ragtop: Complex Derivatives Pricing

Brian K. Boonstra

First Version: May 20, 2016 This Version: 2020-03-02

Contents

Introduction oL e e
Stochastic Model e
Option Market Data e
Pricing Options o
Fitting Term Structures of Volatility
Fitting Default Intensity e
Daycount Conventions e e e e
References e e 10

O© O UL NN = =

Introduction

ragtop prices equity derivatives on variants of the famous Black-Scholes model, with special attention paid
to the case of American and European exercise options and to convertible bonds. Convertible bonds are
one of the few types of derivative securities straddling asset classes, and whose valuation must be linked to
reasonable models of multiple asset types, involving equity valuations, fixed income and sometimes foreign
exchange.

A convertible bond is similar to a corporate bond!, promising coupons and notional payments at some
known set of future dates, but with a twist. The bond holder, who has effectively lent money to the issuer,
can choose to convert the bond into equity (subject to some restrictions), in a varying amount known as the
conversion value. The bond value therefore depends on three major processes:

o equity value affecting conversion value
e default of the issuer wiping out equity, coupons and notional
o interest rates affecting the discounted value of future coupons and notional

Of these processes, the changes in equity value are most important, followed closely by issuer default?. We
perform derivative pricing and calibration based on simply linked models of equities and corporate defaults.

Stochastic Model

Our basic stochastic model links equity values S; with hazard rate or default intensity h

d?stz(r—kh—q)dt—l-odZ—dJ

t

LA standard corporate bond is often called a straight bond

20ne might wonder how a fixed-income security could be relatively insensitive to stochastic interest rates. Most convertibles
are issued in countries with stable economies, so the rates are generally far less variable and far smaller than the credit spreads
of the bond issuers.

and can be converted to a PDE satisfied by any derivative of S that lacks cashflows

ov ov 1 oV
— —rV+4+h(d-V — h)S— + —0%8*—— = 0.
5 rV 4 h()+ (r q+)35+20 557
ragtop numerically integrates this PDE using an implicit scheme, forming solutions v,(lm) on a grid of times
t0™) m =0,..., M and stock prices S,,n = —N, ..., N. The present value of our derivative is represented
(M)

by the entry v,

For further details, please see the technical paper.

Option Market Data

We have included some option market data in ragtop, consisting of a set of several hundred option details
for Tesla Motor in April 2016. This includes an underlying price

TSLAMarket$S0

[1] 241.8

A set of risk-free rates

knitr::kable(TSLAMarket$risk_free_rates, digits=3, row.names = F)

time rate

0.050 0.004
0.127 0.005
0.376 0.008
0.625 0.010
0.721 0.010
1.718 0.010
5.000 0.020

and some option price data, excerpted here:

callput K time mid bid ask spread

1 140 0.127 101.775 100.05 103.50 3.45
-1 300 0.127 61.200 60.00 62.40 2.40
1 360 0.376 1.745 1.57 1.92 0.35
1 185 0.625 64.750 63.80 65.70 1.90
-1 440 0.625 205.225 203.45 207.00 3.55
-1 55 1.718 2.635 2.38 2.89 0.51

Pricing Options

Tesla does not pay any dividends, so we can evaluate calls using the Black Scholes model
$Price
[1] 69.47563

$Delta
[1] 0.8113372

http://thureoscapital.com/ragtop.pdf

$Vega
[1] 51.65849

or better yet find the implied Black-Scholes volatility

implied_volatility(option_price = TSLAMarket$options[400, 'ask'],
SO = TSLAMarket$SO0,
callput = TSLAMarket$options[400, 'callput'],
K=TSLAMarket$options[400, 'K'],
r = 0.005,
time = TSLAMarket$options[400, 'time'])

[1] 0.4151244

For puts, we need to use a pricing algorithm that accounts for early exercise. ragtop uses a control variate
scheme on top of an implicit PDE solver to achieve reasonable performance

american (
callput = TSLAMarket$options[400, 'callput'],
SO = TSLAMarket$SO0,
K=TSLAMarket$options[400, 'K'],
const_short_rate = 0.005,
time = TSLAMarket$options[400,'time'])

A360_137_2
4.149565

This is also the underlying scheme for implied volatility

american_implied_volatility(option_price = TSLAMarket$options[400, 'ask'],
SO = TSLAMarket$SO,
callput = TSLAMarket$options[400, 'callput'],
K=TSLAMarket$options[400, 'K'],
const_short_rate = 0.005,
time = TSLAMarket$options[400,'time'])

[1] 0.415125

Including Default Intensities

We can correct for constant intensities of default with parameters of convenience, both for European exercise

implied_volatility(option_price = 17,
SO = 250, callput = CALL, K=245,
r = 0.005, time = 2,
const_default_intensity = 0.03)

[1] NA

and for American exercise

american_implied_volatility(option_price = 19.1,
SO0 = 223.17, callput = PUT, K=220,
const_short_rate = 0.005, time = 1.45,
const_default_intensity = 0.0200)

[1] 0.1701377

Including Term Structures

If we have full term structures, we can use the associated parameters of inconvenience

Dividends

divs = data.frame(time=seq(from=0.11, to=2, by=0.25),
fixed=seq(1.5, 1, length.out=8),
proportional = seq(1l, 1.5, length.out=8))

Interest rates
disct_fcn = ragtop::spot_to_df_fcn(
data.frame(time=c(1, 5, 10, 15),
rate=c(0.01, 0.02, 0.03, 0.05))

Default intensity
surv_prob_fcn = function(T, t, ...) {
exp(-0.07 * (T - t)) }

Variance cumulation / volatility term structure
vc = variance_cumulation_from_vols(
data.frame(time=c(0.1,2,3),
volatility=c(0.2,0.5,1.2)))
paste0("Cumulated variance to 18 months is ", vc(1.5, 0))

[1] "Cumulated variance to 18 months is 0.369473684210526"

to modify our estimates accordingly, including on vanilla option prices

black_scholes_on_term_structures(
callput=TSLAMarket$options[500, 'callput'],
SO0=TSLAMarket$S0,
K=TSLAMarket$options[500, 'K'],
discount_factor_fcn=disct_fcn,
time=TSLAMarket$options[500, 'time'],
survival_probability_fcn=surv_prob_fcn,
variance_cumulation_fcn=vc,
dividends=divs)

$Price
[1] 68.04663

$Delta
[1] 0.8289907

$Vega
[1] 47.06523

American exercise option prices

american (
callput = TSLAMarket$options[400, 'callput'],
SO = TSLAMarket$S0,
K=TSLAMarket$options[400, 'K'],
discount_factor_fcn=disct_fcn,
time = TSLAMarket$options[400,'time'],
survival_probability_fcn=surv_prob_=fcn,

variance_cumulation_fcn=vc,
dividends=divs)

A360_137_2
2.894296

and of course volatilities of European exercise options

implied_volatility_with_term_struct(
option_price = TSLAMarket$options[400, 'ask'],
SO0 = TSLAMarket$S0,
callput = TSLAMarket$options[400,'callput'],
K=TSLAMarket$options[400, 'K'],
discount_factor_fcn=disct_fcn,
time = TSLAMarket$options[400, 'time'],
survival_probability_fcn=surv_prob_fcn,
dividends=divs)

[1] 0.4112688

as well as American exercise options

american_implied_volatility(
option_price=TSLAMarket$options[400, 'ask'],
callput = TSLAMarket$options[400, 'callput'],
SO = TSLAMarket$S0,
K=TSLAMarket$options[400, 'K'],
discount_factor_fcn=disct_fcn,
time = TSLAMarket$options[400, 'time'],
survival_probability_fcn=surv_prob_fcn,
dividends=divs)

[1] 0.4090605

Fitting Term Structures of Volatility

Let’s say we have a some favored picture of our default intensity as a function of stock price and time.

def_ints_fcn = function(t, S, ...){
0.09+0.01%(S0/S)"1.5
}

Let’s further postulate a set of financial instruments with known prices. If those instruments all have different
maturities, then (generically) there is a unique piecewise constant volatility term structure that will reproduce
those prices.

options_df = TSLAMarket$options
SO = TSLAMarket$S0
make_option = function(x) {
if (x['callput']>0) cp='C' else cp='P'
ragtop: :AmericanOption(callput=x['callput'], strike=x['K'], maturity=x['time'],
name=paste(cp,x['K'] ,as.integer (100*x['time']), sep='_"'))
}
atm_put_price = max(options_df$K[options_df$K<=S0])
atm_put_ix = ((options_df$K==atm_put_price) & (options_df$callput==PUT)
% (options_df$time>1/12))
atm_puts = apply(options_df [atm_put_ix,], 1, make_option)

atm_put_prices = options_df$mid[atm_put_ix]
knitr: :kable(options_df [atm_put_ix,], digits=3, row.names = F)

callput K time mid bid ask spread

-1 240 0.127 15925 15.70 16.15 0.45
-1 240 0376 27.100 26.75 27.45 0.70
-1 240 0.625 35425 34.60 36.25 1.65
-1 240 0.721 37400 36.90 37.90 1.00
-1 240 1.718 58.075 56.15 60.00 3.85

Once we have those instruments, we can successively fit our volatility term structure to longer-and-longer
dated securities. This is done for us in the fit_variance_cumulation function

vem = fit_variance_cumulation(SO, eq_options=atm_puts,
mid_prices=atm_put_prices,
spreads=0.01*atm_put_prices,
use_impvol=TRUE,
discount_factor_fcn=disct_fcn,
default_intensity_fcn = def_ints_fcn,
num_time_steps=100)

vem$volatilities

[1] 0.4531763 0.4107467 0.3973169 0.3828557 0.3466839

Fitting Default Intensity

True default intensities are unobservable, even retrospectively, so it is nearly impossible to form an historical
time series of them. One may try by using credit spreads, but even then an historical calibration may be
fairly unreliable for extension into the future. Our model requires those future default intensities, so choosing
a reasonable functional form requires close attention. Our choice will generally arise from fitting to available
market information.

Since a full fit of the model requires calibration of both variance cumulation and default intensity, our
optimization algorithm must work in two phases. It begins with a functional form of the user’s choice, such as

sy =o (s 1 (2))

and then takes a set of options, such as these

callput K time mid bid ask spread

-1 210 0.625 21.325 21.00 21.65 0.65
-1 220 0.625 25475 24.35 26.60 2.25
-1 210 0.721 23.325 2295 23.70 0.75
-1 220 0.721 27.575 27.05 28.10 1.05
-1 210 1.718 42.100 41.30 42.90 1.60
-1 220 1.718 46.925 45.80 48.05 2.25

and tries to match their prices with the best possible choice of p and s, while still matching the volatility
term structure as required above.

To that end, we define an objective (or penalty) function comparing instrument prices P; to model prices P,

m(p,s) = Z (jji - 151)2

hO = 0.05

fit_penalty = function(p, s) {

def_intens_f = function(t,S,...) {h0 * (s + (1-s) * (80/S)"p)}

varnce = fit_variance_cumulation(
S0, eq_options=atm_puts,
mid_prices=atm_put_prices,
spreads=0.01*atm_put_prices,
use_impvol=TRUE,
default_intensity_fcn = def_intens_f,
discount_factor_fcn=disct_fcn,
num_time_steps=100)

pvs_list = find_present_value(
S0=80, instruments=fit_targets,
default_intensity_fcn=def_intens_f,
variance_cumulation_fcn=varnce$cumulation_function,
discount_factor_fcn=disct_fcn,
num_time_steps=45)

pvs = as.numeric(pvs_list)

pensum = sum((fit_target_prices - pvs)~2)

pensum

}
fit_penalty(l, 0.5)

[1] 7.918304

We can apply our favorite optimizer to this penalty function in order to optimize the model parameters.
ragtop includes one such fitting algorithm in fit_to_option_market and its simpler but less featureful
companion fit_to_option_market_df. Let’s say we have decided hg = 0.04, s = 0.75 and p = 5/2. We may
have some other instrument we wish to price consistent with this calibration, such as a convertible bond

cb = ragtop::ConvertibleBond(
maturity=2.87, conversion_ratio=2.7788, notional=1000,
coupons=data.frame(payment_time=seq(2.8,0, by=-0.25),
payment_size=1000%0.0025/4) ,
discount_factor_fcn = disct_fcn,
name="'CBond'

)

s = 0.75
hO = 0.04
p=2.5

of course we then need to make sure we have set up the associated variance accumulator function

calibrated_intensity_f = function(t, S, ...){
0.03+0.01*(S0/8)"1.5
}

calib_varnce = fit_variance_cumulation(
S0, eq_options=atm_puts,
mid_prices=atm_put_prices,

spreads=0.01*atm_put_prices,
use_impvol=TRUE,
default_intensity_fcn = calibrated_intensity_f,
discount_factor_fcn=disct_fcn,
num_time_steps=100)

calib_varnce$volatilities

[1] 0.4802569 0.4572752 0.4574770 0.4483994 0.4478110

Now we simply need to run our pricing algorithm

cb_value = form_present_value_grid(
S0=S0, grid_center=S0,
instruments=1list(Convertible=cb),
num_time_steps=250,
default_intensity_fcn=calibrated_intensity_f,
discount_factor_fcn = disct_fcn,
variance_cumulation_fcn=calib_varnce$cumulation_function)

For convenience, ragtop also exposes the full grid from its solver, allowing us to calculate delta and gamma

cbprices = ragtop::form_present_value_grid(
S0=S0, grid_center=S0,
instruments=list (Convertible=cb),
num_time_steps=250,
default_intensity_fcn=calibrated_intensity_f,
discount_factor_fcn = disct_fcn,
variance_cumulation_fcn=calib_varnce$cumulation_function,
std_devs_width=5)

cbgrid = na.omit(as.data.frame(cbprices))

present_value_interp = splinefun(
x=cbgrid[,"Underlying"],
y=cbgrid[,"Convertible"])

delta = present_value_interp(SO, deriv=1)
delta

[1] 1.663418

or to make a plot

present_value = present_value_interp(S0)
cbplot = (ggplot(cbgrid,
aes(x=Underlying,y=Convertible)) +

geom_line(size=1.2) +
scale_x_continuous(limits=c(0,2.5%S0)) +
scale_y_continuous(limits=c(0,2.5*%cb$notional)) +
geom_point (aes (x=S0,y=present_value), color="red") +
labs(title="Convertible Bond Value")

cbplot

Convertible Bond Value

2500 -

2000 -

1500 -

Convertible

1000 -

500 -

0 200 400 600
Underlying

Daycount Conventions

For dealing with daycount conventions (Act/360, Act/Act, 30/360 and many more), ragtop provides
no facilities directly. These computations can be outsourced to quantmod, though the BondValuation
package is both lighter in footprint and higher in accuracy. To that end, we can use the helper function
detail_from_AnnivDates()

twitter_bv = BondValuation: :AnnivDates(

Em=as.Date('2018-06-11"), # Issue date
Mat=as.Date('2024-06-15"),
CpY=2,

FIPD=as.Date('2018-12-15"'), # First coupon
FIAD=as.Date('2018-06-15"), # Beginning of first coupon accrual
RV=1000, # Notional

Coup=0.25,
DCC=which(BondValuation: :List.DCC$DCC.Name=="'30/360"'), # 30/360 daycount convention
EOM=0
)
twitter_specs = ragtop::detail_from_AnnivDates(
twitter_bv,
as_of=as.Date('2018-02-15")

)

twtr_cb = ragtop::ConvertibleBond(
maturity=twitter_specs$maturity,
conversion_ratio=17.5001,
notional=twitter_specs$notional,
coupons=twitter_specs$coupons,

pvs

discount_factor_fcn = disct_fcn,
name='TwitterConvertWithGreenshoe'

= ragtop::find_present_value(
S0=33.06,

num_time_steps=200,
instruments=1ist (TWTR=twtr_cb),
const_volatility=0.47,
const_default_intensity=0.01,
discount_factor_fcn=disct_fcn,

paste("Twitter bond value is", pvs$TWTR)

(1]

"Twitter bond value is 1031.83208503188"

References

10

	Introduction
	Stochastic Model
	Option Market Data
	Pricing Options
	Fitting Term Structures of Volatility
	Fitting Default Intensity
	Daycount Conventions
	References

