = ∂M(y, v)/∂v must be increasing in v for each fixed y. DM (y, v)
is the partial derivative of the loss function M(y, v) with respect to v

2. DM (y, 0) is monotone in y

An example of a valid loss function is M(y, v) = (y − v)2. In this case
DM (y, v) = −2(y − v). See Chen et al. (2017) for more details on the re-
strictions on the loss function M(y, v).
The provided function MUST return a list with the following elements:

• predict a function that inputs a design matrix and a ’type’ argument for
the type of predictions and outputs a vector of predictions on the scale
of the linear predictor. Note that the matrix provided to ’fit.custom.loss’

12 fit.subgroup

has a column appended to the first column of x corresponding to the treat-
ment main effect. Thus, the prediction function should deal with this, e.g.
predict(model, cbind(1, x))

• model a fitted model object returned by the underlying fitting function
• coefficients if the underlying fitting function yields a vector of coeffi-

cient estimates, they should be provided here

The provided function MUST be a function with the following arguments:

1. x design matrix
2. y vector of responses
3. weights vector for observations weights. The underlying loss function

MUST have samples weighted according to this vector. See below example
4. ... additional arguments passed via ’...’. This can be used so that users

can specify more arguments to the underlying fitting function if so desired.

The provided function can also optionally take the following arguments:

• match.id vector of case/control cluster IDs. This is useful if cross valida-
tion is used in the underlying fitting function in which case it is advisable
to sample whole clusters randomly instead of individual observations.

• offset if efficiency augmentation is used, the predictions from the out-
come model from augment.func will be provided via the offset argu-
ment, which can be used as an offset in the underlying fitting function as a
means of incorporating the efficiency augmentation model’s predictions

• trt vector of treatment statuses
• family family of outcome
• n.trts numer of treatment levels. Can be useful if there are more than 2

treatment levels

Example 1: Here we minimize M(y, v) = (y − v)2

fit.custom.loss <- function(x, y, weights, ...) {
df <- data.frame(y = y, x)

minimize squared error loss with NO lasso penalty
lmf <- lm(y ~ x - 1, weights = weights,

data = df, ...)

save coefficients
cfs = coef(lmf)

create prediction function. Notice
how a column of 1's is appended
to ensure treatment main effects are included
in predictions
prd = function(x, type = "response")
{

dfte <- cbind(1, x)
colnames(dfte) <- names(cfs)
predict(lmf, data.frame(dfte))

fit.subgroup 13

}
return lost of required components
list(predict = prd, model = lmf, coefficients = cfs)

}

Example 2: M(y, v) = y exp(−v)

fit.expo.loss <- function(x, y, weights, ...)
{

define loss function to be minimized
expo.loss <- function(beta, x, y, weights) {

sum(weights * y * exp(-drop(tcrossprod(x, t(beta))))
}

use optim() to minimize loss function
opt <- optim(rep(0, NCOL(x)), fn = expo.loss, x = x, y = y, weights = weights)

coefs <- opt$par

pred <- function(x, type = "response") {
tcrossprod(cbind(1, x), t(coefs))

}

return list of required components
list(predict = pred, model = opt, coefficients = coefs)

}

cutpoint numeric value for patients with benefit scores above which (or below which if
larger.outcome.better = FALSE) will be recommended to be in the treatment
group. Can also set cutpoint = "median", which will use the median value of
the benefit scores as the cutpoint or can set specific quantile values via "quantx"
where "x" is a number between 0 and 100 representing the quantile value; e.g.
cutpoint = "quant75" will use the 75th perent upper quantile of the benefit
scores as the quantile.

larger.outcome.better

boolean value of whether a larger outcome is better/preferable. Set to TRUE if
a larger outcome is better/preferable and set to FALSE if a smaller outcome is
better/preferable. Defaults to TRUE.

reference.trt which treatment should be treated as the reference treatment. Defaults to the
first level of trt if trt is a factor or the first alphabetical or numerically first
treatment level. Not used for multiple treatment fitting with OWL-type losses.

retcall boolean value. if TRUE then the passed arguments will be saved. Do not set to
FALSE if the validate.subgroup() function will later be used for your fitted
subgroup model. Only set to FALSE if memory is limited as setting to TRUE saves
the design matrix to the fitted object

... options to be passed to underlying fitting function. For all loss options with
’lasso’, this will be passed to cv.glmnet. For all loss options with ’gam’, this

14 fit.subgroup

will be passed to gam from the mgcv package Note that for all loss options that
use gam() from the mgcv package, the user cannot supply the gam argument
method because it is also an argument of fit.subgroup, so instead, to change
the gam method argument, supply method.gam, ie method.gam = "REML".
For all loss options with ’hinge’, this will be passed to both weighted.ksvm
and ipop from the kernlab package

Value

An object of class "subgroup_fitted".

predict A function that returns predictions of the covariate-conditional treatment effects
model An object returned by the underlying fitting function used. For example, if the

lasso use used to fit the underlying subgroup identification model, this will be
an object returned by cv.glmnet.

coefficients If the underlying subgroup identification model is parametric, coefficients
will contain the estimated coefficients of the model.

call The call that produced the returned object. If retcall = TRUE, this will contain
all objects supplied to fit.subgroup()

family The family corresponding to the outcome provided
loss The loss function used
method The method used (either weighting or A-learning)
propensity.func

The propensity score function used
larger.outcome.better

If larger outcomes are preferred for this model
cutpoint Benefit score cutoff value used for determining subgroups
var.names The names of all variables used
n.trts The number of treatment levels
comparison.trts

All treatment levels other than the reference level
reference.trt The reference level for the treatment. This should usually be the control group/level
trts All treatment levels
trt.received The vector of treatment assignments
pi.x A vector of propensity scores
y A vector of outcomes
benefit.scores A vector of conditional treatment effects, i.e. benefit scores
recommended.trts

A vector of treatment recommendations (i.e. for each patient, which treatment
results in the best expected potential outcomes)

subgroup.trt.effects

(Biased) estimates of the conditional treatment effects and conditional outcomes.
These are essentially just empirical averages within different combinations of
treatment assignments and treatment recommendations

individual.trt.effects

estimates of the individual treatment effects as returned by treat.effects

fit.subgroup 15

References

Huling. J.D. and Yu, M. (2021), Subgroup Identification Using the personalized Package. Journal
of Statistical Software 98(5), 1-60. doi:10.18637/jss.v098.i05

Chen, S., Tian, L., Cai, T. and Yu, M. (2017), A general statistical framework for subgroup iden-
tification and comparative treatment scoring. Biometrics. doi:10.1111/biom.12676 doi:10.1111/
biom.12676

Xu, Y., Yu, M., Zhao, Y. Q., Li, Q., Wang, S., & Shao, J. (2015), Regularized outcome weighted sub-
group identification for differential treatment effects. Biometrics, 71(3), 645-653. doi: 10.1111/biom.12322
doi:10.1111/biom.12322

Zhao, Y., Zeng, D., Rush, A. J., & Kosorok, M. R. (2012), Estimating individualized treatment
rules using outcome weighted learning. Journal of the American Statistical Association, 107(499),
1106-1118. doi: 10.1080/01621459.2012.695674

See Also

validate.subgroup for function which creates validation results for subgroup identification mod-
els, predict.subgroup_fitted for a prediction function for fitted models from fit.subgroup,
plot.subgroup_fitted for a function which plots results from fitted models, and print.subgroup_fitted
for arguments for printing options for fit.subgroup(). from fit.subgroup.

Examples

library(personalized)

set.seed(123)
n.obs <- 500
n.vars <- 15
x <- matrix(rnorm(n.obs * n.vars, sd = 3), n.obs, n.vars)

simulate non-randomized treatment
xbetat <- 0.5 + 0.5 * x[,7] - 0.5 * x[,9]
trt.prob <- exp(xbetat) / (1 + exp(xbetat))
trt01 <- rbinom(n.obs, 1, prob = trt.prob)

trt <- 2 * trt01 - 1

simulate response
delta below drives treatment effect heterogeneity
delta <- 2 * (0.5 + x[,2] - x[,3] - x[,11] + x[,1] * x[,12])
xbeta <- x[,1] + x[,11] - 2 * x[,12]^2 + x[,13] + 0.5 * x[,15] ^ 2
xbeta <- xbeta + delta * trt

continuous outcomes
y <- drop(xbeta) + rnorm(n.obs, sd = 2)

binary outcomes
y.binary <- 1 * (xbeta + rnorm(n.obs, sd = 2) > 0)

count outcomes

https://doi.org/10.1111/biom.12676
https://doi.org/10.1111/biom.12676
https://doi.org/10.1111/biom.12322

16 fit.subgroup

y.count <- round(abs(xbeta + rnorm(n.obs, sd = 2)))

time-to-event outcomes
surv.time <- exp(-20 - xbeta + rnorm(n.obs, sd = 1))
cens.time <- exp(rnorm(n.obs, sd = 3))
y.time.to.event <- pmin(surv.time, cens.time)
status <- 1 * (surv.time <= cens.time)

create function for fitting propensity score model
prop.func <- function(x, trt)
{

fit propensity score model
propens.model <- cv.glmnet(y = trt,

x = x, family = "binomial")
pi.x <- predict(propens.model, s = "lambda.min",

newx = x, type = "response")[,1]
pi.x

}

#################### Continuous outcomes ################################

subgrp.model <- fit.subgroup(x = x, y = y,
trt = trt01,
propensity.func = prop.func,
loss = "sq_loss_lasso",
option for cv.glmnet,
better to use 'nfolds=10'
nfolds = 3)

summary(subgrp.model)

estimates of the individual-specific
treatment effect estimates:
subgrp.model$individual.trt.effects

fit lasso + gam model with REML option for gam

subgrp.modelg <- fit.subgroup(x = x, y = y,
trt = trt01,
propensity.func = prop.func,
loss = "sq_loss_lasso_gam",
method.gam = "REML", # option for gam
nfolds = 5) # option for cv.glmnet

subgrp.modelg

#################### Using an augmentation function #####################
augmentation funcions involve modeling the conditional mean E[Y|T, X]
and returning predictions that are averaged over the treatment values

fit.subgroup 17

return <- 1/2 * (hat{E}[Y|T=1, X] + hat{E}[Y|T=-1, X])
##

augment.func <- function(x, y, trt) {
data <- data.frame(x, y, trt)
xm <- model.matrix(y~trt*x-1, data = data)

lmod <- cv.glmnet(y = y, x = xm)
get predictions when trt = 1
data$trt <- 1
xm <- model.matrix(y~trt*x-1, data = data)
preds_1 <- predict(lmod, xm, s = "lambda.min")

get predictions when trt = -1
data$trt <- -1
xm <- model.matrix(y~trt*x-1, data = data)
preds_n1 <- predict(lmod, xm, s = "lambda.min")

return predictions averaged over trt
return(0.5 * (preds_1 + preds_n1))

}

subgrp.model.aug <- fit.subgroup(x = x, y = y,
trt = trt01,
propensity.func = prop.func,
augment.func = augment.func,
loss = "sq_loss_lasso",
option for cv.glmnet,
better to use 'nfolds=10'
nfolds = 3) # option for cv.glmnet

summary(subgrp.model.aug)

#################### Binary outcomes ####################################

use logistic loss for binary outcomes
subgrp.model.bin <- fit.subgroup(x = x, y = y.binary,

trt = trt01,
propensity.func = prop.func,
loss = "logistic_loss_lasso",
type.measure = "auc", # option for cv.glmnet
nfolds = 3) # option for cv.glmnet

subgrp.model.bin

#################### Count outcomes #####################################

use poisson loss for count/poisson outcomes
subgrp.model.poisson <- fit.subgroup(x = x, y = y.count,

trt = trt01,

18 fit.subgroup

propensity.func = prop.func,
loss = "poisson_loss_lasso",
type.measure = "mse", # option for cv.glmnet
nfolds = 3) # option for cv.glmnet

subgrp.model.poisson

#################### Time-to-event outcomes #############################

library(survival)

subgrp.model.cox <- fit.subgroup(x = x, y = Surv(y.time.to.event, status),
trt = trt01,
propensity.func = prop.func,
loss = "cox_loss_lasso",
nfolds = 3) # option for cv.glmnet

subgrp.model.cox

#################### Using custom loss functions ########################

Use custom loss function for binary outcomes

fit.custom.loss.bin <- function(x, y, weights, offset, ...) {
df <- data.frame(y = y, x)

minimize logistic loss with NO lasso penalty
with allowance for efficiency augmentation
glmf <- glm(y ~ x - 1, weights = weights,

offset = offset, # offset term allows for efficiency augmentation
family = binomial(), ...)

save coefficients
cfs = coef(glmf)

create prediction function.
prd = function(x, type = "response") {

dfte <- cbind(1, x)
colnames(dfte) <- names(cfs)
predictions must be returned on the scale
of the linear predictor
predict(glmf, data.frame(dfte), type = "link")

}
return lost of required components
list(predict = prd, model = glmf, coefficients = cfs)

}

subgrp.model.bin.cust <- fit.subgroup(x = x, y = y.binary,
trt = trt01,

LaLonde 19

propensity.func = prop.func,
fit.custom.loss = fit.custom.loss.bin)

subgrp.model.bin.cust

try exponential loss for
positive outcomes

fit.expo.loss <- function(x, y, weights, ...)
{

expo.loss <- function(beta, x, y, weights) {
sum(weights * y * exp(-drop(x %*% beta)))

}

use optim() to minimize loss function
opt <- optim(rep(0, NCOL(x)), fn = expo.loss, x = x, y = y, weights = weights)

coefs <- opt$par

pred <- function(x, type = "response") {
tcrossprod(cbind(1, x), t(coefs))

}

return list of required components
list(predict = pred, model = opt, coefficients = coefs)

}

use exponential loss for positive outcomes
subgrp.model.expo <- fit.subgroup(x = x, y = y.count,

trt = trt01,
propensity.func = prop.func,
fit.custom.loss = fit.expo.loss)

subgrp.model.expo

LaLonde National Supported Work Study Data

Description

The LaLonde dataset comes from the National Supported Work Study, which sought to evaluate the
effectiveness of an employment trainining program on wage increases.

20 LaLonde

Usage

LaLonde

Format

A data frame with 722 observations and 12 variables:

outcome whether earnings in 1978 are larger than in 1975; 1 for yes, 0 for no

treat whether the individual received the treatment; "Yes" or "No"

age age in years

educ education in years

black black or not; factor with levels "Yes" or "No"

hisp hispanic or not; factor with levels "Yes" or "No"

white white or not; factor with levels "Yes" or "No"

marr married or not; factor with levels "Yes" or "No"

nodegr No high school degree; factor with levels "Yes" (for no HS degree) or "No"

log.re75 log of earnings in 1975

u75 unemployed in 1975; factor with levels "Yes" or "No"

wts.extrap extrapolation weights to the 1978 Panel Study for Income Dynamics dataset

Source

The National Supported Work Study.

References

LaLonde, R.J. 1986. "Evaluating the econometric evaulations of training programs with experimen-
tal data." American Economic Review, Vol.76, No.4, pp. 604-620.

Egami N, Ratkovic M, Imai K (2017). "FindIt: Finding Heterogeneous Treatment Effects." R
package version 1.1.2, https://CRAN.R-project.org/package=FindIt.

Examples

data(LaLonde)
y <- LaLonde$outcome

trt <- LaLonde$treat

x.varnames <- c("age", "educ", "black", "hisp", "white",
"marr", "nodegr", "log.re75", "u75")

covariates
data.x <- LaLonde[, x.varnames]

construct design matrix (with no intercept)
x <- model.matrix(~ -1 + ., data = data.x)

https://CRAN.R-project.org/package=FindIt

plot.subgroup_fitted 21

const.propens <- function(x, trt)
{

mean.trt <- mean(trt == "Trt")
rep(mean.trt, length(trt))

}

subgrp_fit_w <- fit.subgroup(x = x, y = y, trt = trt,
loss = "logistic_loss_lasso",
propensity.func = const.propens,
cutpoint = 0,
type.measure = "auc",
nfolds = 10)

summary(subgrp_fit_w)

plot.subgroup_fitted Plotting results for fitted subgroup identification models

Description

Plots results for estimated subgroup treatment effects

Plots validation results for estimated subgroup treatment effects

Usage

S3 method for class 'subgroup_fitted'
plot(
x,
type = c("boxplot", "density", "interaction", "conditional"),
avg.line = TRUE,
...

)

S3 method for class 'subgroup_validated'
plot(
x,
type = c("boxplot", "density", "interaction", "conditional", "stability"),
avg.line = TRUE,
...

)

Arguments

x fitted object returned by validate.subgroup() or fit.subgroup() function

type type of plot. "density" results in a density plot for the results across all obser-
vations (if x is from fit.subgroup()) or if x is from validate.subgroup()
across iterations of either the bootstrap or training/test re-fitting. For the latter
case the test results will be plotted. "boxplot" results in boxplots across all

22 plot.subgroup_fitted

observations/iterations of either the bootstrap or training/test re-fitting. For the
latter case the test results will be plotted. "interaction" creates an interaction
plot for the different subgroups (crossing lines here means a meaningful sub-
group). For the interaction plot, the intervals around each point represent +1 one
SE "conditional" For subgroup_fitted objects, plots smoothed (via a GAM
smoother) means of the outcomes as a function of the estimated benefit score
separately for the treated and untreated groups. For subgroup_validated objects,
boxplots of summary statistics within subgroups will be plotted as subgroups are
defined by different cutoffs of the benefit scores. These cutoffs can be specified
via the benefit.score.quantiles argument of validate.subgroup.

avg.line boolean value of whether or not to plot a line for the average value in addition
to the density (only valid for type = "density")

... not used

See Also

fit.subgroup for function which fits subgroup identification models.

validate.subgroup for function which creates validation results and fit.subgroup for function
which fits subgroup identification models.

Examples

library(personalized)

set.seed(123)
n.obs <- 250
n.vars <- 15
x <- matrix(rnorm(n.obs * n.vars, sd = 3), n.obs, n.vars)

simulate non-randomized treatment
xbetat <- 0.5 + 0.5 * x[,11] - 0.5 * x[,13]
trt.prob <- exp(xbetat) / (1 + exp(xbetat))
trt01 <- rbinom(n.obs, 1, prob = trt.prob)

trt <- 2 * trt01 - 1

simulate response
delta <- 2 * (0.5 + x[,2] - x[,3] - x[,11] + x[,1] * x[,12])
xbeta <- x[,1] + x[,11] - 2 * x[,12]^2 + x[,13]
xbeta <- xbeta + delta * trt

continuous outcomes
y <- drop(xbeta) + rnorm(n.obs, sd = 2)

create function for fitting propensity score model
prop.func <- function(x, trt)
{

fit propensity score model
propens.model <- cv.glmnet(y = trt,

plotCompare 23

x = x, family = "binomial")
pi.x <- predict(propens.model, s = "lambda.min",

newx = x, type = "response")[,1]
pi.x

}

subgrp.model <- fit.subgroup(x = x, y = y,
trt = trt01,
propensity.func = prop.func,
loss = "sq_loss_lasso",
option for cv.glmnet,
better to use 'nfolds=10'
nfolds = 3) # option for cv.glmnet

subgrp.model$subgroup.trt.effects

plot(subgrp.model)

plot(subgrp.model, type = "boxplot")

plot(subgrp.model, type = "interaction")

plot(subgrp.model, type = "conditional")

valmod <- validate.subgroup(subgrp.model, B = 3,
method = "training_test",
benefit.score.quantiles = c(0.25, 0.5, 0.75),
train.fraction = 0.75)

plot(valmod)

plot(valmod, type = "interaction")

see how summary statistics of subgroups change
when the subgroups are defined based on different cutoffs
(25th quantile of bene score, 50th, and 75th)
plot(valmod, type = "conditional")

visualize the frequency of particular variables
of being selected across the resampling iterations with
'type = "stability"'
not run:
plot(valmod, type = "stability")

plotCompare Plot a comparison results for fitted or validated subgroup identifica-
tion models

24 plotCompare

Description

Plots comparison of results for estimated subgroup treatment effects

Usage

plotCompare(
...,
type = c("boxplot", "density", "interaction", "conditional"),
avg.line = TRUE

)

Arguments

... the fitted (model or validation) objects to be plotted. Must be either objects
returned from fit.subgroup() or validate.subgroup()

type type of plot. "density" results in a density plot for the results across all obser-
vations (if x is from fit.subgroup()) or if x is from validate.subgroup()
across iterations of either the bootstrap or training/test re-fitting. For the latter
case the test results will be plotted. "boxplot" results in boxplots across all
observations/iterations of either the bootstrap or training/test re-fitting. For the
latter case the test results will be plotted. "interaction" creates an interaction
plot for the different subgroups (crossing lines here means a meaningful sub-
group). "conditional" plots smoothed (via a GAM smoother) means of the
outcomes as a function of the estimated benefit score separately for the treated
and untreated groups.

avg.line boolean value of whether or not to plot a line for the average value in addition
to the density (only valid for type = "density")

See Also

fit.subgroup for function which fits subgroup identification models and validate.subgroup for
function which creates validation results.

Examples

library(personalized)

set.seed(123)
n.obs <- 100
n.vars <- 15
x <- matrix(rnorm(n.obs * n.vars, sd = 3), n.obs, n.vars)

simulate non-randomized treatment
xbetat <- 0.5 + 0.5 * x[,1] - 0.5 * x[,4]
trt.prob <- exp(xbetat) / (1 + exp(xbetat))
trt01 <- rbinom(n.obs, 1, prob = trt.prob)

trt <- 2 * trt01 - 1

predict.subgroup_fitted 25

simulate response
delta <- 2 * (0.5 + x[,2] - x[,3] - x[,11] + x[,1] * x[,12])
xbeta <- x[,1] + x[,11] - 2 * x[,12]^2 + x[,13]
xbeta <- xbeta + delta * trt

continuous outcomes
y <- drop(xbeta) + rnorm(n.obs, sd = 2)

create function for fitting propensity score model
prop.func <- function(x, trt)
{

fit propensity score model
propens.model <- cv.glmnet(y = trt,

x = x, family = "binomial")
pi.x <- predict(propens.model, s = "lambda.min",

newx = x, type = "response")[,1]
pi.x

}

subgrp.model <- fit.subgroup(x = x, y = y,
trt = trt01,
propensity.func = prop.func,
loss = "sq_loss_lasso",
option for cv.glmnet,
better to use 'nfolds=10'
nfolds = 3) # option for cv.glmnet

subgrp.model.o <- fit.subgroup(x = x, y = y,
trt = trt01,
propensity.func = prop.func,
option for cv.glmnet,
better to use 'nfolds=10'
loss = "owl_logistic_flip_loss_lasso",
nfolds = 3)

plotCompare(subgrp.model, subgrp.model.o)

predict.subgroup_fitted

Function to predict either benefit scores or treatment recommenda-
tions

Description

Predicts benefit scores or treatment recommendations based on a fitted subgroup identification
model

Function to obtain predictions for weighted ksvm objects

26 predict.subgroup_fitted

Usage

S3 method for class 'subgroup_fitted'
predict(
object,
newx,
type = c("benefit.score", "trt.group"),
cutpoint = 0,
...

)

S3 method for class 'wksvm'
predict(object, newx, type = c("class", "linear.predictor"), ...)

Arguments

object fitted object returned by validate.subgrp() function.
For predict.wksvm(), this should be a fitted wksvm object from the weighted.ksvm()
function

newx new design matrix for which predictions will be made

type type of prediction. type = "benefit.score" results in predicted benefit scores
and type = "trt.group" results in prediction of recommended treatment group.
For predict.wksvm(), type = 'class' yields predicted class and type = 'linear.predictor'
yields estimated function (the sign of which is the estimated class)

cutpoint numeric value for patients with benefit scores above which (or below which if
larger.outcome.better = FALSE) will be recommended to be in the treatment
group. Can also set cutpoint = "median", which will use the median value of
the benefit scores as the cutpoint or can set specific quantile values via "quantx"
where "x" is a number between 0 and 100 representing the quantile value; e.g.
cutpoint = "quant75" will use the 75th perent upper quantile of the benefit
scores as the quantile.

... not used

See Also

fit.subgroup for function which fits subgroup identification models.

weighted.ksvm for fitting weighted.ksvm objects

Examples

library(personalized)

set.seed(123)
n.obs <- 500
n.vars <- 15
x <- matrix(rnorm(n.obs * n.vars, sd = 3), n.obs, n.vars)

print.individual_treatment_effects 27

simulate non-randomized treatment
xbetat <- 0.5 + 0.5 * x[,11] - 0.5 * x[,3]
trt.prob <- exp(xbetat) / (1 + exp(xbetat))
trt01 <- rbinom(n.obs, 1, prob = trt.prob)

trt <- 2 * trt01 - 1

simulate response
delta <- 2 * (0.5 + x[,2] - x[,3] - x[,11] + x[,1] * x[,12])
xbeta <- x[,1] + x[,11] - 2 * x[,12]^2 + x[,13]
xbeta <- xbeta + delta * trt

continuous outcomes
y <- drop(xbeta) + rnorm(n.obs, sd = 2)

create function for fitting propensity score model
prop.func <- function(x, trt)
{

fit propensity score model
propens.model <- cv.glmnet(y = trt,

x = x, family = "binomial")
pi.x <- predict(propens.model, s = "lambda.min",

newx = x, type = "response")[,1]
pi.x

}

subgrp.model <- fit.subgroup(x = x, y = y,
trt = trt01,
propensity.func = prop.func,
loss = "sq_loss_lasso",
nfolds = 3) # option for cv.glmnet

subgrp.model$subgroup.trt.effects
benefit.scores <- predict(subgrp.model, newx = x, type = "benefit.score")

rec.trt.grp <- predict(subgrp.model, newx = x, type = "trt.group")

print.individual_treatment_effects

Printing individualized treatment effects

Description

Prints results for estimated subgroup treatment effects

Usage

S3 method for class 'individual_treatment_effects'
print(x, digits = max(getOption("digits") - 3, 3), ...)

28 print.subgroup_fitted

Arguments

x a fitted object from either treat.effects or treatment.effects
digits minimal number of significant digits to print.
... further arguments passed to or from print.default.

print.subgroup_fitted Printing results for fitted subgroup identification models

Description

Prints results for estimated subgroup treatment effects

Prints summary results for estimated subgroup treatment effects

Usage

S3 method for class 'subgroup_fitted'
print(x, digits = max(getOption("digits") - 3, 3), ...)

S3 method for class 'subgroup_validated'
print(
x,
digits = max(getOption("digits") - 3, 3),
sample.pct = FALSE,
which.quant = NULL,
...

)

S3 method for class 'subgroup_summary'
print(x, p.value = 0.001, digits = max(getOption("digits") - 3, 3), ...)

Arguments

x a fitted object from either fit.subgroup, validate.subgroup, or summarize.subgroups()
digits minimal number of significant digits to print.
... further arguments passed to or from print.default.
sample.pct boolean variable of whether to print the percent of the test sample within each

subgroup. If false the sample size itself, not the percent is printed. This may
not be informative if the test sample size is much different from the total sample
size

which.quant when validate.subgroup() is called with a vector of quantile values specified
for benefit.score.quantiles, i.e. benefit.score.quantiles = c(0.25,
0.5, 0.75), the argument which.quant can be a vector of indexes specify-
ing which quantile cutoff value validation results to display, i.e. which.quant
= c(1,3) in the above example results in the display of validation results for
subgroups defined by cutoff values of the benefit score defined by the 25th abnd
75th quantiles of the benefit score

subgroup.effects 29

p.value a p-value threshold for mean differences below which covariates will be dis-
played. P-values are adjusted for multiple comparisons by the Hommel ap-
proach. For example, setting p.value = 0.05 will display all covariates that
have a significant difference between subgroups with p-value less than 0.05.
Defaults to 0.001.

See Also

validate.subgroup for function which creates validation results and fit.subgroup for function
which fits subgroup identification models.

summarize.subgroups for function which summarizes subgroup covariate values

subgroup.effects Computes treatment effects within various subgroups

Description

Computes treatment effects within various subgroups to estimate subgroup treatment effects

Usage

subgroup.effects(
benefit.scores,
y,
trt,
pi.x,
cutpoint = 0,
larger.outcome.better = TRUE,
reference.trt = NULL

)

Arguments

benefit.scores vector of estimated benefit scores

y The response vector

trt treatment vector with each element equal to a 0 or a 1, with 1 indicating treat-
ment status is active.

pi.x The propensity score for each observation

cutpoint numeric value for patients with benefit scores above which (or below which if
larger.outcome.better = FALSE) will be recommended to be in the treatment
group. Can also set cutpoint = "median", which will use the median value of
the benefit scores as the cutpoint or can set specific quantile values via "quantx"
where "x" is a number between 0 and 100 representing the quantile value; e.g.
cutpoint = "quant75" will use the 75th perent upper quantile of the benefit
scores as the quantile.

30 summarize.subgroups

larger.outcome.better

boolean value of whether a larger outcome is better. Set to TRUE if a larger
outcome is better and set to FALSE if a smaller outcome is better. Defaults to
TRUE.

reference.trt index of which treatment is the reference (in the case of multiple treatments).
This should be known already, as for a trt with K-levels, there will be K-1 ben-
efit scores (1 per column) of benefit.scores, where each column is a compar-
ison of each K-1 treatments with the reference treatment. The default is the last
level of trt if it is a factor.

See Also

fit.subgroup for function which fits subgroup identification models which generate benefit scores.

summarize.subgroups Summarizing covariates within estimated subgroups

Description

Summarizes covariate values within the estimated subgroups

Usage

summarize.subgroups(x, ...)

Default S3 method:
summarize.subgroups(x, subgroup, ...)

S3 method for class 'subgroup_fitted'
summarize.subgroups(x, ...)

Arguments

x a fitted object from fit.subgroup() or a matrix of covariate values

... optional arguments to summarize.subgroups methods

subgroup vector of indicators of same length as the number of rows in x if x is a matrix. A
value of 1 in the ith position of subgroup indicates patient i is in the subgroup
of patients recommended the treatment and a value of 0 in the ith position of
subgroup indicates patient i is in the subgroup of patients recommended the
control. If x is a fitted object returned by fit.subgroup(), subgroup is not
needed.

Details

The p-values shown are raw p-values and are not adjusted for multiple comparisons.

summarize.subgroups 31

See Also

fit.subgroup for function which fits subgroup identification models and print.subgroup_summary
for arguments for printing options for summarize.subgroups().

Examples

library(personalized)

set.seed(123)
n.obs <- 1000
n.vars <- 50
x <- matrix(rnorm(n.obs * n.vars, sd = 3), n.obs, n.vars)

simulate non-randomized treatment
xbetat <- 0.5 + 0.5 * x[,21] - 0.5 * x[,41]
trt.prob <- exp(xbetat) / (1 + exp(xbetat))
trt01 <- rbinom(n.obs, 1, prob = trt.prob)

trt <- 2 * trt01 - 1

simulate response
delta <- 2 * (0.5 + x[,2] - x[,3] - x[,11] + x[,1] * x[,12])
xbeta <- x[,1] + x[,11] - 2 * x[,12]^2 + x[,13]
xbeta <- xbeta + delta * trt

continuous outcomes
y <- drop(xbeta) + rnorm(n.obs, sd = 2)

create function for fitting propensity score model
prop.func <- function(x, trt)
{

fit propensity score model
propens.model <- cv.glmnet(y = trt,

x = x, family = "binomial")
pi.x <- predict(propens.model, s = "lambda.min",

newx = x, type = "response")[,1]
pi.x

}

subgrp.model <- fit.subgroup(x = x, y = y,
trt = trt01,
propensity.func = prop.func,
loss = "sq_loss_lasso",
nfolds = 5) # option for cv.glmnet

comp <- summarize.subgroups(subgrp.model)
print(comp, p.value = 0.01)

or we can simply supply the matrix x and the subgroups
comp2 <- summarize.subgroups(x, subgroup = 1 * (subgrp.model$benefit.scores > 0))

32 treatment.effects

print(comp2, p.value = 0.01)

summary.subgroup_fitted

Summary of results for fitted subgroup identification models

Description

Prints summary of results for estimated subgroup treatment effects

Prints summary of results for estimated weighted ksvm

Usage

S3 method for class 'subgroup_fitted'
summary(object, digits = max(getOption("digits") - 3, 3), ...)

S3 method for class 'wksvm'
summary(object, digits = max(getOption("digits") - 3, 3), ...)

Arguments

object a fitted object from either fit.subgroup or validate.subgroup

digits minimal number of significant digits to print.

... further arguments passed to or from print.default.

See Also

validate.subgroup for function which creates validation results and fit.subgroup for function
which fits subgroup identification models.

treatment.effects Calculation of covariate-conditional treatment effects

Description

Calculates covariate conditional treatment effects using estimated benefit scores

treatment.effects 33

Usage

treatment.effects(x, ...)

Default S3 method:
treatment.effects(x, ...)

treat.effects(
benefit.scores,
loss = c("sq_loss_lasso", "logistic_loss_lasso", "poisson_loss_lasso",
"cox_loss_lasso", "owl_logistic_loss_lasso", "owl_logistic_flip_loss_lasso",
"owl_hinge_loss", "owl_hinge_flip_loss", "sq_loss_lasso_gam",
"poisson_loss_lasso_gam", "logistic_loss_lasso_gam", "sq_loss_gam",
"poisson_loss_gam", "logistic_loss_gam", "owl_logistic_loss_gam",
"owl_logistic_flip_loss_gam", "owl_logistic_loss_lasso_gam",
"owl_logistic_flip_loss_lasso_gam", "sq_loss_xgboost", "custom"),

method = c("weighting", "a_learning"),
pi.x = NULL,
...

)

S3 method for class 'subgroup_fitted'
treatment.effects(x, ...)

Arguments

x a fitted object from fit.subgroup()

... not used

benefit.scores vector of estimated benefit scores

loss loss choice USED TO CALCULATE benefit.scores of both the M function
from Chen, et al (2017) and potentially the penalty used for variable selection.
See fit.subgroup for more details.

method method choice USED TO CALCULATE benefit.scores. Either the "weighting"
method or "a_learning" method. See fit.subgroup for more details

pi.x The propensity score for each observation

Value

A List with elements delta (if the treatment effects are a difference/contrast, i.e. E[Y |T = 1, X]−
E[Y |T = −1, X]) and gamma (if the treatment effects are a ratio, i.e. E[Y |T = 1, X]/E[Y |T =
−1, X])

See Also

fit.subgroup for function which fits subgroup identification models.

print.individual_treatment_effects for printing of objects returned by treat.effects or
treatment.effects

34 treatment.effects

Examples

library(personalized)

set.seed(123)
n.obs <- 500
n.vars <- 25
x <- matrix(rnorm(n.obs * n.vars, sd = 3), n.obs, n.vars)

simulate non-randomized treatment
xbetat <- 0.5 + 0.5 * x[,21] - 0.5 * x[,11]
trt.prob <- exp(xbetat) / (1 + exp(xbetat))
trt01 <- rbinom(n.obs, 1, prob = trt.prob)

trt <- 2 * trt01 - 1

simulate response
delta <- 2 * (0.5 + x[,2] - x[,3] - x[,11] + x[,1] * x[,12])
xbeta <- x[,1] + x[,11] - 2 * x[,12]^2 + x[,13]
xbeta <- xbeta + delta * trt

continuous outcomes
y <- drop(xbeta) + rnorm(n.obs, sd = 2)

time-to-event outcomes
surv.time <- exp(-20 - xbeta + rnorm(n.obs, sd = 1))
cens.time <- exp(rnorm(n.obs, sd = 3))
y.time.to.event <- pmin(surv.time, cens.time)
status <- 1 * (surv.time <= cens.time)

create function for fitting propensity score model
prop.func <- function(x, trt)
{

fit propensity score model
propens.model <- cv.glmnet(y = trt,

x = x, family = "binomial")
pi.x <- predict(propens.model, s = "lambda.min",

newx = x, type = "response")[,1]
pi.x

}

subgrp.model <- fit.subgroup(x = x, y = y,
trt = trt01,
propensity.func = prop.func,
loss = "sq_loss_lasso",
nfolds = 3) # option for cv.glmnet

trt_eff <- treatment.effects(subgrp.model)
str(trt_eff)

trt_eff

validate.subgroup 35

library(survival)
subgrp.model.cox <- fit.subgroup(x = x, y = Surv(y.time.to.event, status),

trt = trt01,
propensity.func = prop.func,
loss = "cox_loss_lasso",
nfolds = 3) # option for cv.glmnet

trt_eff_c <- treatment.effects(subgrp.model.cox)
str(trt_eff_c)

trt_eff_c

validate.subgroup Validating fitted subgroup identification models

Description

Validates subgroup treatment effects for fitted subgroup identification model class of Chen, et al
(2017)

Usage

validate.subgroup(
model,
B = 50L,
method = c("training_test_replication", "boot_bias_correction"),
train.fraction = 0.75,
benefit.score.quantiles = c(0.1666667, 0.3333333, 0.5, 0.6666667, 0.8333333),
parallel = FALSE

)

Arguments

model fitted model object returned by fit.subgroup() function

B integer. number of bootstrap replications or refitting replications.

method validation method. "boot_bias_correction" for the bootstrap bias correction
method of Harrell, et al (1996) or "training_test_replication" for repeated
training and test splitting of the data (train.fraction should be specified for
this option)

train.fraction fraction (between 0 and 1) of samples to be used for training in training/test
replication. Only used for method = "training_test_replication"

benefit.score.quantiles

a vector of quantiles (between 0 and 1) of the benefit score values for which to
return bootstrapped information about the subgroups. ie if one of the quantile
values is 0.5, the median value of the benefit scores will be used as a cutoff to

36 validate.subgroup

determine subgroups and summary statistics will be returned about these sub-
groups

parallel Should the loop over replications be parallelized? If FALSE, then no, if TRUE,
then yes. If user sets parallel = TRUE and the fitted fit.subgroup() object
uses the parallel version of an internal model, say for cv.glmnet(), then the
internal parallelization will be overridden so as not to create a conflict of paral-
lelism.

Details

Estimates of various quantities conditional on subgroups and treatment statuses are provided and
displayed via the print.subgroup_validated function:

1. "Conditional expected outcomes" The first results shown when printing a subgroup_validated
object are estimates of the expected outcomes conditional on the estimated subgroups (i.e.
which subgroup is ’recommended’ by the model) and conditional on treatment/intervention
status. If there are two total treatment options, this results in a 2x2 table of expected condi-
tional outcomes.

2. "Treatment effects conditional on subgroups" The second results shown when printing a subgroup_validated
object are estimates of the expected outcomes conditional on the estimated subgroups. If the
treatment takes levels j ∈ {1, . . . ,K}, a total of K conditional treatment effects will be
shown. For example, of the outcome is continuous, the jth conditional treatment effect is
defined as E(Y |Trt = j, Subgroup = j) − E(Y |Trt = j, Subgroup = / = j), where
Subgroup = j if treatment j is recommended, i.e. treatment j results in the largest/best
expected potential outcomes given the fitted model.

3. "Overall treatment effect conditional on subgroups " The third quantity displayed shows the
overall improvement in outcomes resulting from all treatment recommendations. This is es-
sentially an average over all of the conditional treatment effects weighted by the proportion of
the population recommended each respective treatment level.

Value

An object of class "subgroup_validated"

avg.results Estimates of average conditional treatment effects when subgroups are deter-
mined based on the provided cutoff value for the benefit score. For example,
if cutoff = 0 and there is a treatment and control only, then the treatment is
recommended if the benefit score is greater than 0.

se.results Standard errors of the estimates from avg.estimates

boot.results Contains the individual results for each replication. avg.results is comprised
of averages of the values from boot.results

avg.quantile.results

Estimates of average conditional treatment effects when subgroups are deter-
mined based on different quntile cutoff values for the benefit score. For example,
if benefit.score.quantiles = 0.75 and there is a treatment and control only,
then the treatment is recommended if the benefit score is greater than the 75th
upper quantile of all benefit scores. If multiple quantile values are provided,
e.g. benefit.score.quantiles = c(0.15, 0.5, 0.85), then results will be
provided for all quantile levels.

validate.subgroup 37

se.quantile.results

Standard errors corresponding to avg.quantile.results

boot.results.quantiles

Contains the individual results for each replication. avg.quantile.results is
comprised of averages of the values from boot.results.quantiles

family Family of the outcome. For example, "gaussian" for continuous outcomes

method Method used for subgroup identification model. Weighting or A-learning

n.trts The number of treatment levels
comparison.trts

All treatment levels other than the reference level

reference.trt The reference level for the treatment. This should usually be the control group/level
larger.outcome.better

If larger outcomes are preferred for this model

cutpoint Benefit score cutoff value used for determining subgroups

val.method Method used for validation

iterations Number of replications used in the validation process

nobs Number of observations in x provided to fit.subgroup

nvars Number of variables in x provided to fit.subgroup

References

Chen, S., Tian, L., Cai, T. and Yu, M. (2017), A general statistical framework for subgroup identi-
fication and comparative treatment scoring. Biometrics. doi:10.1111/biom.12676

Harrell, F. E., Lee, K. L., and Mark, D. B. (1996). Tutorial in biostatistics multivariable prognostic
models: issues in developing models, evaluating assumptions and adequacy, and measuring and re-
ducing errors. Statistics in medicine, 15, 361-387. doi:10.1002/(SICI)1097-0258(19960229)15:4<361::AID-
SIM168>3.0.CO;2-4

Huling. J.D. and Yu, M. (2021), Subgroup Identification Using the personalized Package. Journal
of Statistical Software 98(5), 1-60. doi:10.18637/jss.v098.i05

See Also

fit.subgroup for function which fits subgroup identification models, plot.subgroup_validated
for plotting of validation results, and print.subgroup_validated for arguments for printing op-
tions for validate.subgroup().

Examples

library(personalized)

set.seed(123)
n.obs <- 500
n.vars <- 20
x <- matrix(rnorm(n.obs * n.vars, sd = 3), n.obs, n.vars)

38 validate.subgroup

simulate non-randomized treatment
xbetat <- 0.5 + 0.5 * x[,11] - 0.5 * x[,13]
trt.prob <- exp(xbetat) / (1 + exp(xbetat))
trt01 <- rbinom(n.obs, 1, prob = trt.prob)

trt <- 2 * trt01 - 1

simulate response
delta <- 2 * (0.5 + x[,2] - x[,3] - x[,11] + x[,1] * x[,12])
xbeta <- x[,1] + x[,11] - 2 * x[,12]^2 + x[,13]
xbeta <- xbeta + delta * trt

continuous outcomes
y <- drop(xbeta) + rnorm(n.obs, sd = 2)

create function for fitting propensity score model
prop.func <- function(x, trt)
{

fit propensity score model
propens.model <- cv.glmnet(y = trt,

x = x, family = "binomial")
pi.x <- predict(propens.model, s = "lambda.min",

newx = x, type = "response")[,1]
pi.x

}

subgrp.model <- fit.subgroup(x = x, y = y,
trt = trt01,
propensity.func = prop.func,
loss = "sq_loss_lasso",
option for cv.glmnet,
better to use 'nfolds=10'
nfolds = 3)

x.test <- matrix(rnorm(10 * n.obs * n.vars, sd = 3), 10 * n.obs, n.vars)

simulate non-randomized treatment
xbetat.test <- 0.5 + 0.5 * x.test[,11] - 0.5 * x.test[,13]
trt.prob.test <- exp(xbetat.test) / (1 + exp(xbetat.test))
trt01.test <- rbinom(10 * n.obs, 1, prob = trt.prob.test)

trt.test <- 2 * trt01.test - 1

simulate response
delta.test <- 2 * (0.5 + x.test[,2] - x.test[,3] - x.test[,11] + x.test[,1] * x.test[,12])
xbeta.test <- x.test[,1] + x.test[,11] - 2 * x.test[,12]^2 + x.test[,13]
xbeta.test <- xbeta.test + delta.test * trt.test

y.test <- drop(xbeta.test) + rnorm(10 * n.obs, sd = 2)

valmod <- validate.subgroup(subgrp.model, B = 2,

weighted.ksvm 39

method = "training_test",
train.fraction = 0.75)

valmod

print(valmod, which.quant = c(4, 5))

weighted.ksvm Fit weighted kernel svm model.

Description

Fits weighted kernel SVM. To be used for OWL with hinge loss (but can be used more generally)

Usage

weighted.ksvm(
y,
x,
weights,
C = c(0.1, 0.5, 1, 2, 10),
kernel = "rbfdot",
kpar = "automatic",
nfolds = 10,
foldid = NULL,
eps = 1e-08,
...

)

Arguments

y The response vector (either a character vector, factor vector, or numeric vector
with values in -1, 1)

x The design matrix (not including intercept term)

weights vector of sample weights for weighted SVM

C cost of constraints violation, see ksvm

kernel kernel function used for training and prediction. See ksvm and kernels

kpar list of hyperparameters for the kernel function. See ksvm

nfolds number of cross validation folds for selecting value of C

foldid optional vector of values between 1 and nfolds specifying which fold each ob-
servation is in. If specified, it will override the nfolds argument.

eps penalty nugget parameter. Defaults to 1e-8

... extra arguments to be passed to ipop from the kernlab package

40 weighted.ksvm

See Also

predict.wksvm for predicting from fitted weighted.ksvm objects

Examples

library(kernlab)

x <- matrix(rnorm(200 * 2), ncol = 2)

y <- 2 * (sin(x[,2]) ^ 2 * exp(-x[,2]) - 0.2 > rnorm(200, sd = 0.1)) - 1

weights <- runif(100, max = 1.5, min = 0.5)

wk <- weighted.ksvm(x = x[1:100,], y = y[1:100],
C = c(0.1, 0.5, 1, 2),
nfolds = 5,
weights = weights[1:100])

pr <- predict(wk, newx = x[101:200,])

mean(pr == y[101:200])

Index

∗ datasets
LaLonde, 19

check.overlap, 2
create.augmentation.function, 4
create.propensity.function, 5, 6, 7
cv.glmnet, 5, 7, 13

fit.subgroup, 5, 7, 8, 22, 24, 26, 29–33, 37

gam, 14
glmnet, 5, 7

ipop, 14, 39

kernels, 39
ksvm, 39

LaLonde, 19

plot.subgroup_fitted, 15, 21
plot.subgroup_validated, 37
plot.subgroup_validated

(plot.subgroup_fitted), 21
plotCompare, 23
predict.subgroup_fitted, 15, 25
predict.wksvm, 40
predict.wksvm

(predict.subgroup_fitted), 25
print.default, 28, 32
print.individual_treatment_effects, 27,

33
print.subgroup_fitted, 15, 28
print.subgroup_summary, 31
print.subgroup_summary

(print.subgroup_fitted), 28
print.subgroup_validated, 36, 37
print.subgroup_validated

(print.subgroup_fitted), 28

subgroup.effects, 29

summarize.subgroups, 29, 30
summary.subgroup_fitted, 32
summary.wksvm

(summary.subgroup_fitted), 32

treat.effects, 14, 28
treat.effects (treatment.effects), 32
treatment.effects, 28, 32

validate.subgroup, 15, 22, 24, 29, 32, 35

weighted.ksvm, 14, 26, 39

xgb.train, 9

41

	check.overlap
	create.augmentation.function
	create.propensity.function
	fit.subgroup
	LaLonde
	plot.subgroup_fitted
	plotCompare
	predict.subgroup_fitted
	print.individual_treatment_effects
	print.subgroup_fitted
	subgroup.effects
	summarize.subgroups
	summary.subgroup_fitted
	treatment.effects
	validate.subgroup
	weighted.ksvm
	Index

