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Achim Zeileis

Universität Innsbruck

Abstract

This vignette is a (slightly) modified version of Frick, Strobl, and Zeileis (2014), pub-
lished in Educational and Psychological Measurement.

Rasch mixture models can be a useful tool when checking the assumption of measure-
ment invariance for a single Rasch model. They provide advantages compared to manifest
DIF tests when the DIF groups are only weakly correlated with the manifest covariates
available. Unlike in single Rasch models, estimation of Rasch mixture models is sensi-
tive to the specification of the ability distribution even when the conditional maximum
likelihood approach is used. It is demonstrated in a simulation study how differences in
ability can influence the latent classes of a Rasch mixture model. If the aim is only DIF
detection, it is not of interest to uncover such ability differences as one is only interested
in a latent group structure regarding the item difficulties. To avoid any confounding effect
of ability differences (or impact), a new score distribution for the Rasch mixture model is
introduced here. It ensures the estimation of the Rasch mixture model to be independent
of the ability distribution and thus restricts the mixture to be sensitive to latent structure
in the item difficulties only. Its usefulness is demonstrated in a simulation study and its
application is illustrated in a study of verbal aggression.

Keywords: mixed Rasch model, Rasch mixture model, DIF detection, score distribution.

1. Introduction

Based on the Rasch model (Rasch 1960), Rost (1990) introduced what he called the “mixed
Rasch model”, a combination of a latent class approach and a latent trait approach to model
qualitative and quantitative ability differences. As suggested by Rost (1990), it can also
be used to examine the fit of the Rasch model and check for violations of measurement
invariance such as differential item functioning (DIF). Since the model assumes latent classes
for which separate Rasch models hold, it can be employed to validate a psychological test
or questionnaire: if a model with two or more latent classes fits better than a model with
one latent class, measurement invariance is violated and a single Rasch model is not suitable
because several latent classes are present in the data which require separate Rasch models
with separate sets of item difficulties. These classes are latent in the sense that they are not
determined by covariates.

As the model assesses a questionnaire – or instrument as it will be referred to in the following –
as a whole, it works similar to a global test like the likelihood ratio (LR) test (Andersen 1972;
Gustafsson 1980), not an itemwise test like the Mantel-Haenszel test (Holland and Thayer
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1988). Hence, it is the set of item parameters for all items, which is tested for differences
between groups rather than each item parameter being tested separately.

The mixed Rasch model – here called Rasch mixture model to avoid confusion with mixed
(effects) models and instead highlight its relation to mixture models – has since been extended
by Rost and von Davier (1995) to different score distributions and by Rost (1991) and von
Davier and Rost (1995) to polytomous responses. The so-called “mixed ordinal Rasch model”
is a mixture of partial credit models (PCM, Masters 1982) and includes a mixture of rating
scale models (RSM, Andrich 1978) as a special case.

The original dichotomous model as well as its polytomous version have been applied in a
variety of fields. Zickar, Gibby, and Robie (2004) use a mixture PCM to detect faking in per-
sonality questionnaires, while Hong and Min (2007) identify three types/classes of depressed
behavior by applying a mixture RSM to a self-rating depression scale. Another vast field of
application are tests in educational measurement. Baghaei and Carstensen (2013) identify
different reader types from a reading comprehension test using a Rasch mixture model. Maij-
de Meij, Kelderman, and van der Flier (2010) also apply a Rasch mixture model to identify
latent groups in a vocabulary test. Cohen and Bolt (2005) use a Rasch mixture model to
detect DIF in a mathematics placement test.

Rasch mixture models constitute a legitimate alternative to DIF tests for manifest variables
such as the LR test or the recently proposed Rasch trees (Strobl, Kopf, and Zeileis 2014).
These methods are usually used to test DIF based on observed covariates, whereas Maij-de
Meij et al. (2010) show that mixture models are more suitable to detect DIF if the“true source
of bias” is a latent grouping variable. The simulation study by Preinerstorfer and Formann
(2011) suggests that parameter recovery works reasonably well for Rasch mixture models.
While they did not study in detail the influence of DIF effect size or the effect of different
ability distributions, they deem such differences relevant for practical concern but leave it to
further research to establish just how strongly they influence estimation accuracy.

As the Rasch model is based on two aspects, subject ability and item difficulty, Rasch mixture
models are sensitive not only to differences in the item difficulties – as in DIF – but also to dif-
ferences in abilities. Such differences in abilities are usually called impact and do not infringe
on measurement invariance (Ackerman 1992). In practice, when developing a psychological
test, one often follows two main steps. First, the item parameters are estimated, e.g., by
means of the conditional maximum likelihood (CML) approach, checked for model violations
and problematic items are possibly excluded or modified. Second, the final set of items is used
to estimate person abilities. The main advantage of the CML approach is that, for a single
Rasch model, the estimation and check of item difficulties are (conditionally) independent of
the abilities and their distribution. Other global assessment methods like the LR test and the
Rasch trees are also based on the CML approach to achieve such independence. However, in a
Rasch mixture model, the estimation of the item difficulties is not independent of the ability
distribution, even when employing the CML approach. DeMars and Lau (2011) find that a
difference in mean ability between DIF groups affects the estimation of the DIF effect sizes.
Similarly, other DIF detection methods are also affected by impact, e.g., inflated type I error
rates occur in the Mantel-Haenszel and logistic regression procedures if impact is present (Li,
Brooks, and Johanson 2012; DeMars 2010).

When using a Rasch mixture model for DIF detection, an influence of impact alone on the
mixture is undesirable as the goal is to uncover DIF groups based on item difficulties, not
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impact groups based on abilities. To avoid such confounding effects of impact, we propose
a new version of the Rasch mixture model specifically designed to detect DIF, which allows
for the transfer of the crucial property of CML from a single Rasch model to the mixture:
estimation and testing of item difficulties is independent of the abilities and their distribution.

A simulation study is conducted to illustrate how previously suggested versions and this new
version of the Rasch mixture model react to impact, either alone or in combination with DIF,
and how this affects the suitability of the Rasch mixture model as a DIF detection method.

In the following, we briefly discuss the Rasch model and Rasch mixture models to explain
why the latter are sensitive to the specification of the score distribution despite employing a
conditional maximum likelihood approach for estimation. This Section 2 is concluded with
our suggested new score distribution. We illustrate and discuss the behavior of Rasch mixture
models with different options for the score distribution in a Monte Carlo study in Section 3.
The suggested approach for DIF detection via Rasch mixture models is illustrated through
an empirical application to a study on verbally aggressive behavior in Section 4. Concluding
remarks are provided in Section 5.

2. Theory

2.1. The Rasch model

The Rasch model, introduced by Georg Rasch (1960), models the probability for a binary
response yij ∈ {0, 1} by subject i to item j as dependent on the subject’s ability θi and the
item’s difficulty βj . Assuming independence between items given the subject, the probability
for observing a vector yi = (yi1, . . . , yim)⊤ with responses to all m items by subject i can be
written as

P (Yi = yi|θi, β) =
m∏

j=1

exp{yij(θi − βj)}

1 + exp{θi − βj}
, (1)

depending on the subject’s ability θi and the vector of all item difficulties β = (β1, . . . , βm)⊤.
Capital letters denote random variables and lower case letters denote their realizations.

Since joint maximum likelihood (JML) estimation of all abilities and difficulties is not consis-
tent for a fixed number of items m (Molenaar 1995), conditional maximum likelihood (CML)
estimation is employed here. This exploits that the number of correctly scored items, the
so-called raw score Ri =

∑m
j=1 Yij , is a sufficient statistic for the ability θi (Molenaar 1995).

Therefore, the answer probability from Equation 1 can be split into two factors where the
first factor is conditionally independent of θi:

P (Yi = yi|θi, β) = P (Yi = yi|ri, θi, β) P (Ri = ri|θi, β)

= P (Yi = yi|ri, β)
︸ ︷︷ ︸

h(yi|ri,β)

P (Ri = ri|θi, β)
︸ ︷︷ ︸

g(ri|θi,β)

.

Due to this separation, consistent estimates of the item parameters β can be obtained by
maximizing only the conditional part of the likelihood h(·):

h(yi|ri, β) =
exp{−

∑m
j=1 yijβj}

γri(β)
, (2)
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with γj(·) denoting the elementary symmetric function of order j. The resulting CML esti-

mates β̂ are consistent, asymptotically normal, and asymptotically efficient (Molenaar 1995).

If not only the conditional likelihood but the full likelihood is of interest – as in Rasch mixture
models – then the score distribution g(·) needs to be specified as well. The approach used
by Rost (1990) and Rost and von Davier (1995) is to employ some distribution for the raw
scores ri based on a set of auxiliary parameters δ. Then the probability density function for
yi can be written as:

f(yi|β, δ) = h(yi|ri, β) g(ri|δ). (3)

Based on this density, the following subsections first introduce mixture Rasch models in
general and then discuss several choices for g(·). CML estimation is used throughout for esti-
mating the Rasch model, i.e., the conditional likelihood h(·) is always specified by Equation 2.

2.2. Rasch mixture models

Mixture models are essentially a weighted sum over several components, i.e., here over several
Rasch models. Using the Rasch model density function from Equation 3, the likelihood L(·)
of a Rasch mixture model with K components for data from n respondents is given by

L(π(1), . . . , π(K), β(1), . . . , β(K), δ(1), . . . , δ(K)) =

n∏

i=1

K∑

k=1

π(k)f(yi|β
(k), δ(k))

=

n∏

i=1

K∑

k=1

π(k)h(yi|ri, β
(k)) g(ri|δ

(k)). (4)

where the (k)-superscript denotes the component-specific parameters: the component weight
π(k), the component-specific item parameters β(k), and the component-specific score param-
eters δ(k) for k = 1, . . . ,K.

This kind of likelihood can be maximized via the expectation-maximization (EM) algorithm
(Dempster, Laird, and Rubin 1977) which alternates between maximizing the component-
specific likelihoods for obtaining parameter estimates and computing expectations for each
observations belonging to each cluster.

More formally, given (initial) estimates for the model parameters π̂(k), β̂(k), δ̂(k) for all com-
ponents k = 1, . . . ,K, posterior probabilities of each observation i belonging to a component,
or latent class, k are calculated in the E-step. This is simply i’s relative contribution to
component k compared to the sum of all its contributions:

p̂ik =
π̂(k) f(yi|β̂

(k), δ̂(k))
∑K

ℓ=1 π̂
(ℓ) f(yi|β̂(ℓ), δ̂(ℓ))

=
π̂(k) h(yi|ri, β̂

(k)) g(ri|δ̂
(k))

∑K
ℓ=1 π̂

(ℓ) h(yi|ri, β̂(ℓ)) g(ri|δ̂(ℓ))
. (5)

In the M-step of the algorithm, these posterior probabilities are used as the weights in a
weighted ML estimation of the model parameters. This way, an observation deemed unlikely
to belong to a certain latent class does not contribute strongly to its estimation. Estimation
can be done separately for each latent class. Using CML estimation for the Rasch Model, the
estimation of item and score parameters can again be done separately. For all components
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k = 1, . . . ,K:

(β̂(k), δ̂(k)) = argmax
β(k),δ(k)

n∑

i=1

p̂ik log f(yi|β
(k), δ(k))

=

{

argmax
β(k)

n∑

i=1

p̂ik log h(yi|ri, β
(k)); argmax

δ(k)

n∑

i=1

p̂ik log g(ri|δ
(k))

}

. (6)

Estimates of the class probabilities can be obtained from the posterior probabilities by aver-
aging:

π̂(k) =
1

n

n∑

i=1

p̂ik. (7)

The E-step (Equation 5) and M-step (Equations 6 and 7) are iterated until convergence,
always updating either the weights based on current estimates for the model parameters or
vice versa.

Note that the above implicitly assumes that the number of latent classes K is given or known.
However, this is typically not the case in practice and K needs to be chosen based on the
data. As K is not a model parameter – regularity conditions for the likelihood ratio test are
not fulfilled (McLachlan and Peel 2000, Chapter 6.4) – it is often chosen via some information
criterion that balances goodness of fit (via the likelihood) with a penalty for the number of
model parameters. Since the various information criteria differ in their penalty term, the
decision which model is considered “best” may depend on the information criterion chosen.
In the following, the BIC (Bayesian information criterion, Schwarz 1978) is used, which Li,
Cohen, Kim, and Cho (2009) found to be a suitable model selection method for dichotomous
mixture item response theory models. Note that this is not a formal significance test because
one does not control a type I error rate.

2.3. Score distribution

In a single Rasch model, the estimation of the item parameters is invariant to the score
distribution because of the separation in Equation 3. In the mixture context, this invariance
property holds only given the weights in Equation 6. However, these posterior weights depend
on the full Rasch likelihood, including the score distribution (Equation 5). Therefore, the
estimation of the item parameters in a Rasch mixture model is not independent of the score
distribution for K > 1, even if the CML approach is employed. Hence, it is important to
consider the specification of the score distribution when estimating Rasch mixture models
and to assess the consequences of potential misspecifications.

Saturated and mean-variance specification

In his introduction of the Rasch mixture model, Rost (1990) suggests a discrete probability
distribution on the scores with a separate parameter for each possible score. This requires
m − 2 parameters per latent class as the probabilities need to sum to 1 (and the extreme
scores, r = 0 and r = m, do not contribute to the likelihood).

Realizing that this saturated specification requires a potentially rather large number of pa-
rameters, Rost and von Davier (1995) suggest a parametric distribution with one parameter
each for mean and variance.
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6 Rasch Mixture Models for DIF Detection

Details on both specifications can be found in Rost (1990) and Rost and von Davier (1995),
respectively. Here, the notation of Frick, Strobl, Leisch, and Zeileis (2012) is adopted, which
expresses both specifications in a unified way through a conditional logit model for the score
r = 1, . . . ,m− 1:

g(r|δ(k)) =
exp{z⊤r δ

(k)}
∑m−1

j=1 exp{z⊤j δ
(k)}

,

with different choices for zr leading to the saturated and mean-variance specification, respec-
tively. For the former, the regressor vector is (m− 2)-dimensional with

zr = (0, . . . , 0, 1, 0, . . . , 0)⊤

and the 1 at position r − 1. Consequently, if r = 1, zr is a vector of zeros. For the mean-
variance specification, the regressor vector is 2-dimensional and given by

zr =

(
r

m
,
4r(m− r)

m2

)⊤

.

Restricted specification

In the following we suggest a new specification of the score distribution in the Rasch mix-
ture model, which aims at obtaining independence of the item parameter estimates from the
specification of the score distribution and therefore enabling the Rasch mixture model to dis-
tinguish between DIF and impact. Other global DIF detection methods like the LR test and
Rasch trees are able to make this distinction (Ankenmann, Witt, and Dunbar 1999; Strobl
et al. 2014) because they are based only on the conditional part of the likelihood (Equa-
tion 2). Analogously, we suggest a mixture of only this conditional part rather than the full
likelihood (Equation 3) of the Rasch model so that the mixture model will only be influenced
by differences in the item parameters.

Mixing only the conditional likelihood h(·) means that the sum over the K latent classes
in the likelihood of the Rasch mixture model in Equation 4 only applies to h(·) but not to
the score distribution g(·). The mixture is then only based on latent structure in the item
difficulties, not on latent structure in both difficulties and scores. Moreover, such a Rasch
mixture model based only on the conditional likelihood without any score distribution is
equivalent to a Rasch mixture model where the score distribution is independent of the latent
class k = 1, . . . ,K:

g(r|δ(k)) = g(r|δ) (k = 1, . . . ,K),

because then the factor g(r|δ) is a constant that can be moved out of the sum over the com-
ponents k in Equation 4. Consequently, compared to the case without any score distribution,
the log-likelihood just changes by an additional constant without component-specific param-
eters. In either case, the estimation of the component-specific parameters item parameters
as well as the selection of the number of components K is independent of the specification of
the score distribution.

This equivalence and independence from the score distribution can also be seen easily from
the definition of the posterior weights (Equation 5): If restricted, g(·) can be moved out of
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the sum and then cancels out, preserving only the dependence on h(·). Thus, the p̂ik depend
only on π̂(k) and β̂(k) but not δ̂(k). Therefore, the component weights and component-specific
item parameters can be estimated without any specification of the score distribution.

Subsequently, we adopt the restricted perspective rather than omitting g(·) completely, when
we want to obtain a mixture model where the mixture is independent of the score distribution.
From a statistical point of view this facilitates comparisons of the restricted Rasch mixture
model with the corresponding unrestricted counterpart.

Overview

The different specifications of the score distribution vary in their properties and implications
for the whole Rasch mixture model.

❼ The saturated model is very flexible. It can model any shape and is thus never mis-
specified. However, it needs a potentially large number of parameters which can be
challenging in model estimation and selection.

❼ The mean-variance specification of the score model is more parsimonious as it only re-
quires two parameters per latent class. While this is convenient for model fit and selec-
tion, it also comes at a cost: since it can only model unimodal or U-shaped distributions
(see Rost and von Davier 1995), it is partially misspecified if the score distribution is
actually multimodal.

❼ A restricted score model is even more parsimonious. Therefore, the same advantages in
model fit and selection apply. Furthermore, it is invariant to the latent structure in the
score distribution. If a Rasch mixture model is used for DIF detection, this is favorable
as only differences in the item difficulties influence the mixture. However, it is partially
misspecified if the latent structure in the scores and item difficulties coincides.

3. Monte Carlo study

The simple question “DIF or no DIF?” leads to the question whether the Rasch mixture
model is suitable as a tool to detect such violations of measurement invariance.

As the score distribution influences the estimation of the Rasch mixture model in general, it
is of particular interest how it influences the estimation of the number of latent classes, the
measure used to determine Rasch scalability.

3.1. Motivational example

As a motivation for the simulation design, consider the following example: The instrument
is a knowledge test which is administered to students from two different types of schools and
who have been prepared by one of two different courses for the knowledge test. Either of
the two groupings might be the source of DIF (or impact). If the groupings are available as
covariates to the item responses of the students, then a test for DIF between either school
types or course types can be easily carried out using the LR test. However, if the groupings
are not available (or even observed) as covariates, then a DIF test is still possible by means
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● ● ● ● ● ● ● ●
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Coinciding

School type I

(low ability)

School type II

(high ability)

●

●

Course type

(source of DIF)

standard

specialized

Figure 1: Grouping structure in the motivational example.

of the Rasch mixture model. The performance of such a DIF assessment is investigated in
our simulation study for different effects of school and course type, respectively.

In the following we assume that the school type is linked to ability difference (i.e., impact but
not DIF) while the course type is the source of DIF (but not impact). This can be motivated
in the following way (see also Figure 1): When the students from the two school types differ in
their mean ability, this is impact between these two groups. The courses might be a standard
course and a new specialized course. While the standard course covers all topics of the test
equally, the specialized course gives more emphasis to a relatively advanced topic and due
to time constraints less emphasis to a relatively basic topic. This may lead to DIF between
the students in the standard and the specialized course. See the left panel of Figure 2 for
illustrative item profiles of the standard course (in dark gray) and the specialized course (in
light gray).

Finally, the ability groups by school and the DIF groups by course can either coincide or not.
If all students in the first school type are being taught the standard course while all students
in the second school type are being taught the specialized course, the DIF groups coincide

with the ability groups. The DIF and ability groups do not coincide but only overlap partly
if both course types are taught in both school types: each DIF group (based on the type of
course taught) consists of a mix of students from both schools and therefore from both ability
groups. An illustration of coinciding and not coinciding ability and DIF groups is provided
in the upper and lower row of Figure 1, respectively. Ability groups, based on school type,
are shown in the columns, while DIF groups, based on course type, are illustrated with dark
and light gray for the standard course and specialized course, respectively. This difference
of coinciding or not coinciding DIF and ability groups might have an influence on the Rasch
mixture model’s ability to detect the DIF because in the former case the score distributions
differ between the two DIF groups while in the latter case they do not.

Subsequently, a Monte Carlo study is carried out to investigate how the Rasch mixture model
performs in situations where such groupings are present in the underlying data-generating
process but are not available as observed covariates. Moreover, we vary whether or not all
students come from the same school type (i.e., from the same ability distribution), whether
or not all students receive the standard course (i.e., whether there is DIF), and whether both
school types use the same or different courses (i.e., whether the groupings coincide or not).
For all computations, the R system for statistical computing (R Core Team 2013) is used
along with the add-on packages psychomix (Frick et al. 2012) and clv (Nieweglowski 2013).
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Scenario Latent class I Latent class II
Mean abilities Difficulties Mean abilities Difficulties

No impact (Θ = 0)

1 no DIF (∆ = 0) {0} βI — —
2 DIF (∆ > 0) {0} βI {0} βII

Impact (Θ > 0)

3 no DIF (∆ = 0) {−Θ/2,+Θ/2} βI — —
4 DIF (∆ > 0), not coinciding {−Θ/2,+Θ/2} βI {−Θ/2,+Θ/2} βII

5 DIF (∆ > 0), coinciding {−Θ/2} βI {+Θ/2} βII

Table 1: Simulation design. The latent-class-specific item parameters βI and βII differ by ∆
for two elements and thus coincide for ∆ = 0, leaving only a single latent class.

3.2. Simulation design

The simulation design combines ideas from the motivational example with aspects from the
simulation study conducted by Rost (1990). Similar to the original simulation study, the
item parameters represent an instrument with increasingly difficult items. Here, 20 items are
employed with corresponding item parameters βI which follow a sequence from −1.9 to 1.9
with increments of 0.2 and hence sum to zero.

βI = (−1.9,−1.7, . . . , 1.7, 1.9)⊤

βII = (−1.9,−1.7, . . . ,−1.1 + ∆, . . . , 1.1−∆, . . . , 1.7, 1.9)⊤

To introduce DIF, a second set of item parameters βII is considered where items 5 and 16
are changed by ±∆. This approach is similar in spirit to that of Rost (1990) – who reverses
the full sequence of item parameters to generate DIF – but allows for gradually changing
from small to large DIF effect sizes. Subject abilities are drawn with equal weights from two
normal distributions with means −Θ/2 and +Θ/2 and standard deviation 0.3, thus creating
a sample with two groups of subjects: one group with a lower mean ability and one with a
higher mean ability.

In the simulations below, the DIF effect size ∆ ranges from 0 to 4 in steps of 0.2

∆ ∈ {0, 0.2, . . . , 4}

while the impact Θ covers the same range in steps of 0.4:

Θ ∈ {0, 0.4, . . . , 4}.

Impact and DIF, or lack thereof, can be combined in several ways. Table 1 provides an
overview and Figures 2, 3, and 4 show illustrations. In the following, the different combi-
nations of impact and DIF are explained in more detail and connected to the motivational
example:

❼ If the simulation parameter ∆ for the DIF effect size is set to zero, both sets of item
parameters, βI and βII , are identical and no DIF is present. Since CML is employed,
model selection and parameter estimation is typically expected to be independent of
whether or not an impact is present (Scenario 1 and 3 in Table 1).

In the example: Only the standard course is taught and hence no DIF exists.
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Figure 2: Scenario 2. Left: Item difficulties with DIF (∆ = 2). Right: Stacked histogram of
unimodal score distribution with homogeneous abilities (Θ = 0).
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Figure 3: Scenario 3. Left: Item difficulties without DIF (∆ = 0). Right: Histogram of
bimodal score distribution with impact (Θ = 2).
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Figure 4: Stacked histograms of score distributions for Scenarios 4 (left) and 5 (right) with
DIF (∆ = 2). Left: impact and DIF, not coinciding (Θ = 2). Right: impact and DIF,
coinciding (Θ = 2). For item difficulties see Figure 2 (left).
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❼ If ∆ > 0, the item parameter set βII is different from βI . Hence, there is DIF and two
latent classes exist (Scenarios 2, 4, and 5). Both classes are chosen to be of equal size
in this case. For an illustration see the left panel of Figure 2.

In the example: Both courses are taught, thus leading to DIF. The standard course cor-
responds to the straight line as the item profile while the specialized course corresponds
to the spiked item profile with relatively difficult item 16 being easier and the relatively
easy item 5 being more difficult for students in this specialized course than for students
in the standard course.

❼ If the simulation parameter Θ for the impact is set to zero (Scenarios 1 and 2), then
the resulting score distribution is unimodal. For an illustration of such a unimodal
score distribution see the right panel of Figure 2. This histogram illustrates specifically
Scenario 2 where no impact is present but DIF exists. The histogram is shaded in light
and dark gray for the two DIF groups and thus to be read like a “stacked histogram”.

In the example: All students are from the same school and hence there is no impact.
However, both types of courses may be taught in this one school, thus leading to DIF
as in Scenario 2.

❼ If Θ > 0, subject abilities are sampled with equal weights from two normal distributions
with means {−Θ/2,+Θ/2}, thus generating impact. When no DIF is included (Sce-
nario 3), the resulting score distribution moves from being unimodal to being bimodal
with increasing Θ. The two modi of high and low scores represent the two groups of
subjects with high and low mean abilities, respectively. However, only a medium gray
is used to shade the illustrating histogram in Figure 3 as no DIF groups are present.

In the example: Only the standard course is taught in both school types. Hence no DIF
is present but impact between the school types.

❼ If there is DIF (i.e., ∆ > 0) in addition to impact (i.e., Θ > 0), subjects can be grouped
both according to mean ability (high vs. low) and difficulty (straight vs. spiked profile
in βI and βII , respectively).

These groups can coincide: For subjects with low mean ability −Θ/2, item difficul-
ties βI hold, while for subjects with high mean ability +Θ/2, item difficulties βII hold.
This is simulated in Scenario 5 and labeled Impact and DIF, coinciding. The resulting
score distribution is illustrated in the right panel of Figure 4. Subjects for whom item
difficulties βI hold are shaded in dark gray and as they also have lower mean abilities,
their scores are all relatively low. Conversely, subjects for whom item difficulties βII

hold are shaded in light gray and as they also have higher mean abilities, their scores
are all relatively high.

Additionally, the DIF groups and ability groups can also not coincide: Subjects in
either DIF group may stem from both ability groups, not just one. This is simulated in
Scenario 4 and labeled Impact and DIF, not coinciding. The resulting score distribution
is illustrated in the left panel of Figure 4. Again, subjects for whom item difficulties βI

and βII hold are shaded in dark and light gray, respectively. As subjects stem from
both ability groups (high vs. low abilities), both score distributions are bimodal.

In the example: Students from both school types and from both course types are con-
sidered, thus leading to both impact and DIF. Either both courses are taught at both
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schools (Scenario 4, not coinciding) or the standard course is only taught in the first
school and the specialized course is only taught at the second school (Scenario 5, coin-
ciding).

Note that Scenario 1 is a special case of Scenario 2 where ∆ is reduced to zero as well as a
special case of Scenario 3 where Θ is reduced to zero. Therefore, in the following, Scenario 1 is
not inspected separately but included in both the setting of No impact with DIF (Scenario 2)
and the setting of Impact without DIF (Scenario 3) as a reference point. Similarly, Scenarios 4
and 5 both can be reduced to Scenario 3 if ∆ is set to zero. It is therefore also included in
both the setting of Impact and DIF, not coinciding (Scenario 4) and the setting of Impact

and DIF, coinciding (Scenario 5) as a reference point.

For each considered combination of ∆ and Θ, 500 datasets of 500 observations each are gen-
erated. Larger numbers of datasets or observations lead to very similar results. Observations
with raw scores of 0 or m are removed from the dataset as they do not contribute to the
estimation of the Rasch mixture model (Rost 1990). For each dataset, Rasch mixture mod-
els for each of the saturated, mean-variance, and restricted score specifications are fitted for
K = 1, 2, 3.

3.3. False alarm rate and hit rate

The main objective here is to determine how suitable a Rasch mixture model, with various
choices for the score model, is to recognize DIF or the lack thereof.

For each dataset and type of score model, models with K = 1, 2, 3 latent classes are fitted
and the K̂ associated with the minimum BIC is selected. Choosing one latent class (K̂ = 1)
then corresponds to assuming measurement invariance while choosing more than one latent
class (K̂ > 1) corresponds to assuming violations of measurement invariance. While Rasch
mixture models do not constitute a formal significance test, the empirical proportion among
the 500 datasets with K̂ > 1 corresponds in essence to the power of DIF detection if ∆ > 0
(and thus two true latent classes exist) and to the associated type I error of a corresponding
test if ∆ = 0 (and thus only one true latent class exists). If the rate corresponds to power, it
will be referred to as hit rate whereas if it corresponds to a type I error it will be referred to
as false alarm rate.

In the following subsections, the key results of the simulation study will be visualized. The
exact rates for all conditions are included as a dataset in the R package psychomix, for details
see the section on computational details.

Scenario 2: No impact with DIF

This scenario is investigated as a case of DIF that should be fairly simple to detect. There
is no impact as abilities are homogeneous across all subjects so the only latent structure to
detect is the group membership based on the two item profiles. This latent structure is made
increasingly easy to detect by increasing the difference between the item difficulties for both
latent groups. In the graphical representation of the item parameters (left panel of Figure 2)
this corresponds to enlarging the spikes in the item profile.

Figure 5 shows how the rate of choosing a model with more than one latent class (K̂ > 1)
increases along with the DIF effect size ∆. At ∆ = 0, this is a false alarm rate. It is around
7% for the saturated model and very close to zero for the mean-variance and the saturated
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Figure 5: Rate of choosing a model with K̂ > 1 latent classes for data from Scenario 2 (DIF
without impact, i.e., Θ = 0).

score model (< 1%). With increasing ∆ > 0, the rate is a hit rate. For low values of ∆ the two
more parsimonious versions of the Rasch mixture model (with mean-variance and restricted
score distribution) are not able to pick up the DIF but at around ∆ = 3 the hit rate for
the two models increases and almost approaches 1 at ∆ = 4. Not surprisingly, the restricted
score specification performs somewhat better because in fact the raw score distributions do
not differ between the two latent classes. The baseline hit rate of the saturated model for
low values of ∆ is the same as the false alarm rate for ∆ = 0. It only increases beyond
the same threshold (∆ = 3) as the hit rate of the other two models. However, its rate is
much lower compared to the other two score model (only around 30%). The reason is that it
requires 18 additional score parameters for an additional latent class which is “too costly” in
terms of BIC. Hence, K̂ = 1 is chosen for most Rasch mixture models using a saturated score
distribution.

The number of iterations in the EM algorithm which are necessary for the estimation to
converge is much lower for the mean-variance and the restricted model than for the saturated
model. Since the estimation of the saturated model is more extensive due to the higher
number of parameters required by this model, it does not converge in about 10% of the cases
before reaching the maximum number of iterations which was set to 400. The mean-variance
and saturated model usually converge within the first 200 iterations.

Brief summary: The mean-variance and restricted model have higher hit rates than the
saturated model in the absence of impact.

Scenario 3: Impact without DIF

Preferably, a Rasch mixture model should not only detect latent classes if the assumption
of measurement invariance is violated but it should also indicate a lack of latent structure
if indeed the assumption holds. In this scenario, the subjects all stem from the same class,
meaning each item is of the same difficulty for every subject. However, subject abilities are
simulated with impact resulting in a bimodal score distribution as illustrated in Figure 3.

Copyright➞ 2015 The Author(s)



14 Rasch Mixture Models for DIF Detection

0 1 2 3 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Impact (Θ)

C
h
o
o
s
e
 m

o
re

 t
h
a
n
 1

 l
a
te

n
t 
c
la

s
s

● ● ● ● ●

●

●

●

●
●

●

●

saturated

mean−variance

restricted

Figure 6: Rate of choosing a model with K̂ > 1 latent classes for data from Scenario 3 (impact
without DIF, i.e., ∆ = 0).

Here, the rate of choosing more than one latent class can be interpreted as a false alarm rate
(Figure 6). The restricted score model is invariant against any latent structure in the score
distribution and thus almost always (≤ 0.2%) suggests K̂ = 1 latent class based on the DIF-
free item difficulties. The rate does not approach any specific significance level as the Rasch
mixture model, regardless of the employed score distribution, is not a formal significance test.
The saturated model also picks K̂ = 1 in most of the simulation. This might be due to
its general reluctance to choose more than one latent class as illustrated in Figure 5 or the
circumstance that it can assume any shape (including bimodal patterns). However, the mean-
variance score distribution can only model unimodal or U-shaped distributions as mentioned
above. Hence, with increasing impact and thus increasingly well-separated modes in the
score distribution, the Rasch mixture model with this score specification suggests K̂ > 1
latent classes in up to 53% of the cases. Note, however, that these latent classes do not
represent the DIF groups (as there are none) but rather groups of subjects with high vs.
low abilities. While this may be acceptable (albeit unnecessarily complex) from a statistical
mixture modeling perspective, it is misleading from a psychometric point of view if the aim is
DIF detection. Only one Rasch model needs to be estimated for this type of data, consistent
item parameter estimates can be obtained via CML and all observations can be scaled in the
same way.

Brief summary: If measurement invariance holds but ability differences are present, the mean-
variance model exhibits a high false alarm rate while the saturated and restricted model are
not affected.

Scenario 4: Impact and DIF, not coinciding

In this scenario, there is DIF (and thus two true latent classes) if ∆ > 0. Again, Scenario 3
with ∆ = 0 (and thus without DIF) is included as a reference point. However, unlike in
Scenario 2, the abilities within the latent classes are not homogeneous but two ability groups
exist, which do not coincide with the two DIF groups. Nonetheless, the score distribution is
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Figure 7: Rate of choosing a model with K̂ > 1 latent classes for data from Scenario 4 (impact
and DIF, not coinciding).

the same across both latent classes (illustrated in the left panel of Figure 4).

Figure 7 again shows the rate of choosing K̂ > 1 for increasing DIF effect size ∆ for two
levels of impact (Θ = 2.4 and 3.6), exemplary for medium and high impact. If impact is small
(e.g., Θ = 0.4), the rates are very similar to the case of completely homogeneous abilities
without impact (Figure 5 with Θ = 0) and thus not visualized here. While the rates for
the restricted and the saturated score model do not change substantially for an increased
impact (Θ = 2.4 and 3.6), the mean-variance model is influenced by this change in ability
differences. While the hit rate is increased to around 20% over the whole range of ∆, the false
alarm rate at ∆ = 0 is increased to the same extent. Moreover, the hit rate only increases
noticeably beyond the initial false alarm rate at around ∆ = 3, i.e., the same DIF effect size
at which the restricted and mean-variance specifications have an increasing hit rate given
homogeneous abilities without impact. Thus, given rather high impact (Θ = 3.6) the hit rate
is not driven by the DIF detection but rather the model’s tendency to assign subjects with
high vs. low abilities into different groups (as already seen in Figure 6).

As Rasch mixture models with K = 1, 2, 3 classes are considered, selecting K̂ > 1 classes
can either mean selecting the correct number of K = 2 or overselecting K̂ = 3 classes. For
the saturated and restricted specifications overselection is rare (occurring with rates of less
than 9% or less than 1%, respectively). However, similar to Scenario 3 overselection is not
rare for the mean-variance specification. Figure 8 depicts the rates of selecting K̂ = 2 and
K̂ = 3 classes, respectively, for increasing ∆ at Θ = 3.6. If the chances of finding the correct
number of classes increase with the DIF effect size ∆, the rate for overselection (K̂ = 3)
should drop with increasing ∆. For this Scenario 4, denoted with hollow symbols, this rate
stays largely the same (around 25%) and even slightly increases beyond this level, starting
from around ∆ = 3. This illustrates again the pronounced tendency of the mean-variance
model for overselection in cases of high impact.

Brief summary: If impact is simulated within DIF groups, the mean-variance model has higher
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Figure 8: Rates of choosing the correct number of classes (K̂ = 2) or overselecting the number
of classes (K̂ = 3) for the Rasch mixture model with mean-variance score specification in
Scenarios 4 (hollow, impact within DIF groups) and 5 (solid, impact between DIF groups).

hit rates than the saturated and restricted models. However, the latent classes estimated by
the mean-variance model are mostly based on ability differences if the DIF effect size is low.
If the DIF effect size is high, the mean-variance model tends to overestimate the number of
classes.

Scenario 5: Impact and DIF, coinciding

In Scenario 5, there is also DIF (i.e., ∆ > 0) and impact. However, in contrast to Scenario 4
the ability and DIF groups coincide (see the right panel of Figure 4). Furthermore, Scenario 3
is included also here as the reference point without DIF (∆ = 0).

Again, small ability differences do not strongly influence the rate of choosing more than one
latent class (rates for low levels of impact, such as Θ = 0.4, are similar to those for Θ = 0 as
depicted in Figure 5). Recall, both mean-variance and restricted specification have comparable
hit rates for DIF detection starting from around ∆ = 3 while the saturated specification has
lower hit rates.

As impact increases (Figure 9), the hit rates of all models increases as well because the ability
differences contain information about the DIF groups: separating subjects with low and high
abilities also separates the two DIF groups (not separating subjects within each DIF group as
in the previous setting). However, for the mean-variance model these increased hit rates are
again coupled with a highly increased false alarm rate at ∆ = 0 of 26% and 50% for Θ = 2.4
and 3.6, respectively. The restricted score model, on the other hand, is invariant to latent
structure in the score distribution and thus performs similarly as in previous DIF scenarios,
suggesting more than one latent class past a certain threshold of DIF intensity, albeit this
threshold being a bit lower than when ability groups and DIF groups do not coincide (around
∆ = 2). The saturated model detects more than one latent class at a similar rate to the
restricted score model for medium or high impact but its estimation converges more slowly
and requires more iterations of the EM algorithm than the other two score models.
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Figure 9: Rate of choosing a model with K̂ > 1 latent classes for data from Scenario 5 (impact
and DIF, coinciding).

Finally, the potential issue of overselection can be considered again. Figure 8 (solid symbols)
shows that this problem disappears for the mean-variance specification if both DIF effect size
∆ and impact are large and coincide. For the restricted model overselection is again very rare
throughout (occurring in less than 1% of all cases) while the saturated model overselects in
up to 29% of the datasets.

Brief summary: If abilities differ between DIF groups, the mean-variance model detects the
violation of measurement invariance for smaller DIF effect sizes than the saturated and re-
stricted model. While the mean-variance model does not overselect the number of components
in this scenario, the high hit rates are connected to a high false alarm rate when no DIF is
present but impact is high. This does not affect the other two score models.

3.4. Quality of estimation

Although here the Rasch mixture model is primarily used analogously to a global DIF test,
model assessment goes beyond the question whether or not the correct number of latent classes
is found. Once the number of latent classes is established/estimated, it is of interest how well
the estimated model fits the data. Which groups are found? How well are the parameters
estimated? In the context of Rasch mixture models with different score distributions, both of
these aspects depend heavily on the posterior probabilities p̂ik (Equation 5) as the estimation
of the item parameters depends on the score distribution only through these. If the p̂ik were
the same for all three score specifications, the estimated item difficulties were the same as
well. Hence, the focus here is on how close the estimated posterior probabilities are to the
true latent classes in the data. If the similarity between these is high, CML estimation of the
item parameters within the classes will also yield better results for all score models.

This is a standard task in the field of cluster analysis and we adopt the widely used Rand
index (Rand 1971) here: Each observation is assigned to the latent class for which its posterior
probability is highest yielding an estimated classification of the data which is compared to the
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Figure 10: Average Rand index for models with K = 2 latent classes. Top row: Scenario 4
(impact and DIF, not coinciding). Bottom row: Scenario 5 (impact and DIF, coinciding).

true classification. For this comparison, pairs of observations are considered. Each pair can
either be in the same class in both the true and the estimated classification, in different classes
for both classifications or it can be in the same class for one but not the other classification.
The Rand index is the proportion of pairs for which both classifications agree. Thus, it can
assume values between 0 and 1, indicating total dissimilarity and similarity, respectively.

In the following, the Rand index for models with the true number of K = 2 latent classes in
Scenarios 4 and 5 (with DIF) is considered. Thus, the question of DIF detection (or model
selection) is not investigated again but only the quality of latent class recovery (assuming the
number of classes K to be known or correctly selected). The top row of Figure 10 depicts the
average Rand index for data from Scenario 4 (impact and DIF, not coinciding). Here, all three
score specifications find similarly well matching classifications, while the Rand index generally
decreases with increasing impact (left to right panel). In particular, while the mean-variance
score model has problems finding the correct number of latent classes in this scenario, it only
performs slightly worse than the other two specifications in determining the correct classes if
the number were known. Similarly, if it is provided with the correct number of classes, the
saturated model also identifies the correct classes equally well compared to the other models
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– despite its difficulties with convergence for higher DIF effect sizes.

However, in Scenario 5 where the score distribution contains information about the DIF
groups, the three score specifications perform very differently as the bottom row of Figure 10
shows. Given the correct number of classes, the mean-variance model is most suitable to
uncover the true latent classes, yielding Rand indices close to 1 if both DIF effect size and
impact are large. The saturated specification follows a similar pattern albeit with poorer
results, reaching values of up to 0.87. However, the classifications obtained from the restricted
score specification do not match the true groups well in this scenario, remaining below 0.52 if
impact is high. The reason is that the restricted score model is partially misspecified as the
score distributions differ substantially across DIF groups.

3.5. Summary and implications for practical use

Given various combinations of DIF and ability impact, the score models are differently suit-
able for the two tasks discussed here – DIF detection and estimation of item parameters in
subgroups. Starting with a summary of the results for DIF detection:

❼ The saturated score model has much lower hit rates than the other two specifications,
i.e., violation of measurement invariance remains too often undetected. Only if high
impact and high DIF effect sizes coincide does the saturated model perform similarly
well as the restricted model.

❼ The mean-variance model has much higher hit rates. However, if impact is present
in the abilities, this specification has highly inflated false alarm rates. Hence, if the
mean-variance model selects more than one latent class it is unclear whether this is due
to DIF or just varying subject abilities. Thus, measurement invariance might still hold
even if more than one latent class is detected.

❼ The restricted score model also has high hit rates, comparable to the mean-variance
model if abilities are rather homogeneous. But unlike the mean-variance specification,
its false alarm rate is not distorted by impact. Its performance is not influenced by the
ability distribution and detecting more than one latent class reliably indicates DIF, i.e.,
a violation of measurement invariance.

Hence, if the Rasch mixture model is employed for assessing measurement invariance or de-
tecting DIF, then the restricted score specification appears to be most robust. Thus, the
selection of the number of latent classes should only be based on this specification.

DeMars (2010) illustrate how significance tests based on the observed (raw) scores in reference
and focal groups suffer from inflated type I error rates with an increased sample size if impact
is present. This does not apply to the false alarm rate of Rasch mixture models because not
a significance test but rather model selection via BIC is carried out. The rate of the BIC
selecting the correct model increases with larger sample size if the true model is a Rasch
mixture model. Since consistent estimates are employed, a larger sample size also speeds up
convergence, which is particularly desirable for the saturated model if the number of latent
classes and thus the number of parameters is high.

Given the correct number of classes, the different score models are all similarly suitable to
detect the true classification if ability impact does not contain any additional information
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about the DIF groups. However, if ability impact is highly correlated with DIF groups in
the data and the ability groups thus coincide with the DIF groups, this information can be
exploited by the unrestricted specifications while it distracts the restricted model.

Thus, while the selection of the number of latent classes should be based only on the restricted
score specification, the unrestricted mean-variance and saturated specifications might still
prove useful for estimating the Rasch mixture model (after K̂ has been selected).

We therefore recommend a two-step approach for DIF detection via a Rasch mixture model.
First, the number of latent classes is determined via the restricted score model. Second,
if furthermore the estimation of the item difficulties is of interest, the full selection of score
models can the be utilized. While the likelihood ratio test is not suitable to test for the number
of latent classes, it can be used to establish the best fitting score model, given the number
of latent classes. If this approach is applied to the full range of score models (saturated and
mean-variance, both unrestricted and restricted), the nesting structure of the models needs
to be kept in mind.

4. Empirical application: Verbal aggression

We use a dataset on verbal aggression (De Boeck and Wilson 2004) to illustrate this two-
step approach of first assessing measurement invariance via a Rasch mixture model with a
restricted score distribution and then employing all possible score models to find the best
fitting estimation of the item difficulties.

Participants in this study are presented with one of two potentially frustrating situations (S1
and S2):

❼ S1: A bus fails to stop for me.

❼ S2: I miss a train because a clerk gave me faulty information.

and a verbally aggressive response (cursing, scolding, shouting). Combining each situation
and response with either “I want to” or “I do” leads to the following 12 items:

S1WantCurse S1DoCurse S1WantScold S1DoScold S1WantShout S1DoShout
S2WantCurse S2DoCurse S2WantScold S2DoScold S2WantShout S2DoShout

First, we assess measurement invariance with regard to the whole instrument: we fit a Rasch
mixture model with a restricted score distribution for K = 1, 2, 3, 4 and employ the BIC for
model selection. Note that the restricted versions of the mean-variance and saturated model
only differ in their log-likelihood by a constant factor and therefore lead to the same model
selection. Results are presented in Table 2.

The BIC for a Rasch mixture model with more than one latent class is smaller than the BIC
for a single Rasch model, thus indicating that measurement invariance is violated. The best
fitting model has K̂ = 3 latent classes. Given this selection of K, we want to gain further
insight in the data and thus want to establish the best fitting Rasch mixture model withK = 3
latent classes. Four different models are conceivable: either using a restricted or unrestricted
score model, and either using a saturated or mean-variance specification. The results for all
four options are presented in Table 3. Note that the models with restricted saturated score
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Model k #Df logL BIC

restricted (mean-variance) 1 13 −1900.9 3874.6
restricted (mean-variance) 2 25 −1853.8 3847.8
restricted (mean-variance) 3 37 −1816.9 3841.4
restricted (mean-variance) 4 49 −1793.0 3861

Table 2: DIF detection by selecting the number of latent classes K̂ using the restricted Rasch
mixture model.

Model k #Df logL BIC

saturated 3 65 −1795.2 3955.1
restricted (saturated) 3 45 −1814.1 3880.6
mean-variance 3 41 −1812.2 3854.4
restricted (mean-variance) 3 37 −1816.9 3841.4

Table 3: Selection of the score distribution given the number of latent classes K̂ = 3.

distribution and restricted mean-variance score distribution lead to identical item parameter
estimates. However, it is still of interest to fit them separately because each of the restricted
specifications is nested within the corresponding unrestricted specification. Furthermore, the
mean-variance distribution is nested within the saturated distribution.

AsK = 3 is identical for all of these four models, standard likelihood ratio tests can be used for
comparing all nested models with each other. Testing the most parsimonious score model, the
restricted mean-variance model, against its unrestricted version and the restricted saturated
model at a 5% level shows that a more flexible score model does not yield a significantly
better fit. The p-value are 0.051 and 0.686, respectively. Hence, the restricted mean-variance
distribution is adopted here which also has the lowest BIC.

To visualize how the three classes found in the data differ, the corresponding item profiles are
shown in Figure 11.

❼ The latent class in the right panel (with 109 observations) shows a very regular zig-zag-
pattern where for any type of verbally aggressive response actually “doing” the response
is considered more extreme than just “wanting” to respond a certain way as represented
by the higher item parameters for the second item, the “do-item”, than the first item,
the “want-item”, of each pair. The three types of response (cursing, scolding, shouting)
are considered increasingly aggressive, regardless of the situation (first six items vs. last
six items).

❼ The latent class in the left panel (with 111 observations) distinguishes more strongly
between the types of response. However, the relationship between wanting and doing
is reversed for all responses except shouting. It is more difficult to agree to the item “I
want to curse/scold” than to the corresponding item “I do curse/scold”. This could be
interpreted as generally more aggressive behavior where one is quick to react a certain
way rather than just wanting to react that way. However, shouting is considered a very
aggressive response, both in wanting and doing.

❼ The remaining latent class (with 53 observations considerably smaller), depicted in the
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Figure 11: Item profiles for the Rasch mixture model with K̂ = 3 latent classes using a
restricted mean-variance score distribution for the verbal aggression data.

middle panel, does not distinguish that clearly between response types, situations or
wanting vs. doing.

Therefore, not just a single item or a small number of items have DIF but the underlying
want/do relationship of the items is different across the three classes. This instrument thus
works differently as a whole across classes.

In summary, the respondents in this study are not scalable to one single Rasch-scale but
instead need several scales to represent them accurately. A Rasch mixture model with a
restricted score distribution is used to estimate the number of latent classes. Given that
number of classes, any type of score model is conceivable. Here, the various versions are
all fairly similar and the restricted mean-variance specification is chosen based on likelihood
ratio tests. Keep in mind that the resulting fits can be substantially different from each
other as shown in the simulation study, in particular for the case of impact between DIF
classes. The latent classes estimated here differ mainly in their perception of the type and
the “want/do”-relationship of a verbally aggressive response.

5. Conclusion

Unlike in a single Rasch model, item parameter estimation is not independent of the score
distribution in Rasch mixture models. The saturated and mean-variance specification of the
score model are both well-established. A further option is the new restricted score specification
introduced here. In the context of DIF detection, only the restricted score specification should
be used as it prevents confounding effects of impact on DIF detection while exhibiting hit rates
positively related to DIF effect size. Given the number of latent classes, it may be useful to
fit the other score models as well, as they might improve estimation of group membership and
therefore estimation of the item parameters. The best fitting model can be selected via the
likelihood ratio test or an information criterion such as the BIC. This approach enhances the
suitability of the Rasch mixture model as a tool for DIF detection as additional information
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contained in the score distribution is only employed if it contributes to the estimation of latent
classes based on measurement invariance.

Computational details

An implementation of all versions of the Rasch mixture model mentioned here is freely avail-
able under the General Public License in the R package psychomix from the Comprehensive
R Archive Network. Accompanying the package at http://CRAN.R-project.org/package=
psychomix is a dataset containing all the simulation results which were generated using R

version 3.0.2, psychomix version 1.1-0, and clv version 0.3-2. This vignette was generated
with R version 3.6.2, and psychomix version 1.1-8.
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