
Package ‘randomForestSRC’
December 6, 2023

Version 3.2.3

Date 2023-12-05

Title Fast Unified Random Forests for Survival, Regression, and
Classification (RF-SRC)

Author Hemant Ishwaran <hemant.ishwaran@gmail.com>, Udaya B. Kogalur <ubk@kogalur.com>

Maintainer Udaya B. Kogalur <ubk@kogalur.com>

BugReports https://github.com/kogalur/randomForestSRC/issues/

Depends R (>= 3.6.0),

Imports parallel, data.tree, DiagrammeR

Suggests survival, pec, prodlim, mlbench, interp, caret, imbalance,
cluster

Description Fast OpenMP parallel computing of Breiman's random forests for univariate, multivari-
ate, unsupervised, survival, competing risks, class imbalanced classification and quantile regres-
sion. New Mahalanobis splitting for correlated outcomes. Extreme random forests and random-
ized splitting. Suite of imputation methods for missing data. Fast random forests using subsam-
pling. Confidence regions and standard errors for variable importance. New improved hold-
out importance. Case-specific importance. Minimal depth variable importance. Visual-
ize trees on your Safari or Google Chrome browser. Anonymous random forests for data privacy.

License GPL (>= 3)

URL https://www.randomforestsrc.org/ https://ishwaran.org/

NeedsCompilation yes

Repository CRAN

Date/Publication 2023-12-06 14:30:02 UTC

R topics documented:
randomForestSRC-package . 2
breast . 6
find.interaction.rfsrc . 7
follic . 9

1

https://github.com/kogalur/randomForestSRC/issues/
https://www.randomforestsrc.org/
https://ishwaran.org/

2 randomForestSRC-package

get.tree.rfsrc . 10
hd . 14
holdout.vimp.rfsrc . 14
housing . 19
imbalanced.rfsrc . 20
impute.rfsrc . 26
max.subtree.rfsrc . 31
nutrigenomic . 33
partial.rfsrc . 35
pbc . 41
peakVO2 . 42
plot.competing.risk.rfsrc . 43
plot.quantreg.rfsrc . 44
plot.rfsrc . 45
plot.subsample.rfsrc . 47
plot.survival.rfsrc . 48
plot.variable.rfsrc . 50
predict.rfsrc . 54
print.rfsrc . 64
quantreg.rfsrc . 65
rfsrc . 70
rfsrc.anonymous . 92
rfsrc.fast . 94
rfsrc.news . 97
sidClustering.rfsrc . 98
stat.split.rfsrc . 103
subsample.rfsrc . 106
synthetic . 111
tune.rfsrc . 115
var.select.rfsrc . 118
vdv . 123
veteran . 124
vimp.rfsrc . 124
wihs . 127
wine . 128

Index 130

randomForestSRC-package

Fast Unified Random Forests for Survival, Regression, and Classifica-
tion (RF-SRC)

randomForestSRC-package 3

Description

Fast OpenMP parallel computing of Breiman random forests (Breiman 2001) for regression, clas-
sification, survival analysis (Ishwaran 2008), competing risks (Ishwaran 2012), multivariate (Se-
gal and Xiao 2011), unsupervised (Mantero and Ishwaran 2020), quantile regression (Meinhausen
2006, Zhang et al. 2019, Greenwald-Khanna 2001), and class imbalanced q-classification (O’Brien
and Ishwaran 2019). Different splitting rules invoked under deterministic or random splitting
(Geurts et al. 2006, Ishwaran 2015) are available for all families. Variable importance (VIMP),
and holdout VIMP, as well as confidence regions (Ishwaran and Lu 2019) can be calculated for
single and grouped variables. Minimal depth variable selection (Ishwaran et al. 2010, 2011). Fast
interface for missing data imputation using a variety of different random forest methods (Tang and
Ishwaran 2017). Visualize trees on your Safari or Google Chrome browser (works for all families,
see get.tree).

Package Overview

This package contains many useful functions and users should read the help file in its entirety for
details. However, we briefly mention several key functions that may make it easier to navigate and
understand the layout of the package.

1. rfsrc

This is the main entry point to the package. It grows a random forest using user supplied
training data. We refer to the resulting object as a RF-SRC grow object. Formally, the resulting
object has class (rfsrc, grow).

2. rfsrc.fast

A fast implementation of rfsrc using subsampling.

3. quantreg.rfsrc, quantreg
Univariate and multivariate quantile regression forest for training and testing. Different meth-
ods available including the Greenwald-Khanna (2001) algorithm, which is especially suitable
for big data due to its high memory efficiency.

4. predict.rfsrc, predict
Used for prediction. Predicted values are obtained by dropping the user supplied test data
down the grow forest. The resulting object has class (rfsrc, predict).

5. sidClustering.rfsrc, sidClustering
Clustering of unsupervised data using SID (Staggered Interaction Data). Also implements the
artificial two-class approach of Breiman (2003).

6. vimp, subsample, holdout.vimp
Used for variable selection:

(a) vimp calculates variable imporance (VIMP) from a RF-SRC grow/predict object by nois-
ing up the variable (for example by permutation). Note that grow/predict calls can always
directly request VIMP.

(b) subsample calculates VIMP confidence itervals via subsampling.
(c) holdout.vimp measures the importance of a variable when it is removed from the model.

7. imbalanced.rfsrc, imbalanced
q-classification and G-mean VIMP for class imbalanced data.

4 randomForestSRC-package

8. impute.rfsrc, impute
Fast imputation mode for RF-SRC. Both rfsrc and predict.rfsrc are capable of imputing
missing data. However, for users whose only interest is imputing data, this function provides
an efficient and fast interface for doing so.

9. partial.rfsrc, partial
Used to extract the partial effects of a variable or variables on the ensembles.

Home page, Vignettes, Discussions, Bug Reporting, Source Code, Beta Builds

1. The home page for the package, containing vignettes, manuals, links to GitHub and other
useful information is found at https://www.randomforestsrc.org/index.html

2. Questions, comments, and non-bug related issues may be sent via https://github.com/
kogalur/randomForestSRC/discussions/.

3. Bugs may be reported via https://github.com/kogalur/randomForestSRC/issues/. This
is for bugs only. Please provide the accompanying information with any reports:

(a) sessionInfo()

(b) A minimal reproducible example consisting of the following items:
• a minimal dataset, necessary to reproduce the error
• the minimal runnable code necessary to reproduce the error, which can be run on the

given dataset
• the necessary information on the used packages, R version and system it is run on
• in the case of random processes, a seed (set by set.seed()) for reproducibility

4. Regular stable releases of this package are available on CRAN at https://cran.r-project.
org/package=randomForestSRC/

5. Interim unstable development builds with bug fixes and sometimes additional functionality are
available at https://github.com/kogalur/randomForestSRC/

OpenMP Parallel Processing – Installation

This package implements OpenMP shared-memory parallel programming if the target architecture
and operating system support it. This is the default mode of execution.

Additional instructions for configuring OpenMP parallel processing are available at https://www.
randomforestsrc.org/articles/installation.html.

An understanding of resource utilization (CPU and RAM) is necessary when running the package
using OpenMP and Open MPI parallel execution. Memory usage is greater when running with
OpenMP enabled. Diligence should be used not to overtax the hardware available.

Reproducibility

With respect to reproducibility, a model is defined by a seed, the topology of the trees in the forest,
and terminal node membership of the training data. This allows the user to restore a model and,
in particular, its terminal node statistics. On the other hand, VIMP and many other statistics are
dependent on additional randomization, which we do not consider part of the model. These statistics
are susceptible to Monte Carlo effects.

https://www.randomforestsrc.org/index.html
https://github.com/kogalur/randomForestSRC/discussions/
https://github.com/kogalur/randomForestSRC/discussions/
https://github.com/kogalur/randomForestSRC/issues/
https://cran.r-project.org/package=randomForestSRC/
https://cran.r-project.org/package=randomForestSRC/
https://github.com/kogalur/randomForestSRC/
https://www.randomforestsrc.org/articles/installation.html
https://www.randomforestsrc.org/articles/installation.html

randomForestSRC-package 5

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

References

Breiman L. (2001). Random forests, Machine Learning, 45:5-32.

Geurts, P., Ernst, D. and Wehenkel, L., (2006). Extremely randomized trees. Machine learning,
63(1):3-42.

Greenwald M. and Khanna S. (2001). Space-efficient online computation of quantile summaries.
Proceedings of ACM SIGMOD, 30(2):58-66.

Ishwaran H. and Kogalur U.B. (2007). Random survival forests for R, Rnews, 7(2):25-31.

Ishwaran H. (2007). Variable importance in binary regression trees and forests, Electronic J. Statist.,
1:519-537.

Ishwaran H., Kogalur U.B., Blackstone E.H. and Lauer M.S. (2008). Random survival forests, Ann.
App. Statist., 2:841-860.

Ishwaran H., Kogalur U.B., Gorodeski E.Z, Minn A.J. and Lauer M.S. (2010). High-dimensional
variable selection for survival data. J. Amer. Statist. Assoc., 105:205-217.

Ishwaran H., Kogalur U.B., Chen X. and Minn A.J. (2011). Random survival forests for high-
dimensional data. Stat. Anal. Data Mining, 4:115-132

Ishwaran H., Gerds T.A., Kogalur U.B., Moore R.D., Gange S.J. and Lau B.M. (2014). Random
survival forests for competing risks. Biostatistics, 15(4):757-773.

Ishwaran H. and Malley J.D. (2014). Synthetic learning machines. BioData Mining, 7:28.

Ishwaran H. (2015). The effect of splitting on random forests. Machine Learning, 99:75-118.

Ishwaran H. and Lu M. (2019). Standard errors and confidence intervals for variable importance in
random forest regression, classification, and survival. Statistics in Medicine, 38, 558-582.

Lu M., Sadiq S., Feaster D.J. and Ishwaran H. (2018). Estimating individual treatment effect in
observational data using random forest methods. J. Comp. Graph. Statist, 27(1), 209-219

Mantero A. and Ishwaran H. (2021). Unsupervised random forests. Statistical Analysis and Data
Mining, 14(2):144-167.

Meinshausen N. (2006) Quantile regression forests, Journal of Machine Learning Research, 7:983-
999.

O’Brien R. and Ishwaran H. (2019). A random forests quantile classifier for class imbalanced data.
Pattern Recognition, 90, 232-249

Segal M.R. and Xiao Y. Multivariate random forests. (2011). Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery. 1(1):80-87.

Tang F. and Ishwaran H. (2017). Random forest missing data algorithms. Statistical Analysis and
Data Mining, 10:363-377.

Zhang H., Zimmerman J., Nettleton D. and Nordman D.J. (2019). Random forest prediction inter-
vals. The American Statistician. 4:1-5.

6 breast

See Also

find.interaction.rfsrc,

get.tree.rfsrc,

holdout.vimp.rfsrc,

imbalanced.rfsrc, impute.rfsrc,

max.subtree.rfsrc,

partial.rfsrc, plot.competing.risk.rfsrc, plot.rfsrc, plot.survival.rfsrc, plot.variable.rfsrc,
predict.rfsrc, print.rfsrc,

quantreg.rfsrc,

rfsrc, rfsrc.cart, rfsrc.fast,

sidClustering.rfsrc,

stat.split.rfsrc, subsample.rfsrc, synthetic.rfsrc,

tune.rfsrc,

var.select.rfsrc, vimp.rfsrc

breast Wisconsin Prognostic Breast Cancer Data

Description

Recurrence of breast cancer from 198 breast cancer patients, all of which exhibited no evidence of
distant metastases at the time of diagnosis. The first 30 features of the data describe characteristics
of the cell nuclei present in the digitized image of a fine needle aspirate (FNA) of the breast mass.

Source

The data were obtained from the UCI machine learning repository, see http://archive.ics.uci.
edu/ml/datasets/Breast+Cancer+Wisconsin+(Prognostic).

Examples

--
Standard analysis
--

data(breast, package = "randomForestSRC")
breast <- na.omit(breast)
o <- rfsrc(status ~ ., data = breast, nsplit = 10)
print(o)

http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Prognostic)
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Prognostic)

find.interaction.rfsrc 7

find.interaction.rfsrc

Find Interactions Between Pairs of Variables

Description

Find pairwise interactions between variables.

Usage

S3 method for class 'rfsrc'
find.interaction(object, xvar.names, cause, m.target,
importance = c("permute", "random", "anti",

"permute.ensemble", "random.ensemble", "anti.ensemble"),
method = c("maxsubtree", "vimp"), sorted = TRUE, nvar, nrep = 1,
na.action = c("na.omit", "na.impute", "na.random"),
seed = NULL, do.trace = FALSE, verbose = TRUE, ...)

Arguments

object An object of class (rfsrc, grow) or (rfsrc, forest).

xvar.names Character vector of names of target x-variables. Default is to use all variables.

cause For competing risk families, integer value between 1 and J indicating the event
of interest, where J is the number of event types. The default is to use the first
event type.

m.target Character value for multivariate families specifying the target outcome to be
used. If left unspecified, the algorithm will choose a default target.

importance Type of variable importance (VIMP). See rfsrc for details.

method Method of analysis: maximal subtree or VIMP. See details below.

sorted Should variables be sorted by VIMP? Does not apply for competing risks.

nvar Number of variables to be used.

nrep Number of Monte Carlo replicates when ‘method="vimp"’.

na.action Action to be taken if the data contains NA values. Applies only when ‘method="vimp"’.

seed Seed for random number generator. Must be a negative integer.

do.trace Number of seconds between updates to the user on approximate time to com-
pletion.

verbose Set to TRUE for verbose output.

... Further arguments passed to or from other methods.

8 find.interaction.rfsrc

Details

Using a previously grown forest, identify pairwise interactions for all pairs of variables from a
specified list. There are two distinct approaches specified by the option ‘method’.

1. ‘method="maxsubtree"’
This invokes a maximal subtree analysis. In this case, a matrix is returned where entries [i][i]
are the normalized minimal depth of variable [i] relative to the root node (normalized wrt the
size of the tree) and entries [i][j] indicate the normalized minimal depth of a variable [j] wrt the
maximal subtree for variable [i] (normalized wrt the size of [i]’s maximal subtree). Smaller
[i][i] entries indicate predictive variables. Small [i][j] entries having small [i][i] entries are a
sign of an interaction between variable i and j (note: the user should scan rows, not columns,
for small entries). See Ishwaran et al. (2010, 2011) for more details.

2. ‘method="vimp"’
This invokes a joint-VIMP approach. Two variables are paired and their paired VIMP calcu-
lated (refered to as ’Paired’ importance). The VIMP for each separate variable is also calcu-
lated. The sum of these two values is refered to as ’Additive’ importance. A large positive or
negative difference between ’Paired’ and ’Additive’ indicates an association worth pursuing if
the univariate VIMP for each of the paired-variables is reasonably large. See Ishwaran (2007)
for more details.

Computations might be slow depending upon the size of the data and the forest. In such cases,
consider setting ‘nvar’ to a smaller number. If ‘method="maxsubtree"’, consider using a smaller
number of trees in the original grow call.

If ‘nrep’ is greater than 1, the analysis is repeated nrep times and results averaged over the repli-
cations (applies only when ‘method="vimp"’).

Value

Invisibly, the interaction table (a list for competing risk data) or the maximal subtree matrix.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

References

Ishwaran H. (2007). Variable importance in binary regression trees and forests, Electronic J. Statist.,
1:519-537.

Ishwaran H., Kogalur U.B., Gorodeski E.Z, Minn A.J. and Lauer M.S. (2010). High-dimensional
variable selection for survival data. J. Amer. Statist. Assoc., 105:205-217.

Ishwaran H., Kogalur U.B., Chen X. and Minn A.J. (2011). Random survival forests for high-
dimensional data. Statist. Anal. Data Mining, 4:115-132.

See Also

holdout.vimp.rfsrc, max.subtree.rfsrc, var.select.rfsrc, vimp.rfsrc

follic 9

Examples

--
find interactions, survival setting
--

data(pbc, package = "randomForestSRC")
pbc.obj <- rfsrc(Surv(days,status) ~ ., pbc, importance = TRUE)
find.interaction(pbc.obj, method = "vimp", nvar = 8)

--
find interactions, competing risks
--

data(wihs, package = "randomForestSRC")
wihs.obj <- rfsrc(Surv(time, status) ~ ., wihs, nsplit = 3, ntree = 100,

importance = TRUE)
find.interaction(wihs.obj)
find.interaction(wihs.obj, method = "vimp")

--
find interactions, regression setting
--

airq.obj <- rfsrc(Ozone ~ ., data = airquality, importance = TRUE)
find.interaction(airq.obj, method = "vimp", nrep = 3)
find.interaction(airq.obj)

--
find interactions, classification setting
--

iris.obj <- rfsrc(Species ~., data = iris, importance = TRUE)
find.interaction(iris.obj, method = "vimp", nrep = 3)
find.interaction(iris.obj)

--
interactions for multivariate mixed forests
--

mtcars2 <- mtcars
mtcars2$cyl <- factor(mtcars2$cyl)
mtcars2$carb <- factor(mtcars2$carb, ordered = TRUE)
mv.obj <- rfsrc(cbind(carb, mpg, cyl) ~., data = mtcars2, importance = TRUE)
find.interaction(mv.obj, method = "vimp", outcome.target = "carb")
find.interaction(mv.obj, method = "vimp", outcome.target = "mpg")
find.interaction(mv.obj, method = "vimp", outcome.target = "cyl")

follic Follicular Cell Lymphoma

10 get.tree.rfsrc

Description

Competing risk data set involving follicular cell lymphoma.

Format

A data frame containing:

age age
hgb hemoglobin (g/l)
clinstg clinical stage: 1=stage I, 2=stage II
ch chemotherapy
rt radiotherapy
time first failure time
status censoring status: 0=censored, 1=relapse, 2=death

Source

Table 1.4b, Competing Risks: A Practical Perspective.

References

Pintilie M., (2006) Competing Risks: A Practical Perspective. West Sussex: John Wiley and Sons.

Examples

data(follic, package = "randomForestSRC")
follic.obj <- rfsrc(Surv(time, status) ~ ., follic, nsplit = 3, ntree = 100)

get.tree.rfsrc Extract a Single Tree from a Forest and plot it on your browser

Description

Extracts a single tree from a forest which can then be plotted on the users browser. Works for all
families. Missing data not permitted.

Usage

S3 method for class 'rfsrc'
get.tree(object, tree.id, target, m.target = NULL,

time, surv.type = c("mort", "rel.freq", "surv", "years.lost", "cif", "chf"),
class.type = c("bayes", "rfq", "prob"),
ensemble = FALSE, oob = TRUE, show.plots = TRUE, do.trace = FALSE)

get.tree.rfsrc 11

Arguments

object An object of class (rfsrc, grow).

tree.id Integer value specifying the tree to be extracted.

target For classification, an integer or character value specifying the class to focus on
(defaults to the first class). For competing risks, an integer value between 1 and
J indicating the event of interest, where J is the number of event types. The
default is to use the first event type.

m.target Character value for multivariate families specifying the target outcome to be
used. If left unspecified, the algorithm will choose a default target.

time For survival, the time at which the predicted survival value is evaluated at (de-
pends on surv.type).

surv.type For survival, specifies the predicted value. See details below.

class.type For classification, specifies the predicted value. See details below.

ensemble Use the ensemble (of all trees) for prediction, or use the requested tree for pre-
diction (this is the default).

oob OOB (TRUE) or in-bag (FALSE) predicted values. Only applies when ensemble=TRUE.

show.plots Should plots be displayed?

do.trace Number of seconds between updates to the user on approximate time to com-
pletion.

Details

Extracts a specified tree from a forest and converts the tree to a hierarchical structure suitable for
use with the "data.tree" package. Plotting the object will conveniently render the tree on the users
browser. Left tree splits are displayed. For continuous values, left split is displayed as an inequality
with right split equal to the reversed inequality. For factors, split values are described in terms of
the levels of the factor. In this case, the left daughter split is a set consisting of all levels that are
assigned to the left daughter node. The right daughter split is the complement of this set.

Terminal nodes are highlighted by color and display the sample size and predicted value. By default,
predicted value equals the tree predicted value and sample size are terminal node inbag sample sizes.
If ensemble=TRUE, then the predicted value equals the forest ensemble value which could be useful
as it allows one to visualize the ensemble predictor over a given tree and therefore for a given
partition of the feature space. In this case, sample sizes are for all cases and not the tree specific
inbag cases.

The predicted value displayed is as follows:

1. For regression, the mean of the response.

2. For classification, for the target class specified by ‘target’, either the class with most votes if
class.type="bayes"; or in a two-class problem the classifier using the RFQ quantile thresh-
old if class.type="bayes" (see imbalanced for more details); or the relative class frequency
when class.type="prob".

3. For multivariate families, the predicted value of the outcome specified by ‘m.target’. This
being the value for regression or classification described above, depending on whether the
outcome is real valued or a factor.

12 get.tree.rfsrc

4. For survival, the choices are:

• Mortality (mort).
• Relative frequency of mortality (rel.freq).
• Predicted survival (surv), where the predicted survival is for the time point specified

using time (the default is the median follow up time).

5. For competing risks, the choices are:

• The expected number of life years lost (years.lost).
• The cumulative incidence function (cif).
• The cumulative hazard function (chf).

In all three cases, the predicted value is for the event type specified by ‘target’. For cif and
chf the quantity is evaluated at the time point specified by time.

Value

Invisibly, returns an object with hierarchical structure formatted for use with the data.tree package.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

Many thanks to @dbarg1 on GitHub for the initial prototype of this function

Examples

--
survival/competing risk
--

survival - veteran data set but with factors
note that diagtime has many levels
data(veteran, package = "randomForestSRC")
vd <- veteran
vd$celltype=factor(vd$celltype)
vd$diagtime=factor(vd$diagtime)
vd.obj <- rfsrc(Surv(time,status)~., vd, ntree = 100, nodesize = 5)
plot(get.tree(vd.obj, 3))

competing risks
data(follic, package = "randomForestSRC")
follic.obj <- rfsrc(Surv(time, status) ~ ., follic, nsplit = 3, ntree = 100)
plot(get.tree(follic.obj, 2))

--
regression
--

airq.obj <- rfsrc(Ozone ~ ., data = airquality)
plot(get.tree(airq.obj, 10))

get.tree.rfsrc 13

--
two-class imbalanced data (see imbalanced function)
--

data(breast, package = "randomForestSRC")
breast <- na.omit(breast)
f <- as.formula(status ~ .)
breast.obj <- imbalanced(f, breast)

compare RFQ to Bayes Rule
plot(get.tree(breast.obj, 1, class.type = "rfq", ensemble = TRUE))
plot(get.tree(breast.obj, 1, class.type = "bayes", ensemble = TRUE))

--
classification
--

iris.obj <- rfsrc(Species ~., data = iris, nodesize = 10)

equivalent
plot(get.tree(iris.obj, 25))
plot(get.tree(iris.obj, 25, class.type = "bayes"))

predicted probability displayed for terminal nodes
plot(get.tree(iris.obj, 25, class.type = "prob", target = "setosa"))
plot(get.tree(iris.obj, 25, class.type = "prob", target = "versicolor"))
plot(get.tree(iris.obj, 25, class.type = "prob", target = "virginica"))

--
multivariate regression
--

mtcars.mreg <- rfsrc(Multivar(mpg, cyl) ~., data = mtcars)
plot(get.tree(mtcars.mreg, 10, m.target = "mpg"))
plot(get.tree(mtcars.mreg, 10, m.target = "cyl"))

--
multivariate mixed outcomes
--

mtcars2 <- mtcars
mtcars2$carb <- factor(mtcars2$carb)
mtcars2$cyl <- factor(mtcars2$cyl)
mtcars.mix <- rfsrc(Multivar(carb, mpg, cyl) ~ ., data = mtcars2)
plot(get.tree(mtcars.mix, 5, m.target = "cyl"))
plot(get.tree(mtcars.mix, 5, m.target = "carb"))

--
unsupervised analysis
--

14 holdout.vimp.rfsrc

mtcars.unspv <- rfsrc(data = mtcars)
plot(get.tree(mtcars.unspv, 5))

hd Hodgkin’s Disease

Description

Competing risk data set involving Hodgkin’s disease.

Format

A data frame containing:

age age
sex gender
trtgiven treatment: RT=radition, CMT=Chemotherapy and radiation
medwidsi mediastinum involvement: N=no, S=small, L=Large
extranod extranodal disease: Y=extranodal disease, N=nodal disease
clinstg clinical stage: 1=stage I, 2=stage II
time first failure time
status censoring status: 0=censored, 1=relapse, 2=death

Source

Table 1.6b, Competing Risks: A Practical Perspective.

References

Pintilie M., (2006) Competing Risks: A Practical Perspective. West Sussex: John Wiley and Sons.

Examples

data(hd, package = "randomForestSRC")

holdout.vimp.rfsrc Hold out variable importance (VIMP)

Description

Hold out VIMP is calculated from the error rate of mini ensembles of trees (blocks of trees) grown
with and without a variable. Applies to all families.

holdout.vimp.rfsrc 15

Usage

S3 method for class 'rfsrc'
holdout.vimp(formula, data,
ntree = function(p, vtry){1000 * p / vtry},
nsplit = 10,
ntime = 50,
sampsize = function(x){x * .632},
samptype = "swor",
block.size = 10,
vtry = 1,
...)

Arguments

formula A symbolic description of the model to be fit.

data Data frame containing the y-outcome and x-variables.

ntree Function specifying requested number of trees used for growing the forest. In-
puts are dimension and number of holdout variables. The requested number of
trees can also be a number.

nsplit Non-negative integer value specifying number of random split points used to
split a node (deterministic splitting corresponds to the value zero and is much
slower).

ntime Integer value used for survival to constrain ensemble calculations to a grid of
ntime time points.

sampsize Function specifying size of subsampled data. Can also be a number.

samptype Type of bootstrap used.

vtry Number of variables randomly selected to be held out when growing a tree. This
can also be set to a list for a targeted hold out VIMP analysis. See details below
for more information.

block.size Specifies number of trees in a block when calculating holdout variable impor-
tance.

... Further arguments to be passed to rfsrc.

Details

Holdout variable importance (holdout VIMP) is based on comparing error performance of two mini
forests of trees (blocks of trees): the first in which a random set of vtry features are held out (the
holdout forest), and the second in which no features are held out (the baseline forest).

To summarize, holdout VIMP measures the importance of a variable when that variable is truly
removed from the tree growing process.

Specifically, if a feature is held out in a block of trees, we refer to this as the (feature, block) pair.
The bootstrap for the trees in a (feature, block) pair are identical in both forests. That is, the holdout
block is grown by holding out the feature, and the baseline block is grown over the same trees,
with the same bootstrap, but without holding out any features. vtry controls how many features
are held out in every tree. If set to one (default), only one variable is held out in every tree. Once

16 holdout.vimp.rfsrc

a (feature, block) of trees has been grown, holdout VIMP for a given variable v is calculated as
follows. Gather the block of trees where the feature was held out (from the holdout forest) and
calculate OOB prediction error. Next gather the corresponding block of trees where v was not held
out (from the baseline forest) and calculate OOB prediction error. Holdout VIMP for the (feature,
block) pair is the difference between these two values. The final holdout VIMP estimate for a
feature v is obtained by averaging holdout VIMP for (feature=v, block) over all blocks.

Accuracy of hold out VIMP depends critically on total number of trees. If total number of trees is
too small, then number of times a variable is held out will be small and OOB error can suffer from
high variance. Therefore, ntree should be set fairly high—we recommend using 1000 times the
number of features. Increasing vtry is another way to increase number of times a variable is held
out and therefore reduces the burden of growing a large number of trees. In particular, total number
of trees needed decreases linearly with vtry. The default ntree equals 1000 trees for each feature
divided by vtry. Keep in mind intrepretation of holdout VIMP is altered when vtry is different
than one. Thus this option should be used with caution.

Accuracy also depends on the value of block.size. Smaller values generally produce better results
but are more computationally demanding. The most computationally demanding, but most accurate,
is block.size=1. This is similar to how block.size is used for usual variable importance: see the
help file for rfsrc for details. Note the value of block.size should not exceed ntree divided by
number of features, otherwise there may not be enough trees to satisify the target block size for a
feature and missing values will result.

A targeted hold out VIMP analysis can be requested by setting vtry to a list with two entries.
The first entry is a vector of integer values specifying the variables of interest. The second entry
is a boolean logical flag indicating whether individual or joint VIMP should be calculated. For
example, suppose variables 1, 4 and 5 are our variables of interest. To calculate holdout VIMP for
these variables, and these variables only, vtry would be specified by

vtry = list(xvar = c(1, 4, 5), joint = FALSE)

On the other hand, if we are interested in the joint effect when we remove the three variables
simultaneously, then

vtry = list(xvar = c(1, 4, 5), joint = TRUE)

The benefits of a targeted analysis is that the user may have a pre-conceived idea of which variables
are interesting. Only VIMP for these variables will be calculated which greatly reduces computa-
tional time. Another benefit is that when joint VIMP is requested, this provides the user with a way
to assess importance of specific groups of variables. See the iris example below for illustration.

Value

Invisibly a list with the following components (which themselves can be lists):

importance Holdout VIMP.

baseline Prediction error for the baseline forest.

holdout Prediction error for the holdout forest.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

holdout.vimp.rfsrc 17

References

Lu M. and Ishwaran H. (2018). Expert Opinion: A prediction-based alternative to p-values in
regression models. J. Thoracic and Cardiovascular Surgery, 155(3), 1130–1136.

See Also

vimp.rfsrc

Examples

--
regression analysis
--

new York air quality measurements
airq.obj <- holdout.vimp(Ozone ~ ., data = airquality, na.action = "na.impute")
print(airq.obj$importance)

--
classification analysis
--

iris data
iris.obj <- holdout.vimp(Species ~., data = iris)
print(iris.obj$importance)

iris data using brier prediction error
iris.obj <- holdout.vimp(Species ~., data = iris, perf.type = "brier")
print(iris.obj$importance)

--
illustration of targeted holdout vimp analysis
--

iris data - only interested in variables 3 and 4
vtry <- list(xvar = c(3, 4), joint = FALSE)
print(holdout.vimp(Species ~., data = iris, vtry = vtry)$impor)

iris data - joint importance of variables 3 and 4
vtry <- list(xvar = c(3, 4), joint = TRUE)
print(holdout.vimp(Species ~., data = iris, vtry = vtry)$impor)

iris data - joint importance of variables 1 and 2
vtry <- list(xvar = c(1, 2), joint = TRUE)
print(holdout.vimp(Species ~., data = iris, vtry = vtry)$impor)

--
imbalanced classification (using RFQ)

18 holdout.vimp.rfsrc

--

if (library("caret", logical.return = TRUE)) {

experimental settings
n <- 400
q <- 20
ir <- 6
f <- as.formula(Class ~ .)

simulate the data, create minority class data
d <- twoClassSim(n, linearVars = 15, noiseVars = q)
d$Class <- factor(as.numeric(d$Class) - 1)
idx.0 <- which(d$Class == 0)
idx.1 <- sample(which(d$Class == 1), sum(d$Class == 1) / ir , replace = FALSE)
d <- d[c(idx.0,idx.1),, drop = FALSE]

VIMP for RFQ with and without blocking
vmp1 <- imbalanced(f, d, importance = TRUE, block.size = 1)$importance[, 1]
vmp10 <- imbalanced(f, d, importance = TRUE, block.size = 10)$importance[, 1]

holdout VIMP for RFQ with and without blocking
hvmp1 <- holdout.vimp(f, d, rfq = TRUE,

perf.type = "g.mean", block.size = 1)$importance[, 1]
hvmp10 <- holdout.vimp(f, d, rfq = TRUE,

perf.type = "g.mean", block.size = 10)$importance[, 1]

compare VIMP values
imp <- 100 * cbind(vmp1, vmp10, hvmp1, hvmp10)
legn <- c("vimp-1", "vimp-10","hvimp-1", "hvimp-10")
colr <- rep(4,20+q)
colr[1:20] <- 2
ylim <- range(c(imp))
nms <- 1:(20+q)
par(mfrow=c(2,2))
barplot(imp[,1],col=colr,las=2,main=legn[1],ylim=ylim,names.arg=nms)
barplot(imp[,2],col=colr,las=2,main=legn[2],ylim=ylim,names.arg=nms)
barplot(imp[,3],col=colr,las=2,main=legn[3],ylim=ylim,names.arg=nms)
barplot(imp[,4],col=colr,las=2,main=legn[4],ylim=ylim,names.arg=nms)

}

--
multivariate regression analysis
--
mtcars.mreg <- holdout.vimp(Multivar(mpg, cyl) ~., data = mtcars,

vtry = 3,
block.size = 1,
samptype = "swr",
sampsize = dim(mtcars)[1])

print(mtcars.mreg$importance)

--

housing 19

mixed outcomes analysis
--

mtcars.new <- mtcars
mtcars.new$cyl <- factor(mtcars.new$cyl)
mtcars.new$carb <- factor(mtcars.new$carb, ordered = TRUE)
mtcars.mix <- holdout.vimp(cbind(carb, mpg, cyl) ~., data = mtcars.new,

ntree = 100,
block.size = 2,
vtry = 1)

print(mtcars.mix$importance)

##--
survival analysis
##--

Primary biliary cirrhosis (PBC) of the liver
data(pbc, package = "randomForestSRC")
pbc.obj <- holdout.vimp(Surv(days, status) ~ ., pbc,

nsplit = 10,
ntree = 1000,
na.action = "na.impute")

print(pbc.obj$importance)

##--
competing risks
##--

WIHS analysis
cumulative incidence function (CIF) for HAART and AIDS stratified by IDU

data(wihs, package = "randomForestSRC")
wihs.obj <- holdout.vimp(Surv(time, status) ~ ., wihs,

nsplit = 3,
ntree = 100)

print(wihs.obj$importance)

housing Ames Iowa Housing Data

Description

Data from the Ames Assessor’s Office used in assessing values of individual residential properties
sold in Ames, Iowa from 2006 to 2010. This is a regression problem and the goal is to predict
"SalePrice" which records the price of a home in thousands of dollars.

References

De Cock, D., (2011). Ames, Iowa: Alternative to the Boston housing data as an end of semester
regression project. Journal of Statistics Education, 19(3), 1–14.

20 imbalanced.rfsrc

Examples

load the data
data(housing, package = "randomForestSRC")

the original data contains lots of missing data, so impute it
use missForest, can be slow so grow trees with small training sizes
housing2 <- impute(data = housing, mf.q = 1, sampsize = function(x){x * .1})

same idea ... but directly use rfsrc.fast and multivariate missForest
housing3 <- impute(data = housing, mf.q = .5, fast = TRUE)

even faster, but potentially less acurate
housing4 <- impute(SalePrice~., housing, splitrule = "random", nimpute = 1)

imbalanced.rfsrc Imbalanced Two Class Problems

Description

Implements various solutions to the two-class imbalanced problem, including the newly proposed
quantile-classifier approach of O’Brien and Ishwaran (2017). Also includes Breiman’s balanced
random forests undersampling of the majority class. Performance is assesssed using the G-mean,
but misclassification error can be requested.

Usage

S3 method for class 'rfsrc'
imbalanced(formula, data, ntree = 3000,
method = c("rfq", "brf", "standard"), splitrule = "auc",
perf.type = NULL, block.size = NULL, fast = FALSE,
ratio = NULL, ...)

Arguments

formula A symbolic description of the model to be fit.

data Data frame containing the two-class y-outcome and x-variables.

ntree Number of trees.

method Method used for fitting the classifier. The default is rfq which is the random
forests quantile-classifer (RFQ) approach of O’Brien and Ishwaran (2017). The
method brf implements the balanced random forest (BRF) method of Chen et
al. (2004) which undersamples the majority class so that its cardinality matches
that of the minority class. The method standard implements a standard random
forest analysis.

imbalanced.rfsrc 21

splitrule Default is AUC splitting which maximizes gmean performance. Other choices
are "gini" and "entropy".

perf.type Measure used for assessing performance (and all downstream calculations based
on it such as variable importance). The default for rfq and brf is to use the G-
mean (Kubat et al., 1997). For standard random forests, the default is misclassi-
fication error. Users can over-ride the default performance measure by manually
selecting either gmean for the G-mean, misclass for misclassification error, or
brier for the normalized Brier score. See the examples below.

block.size Should the cumulative error rate be calculated on every tree? When NULL, it
will only be calculated on the last tree. If importance is requested, VIMP is
calculated in "blocks" of size equal to block.size. If not specified, uses the
default value specified in rfsrc.

fast Use fast random forests, rfsrc.fast, in place of rfsrc? Improves speed but is
less accurate. Only applies to RFQ.

ratio This is an optional parameter for expert users and included only for experimental
purposes. Used to specify the ratio (between 0 and 1) for undersampling the
majority class. Sampling is without replacement. Option is ignored for BRF.

... Further arguments to be passed to the rfsrc function to specify random forest
parameters.

Details

Imbalanced data, or the so-called imbalanced minority class problem, refers to classification settings
involving two-classes where the ratio of the majority class to the minority class is much larger
than one. Two solutions to the two-class imbalanced problem are provided here, including the
newly proposed random forests quantile-classifier (RFQ) of O’Brien and Ishwaran (2017), and
the balanced random forests (BRF) undersampling approach of Chen et al. (2004). The default
performance metric is the G-mean (Kubat et al., 1997).

Currently, missing values cannot be handled for BRF or when the ratio option is used; in these
cases, missing data is removed prior to the analysis.

Permutation VIMP is used by default and not anti-VIMP which is the default for all other families
and settings. Our experiments indicate the former performs better in imbalanced settings, especially
when imbalanced ratio is high.

We recommend setting ntree to a relatively large value when dealing with imbalanced data to
ensure convergence of the performance value – this is especially true for the G-mean. Consider
using 5 times the usual number of trees.

A new helper function get.imbalanced.performance has been added for extracting performance
metrics. Metrics are self-titled and their meaning should generally be clear. Metrics that may
be less familiar include: F1, the F-score or the F-measure which measures balance between the
precision and the recall. F1mod, the harmonic mean of sensitivity, specificity, precision and the
negative predictive value. F1gmean, the average of F1 and the G-mean. F1modgmean, the average
of F1mod and the G-mean.

Value

A two-class random forest fit under the requested method and performance value.

22 imbalanced.rfsrc

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

References

Chen, C., Liaw, A. and Breiman, L. (2004). Using random forest to learn imbalanced data. Univer-
sity of California, Berkeley, Technical Report 110.

Kubat, M., Holte, R. and Matwin, S. (1997). Learning when negative examples abound. Machine
Learning, ECML-97: 146-153.

O’Brien R. and Ishwaran H. (2019). A random forests quantile classifier for class imbalanced data.
Pattern Recognition, 90, 232-249

See Also

rfsrc, rfsrc.fast

Examples

--
use the breast data for illustration
--

data(breast, package = "randomForestSRC")
breast <- na.omit(breast)
f <- as.formula(status ~ .)

##--
default RFQ call
##--

o.rfq <- imbalanced(f, breast)
print(o.rfq)

equivalent to:
rfsrc(f, breast, rfq = TRUE, ntree = 3000,
perf.type = "gmean", splitrule = "auc")

##--
detailed output using customized performance function
##--

print(get.imbalanced.performance(o.rfq))

##---
RF using misclassification error with gini splitting
--

o.std <- imbalanced(f, breast, method = "stand", splitrule = "gini")

##---

imbalanced.rfsrc 23

RF using G-mean performance with AUC splitting
--

o.std <- imbalanced(f, breast, method = "stand", perf.type = "gmean")

equivalent to:
rfsrc(f, breast, ntree = 3000, perf.type = "gmean", splitrule = "auc")

##--
default BRF call
##--

o.brf <- imbalanced(f, breast, method = "brf")

equivalent to:
imbalanced(f, breast, method = "brf", perf.type = "gmean")

##--
BRF call with misclassification performance
##--

o.brf <- imbalanced(f, breast, method = "brf", perf.type = "misclass")

##--
train/test example
##--

trn <- sample(1:nrow(breast), size = nrow(breast) / 2)
o.trn <- imbalanced(f, breast[trn,], importance = TRUE)
o.tst <- predict(o.trn, breast[-trn,], importance = TRUE)
print(o.trn)
print(o.tst)
print(100 * cbind(o.trn$impo[, 1], o.tst$impo[, 1]))

##--
##
illustrates how to optimize threshold on training data
improves Gmean for RFQ in many situations
##
##--

if (library("caret", logical.return = TRUE)) {

experimental settings
n <- 2 * 5000
q <- 20
ir <- 6
f <- as.formula(Class ~ .)

simulate the data, create minority class data
d <- twoClassSim(n, linearVars = 15, noiseVars = q)
d$Class <- factor(as.numeric(d$Class) - 1)

24 imbalanced.rfsrc

idx.0 <- which(d$Class == 0)
idx.1 <- sample(which(d$Class == 1), sum(d$Class == 1) / ir , replace = FALSE)
d <- d[c(idx.0,idx.1),, drop = FALSE]

split data into train and test
trn.pt <- sample(1:nrow(d), size = nrow(d) / 2)
trn <- d[trn.pt,]
tst <- d[setdiff(1:nrow(d), trn.pt),]

run rfq on training data
o <- imbalanced(f, trn)

(1) default threshold (2) directly optimized gmean threshold
th.1 <- get.imbalanced.performance(o)["threshold"]
th.2 <- get.imbalanced.optimize(o)["threshold"]

training performance
cat("-------- train performance ---------\n")
print(get.imbalanced.performance(o, thresh=th.1))
print(get.imbalanced.performance(o, thresh=th.2))

test performance
cat("-------- test performance ---------\n")
pred.o <- predict(o, tst)
print(get.imbalanced.performance(pred.o, thresh=th.1))
print(get.imbalanced.performance(pred.o, thresh=th.2))

}

##--
illustrates RFQ with and without SMOTE
##
- simulation example using the caret R-package
- creates imbalanced data by randomly sampling the class 1 data
- use SMOTE from "imbalance" package to oversample the minority
##
##--

if (library("caret", logical.return = TRUE) &
library("imbalance", logical.return = TRUE)) {

experimental settings
n <- 5000
q <- 20
ir <- 6
f <- as.formula(Class ~ .)

simulate the data, create minority class data
d <- twoClassSim(n, linearVars = 15, noiseVars = q)
d$Class <- factor(as.numeric(d$Class) - 1)
idx.0 <- which(d$Class == 0)
idx.1 <- sample(which(d$Class == 1), sum(d$Class == 1) / ir , replace = FALSE)
d <- d[c(idx.0,idx.1),, drop = FALSE]

imbalanced.rfsrc 25

d <- d[sample(1:nrow(d)),]

define train/test split
trn <- sample(1:nrow(d), size = nrow(d) / 2, replace = FALSE)

now make SMOTE training data
newd.50 <- mwmote(d[trn,], numInstances = 50, classAttr = "Class")
newd.500 <- mwmote(d[trn,], numInstances = 500, classAttr = "Class")

fit RFQ with and without SMOTE
o.with.50 <- imbalanced(f, rbind(d[trn,], newd.50))
o.with.500 <- imbalanced(f, rbind(d[trn,], newd.500))
o.without <- imbalanced(f, d[trn,])

compare performance on test data
print(predict(o.with.50, d[-trn,]))
print(predict(o.with.500, d[-trn,]))
print(predict(o.without, d[-trn,]))

}

##--
##
illustrates effectiveness of blocked VIMP
##
##--

if (library("caret", logical.return = TRUE)) {

experimental settings
n <- 1000
q <- 20
ir <- 6
f <- as.formula(Class ~ .)

simulate the data, create minority class data
d <- twoClassSim(n, linearVars = 15, noiseVars = q)
d$Class <- factor(as.numeric(d$Class) - 1)
idx.0 <- which(d$Class == 0)
idx.1 <- sample(which(d$Class == 1), sum(d$Class == 1) / ir , replace = FALSE)
d <- d[c(idx.0,idx.1),, drop = FALSE]

permutation VIMP for BRF with and without blocking
blocked VIMP is a hybrid of Breiman-Cutler/Ishwaran-Kogalur VIMP
brf <- imbalanced(f, d, method = "brf", importance = "permute", block.size = 1)
brfB <- imbalanced(f, d, method = "brf", importance = "permute", block.size = 10)

permutation VIMP for RFQ with and without blocking
rfq <- imbalanced(f, d, importance = "permute", block.size = 1)
rfqB <- imbalanced(f, d, importance = "permute", block.size = 10)

compare VIMP values
imp <- 100 * cbind(brf$importance[, 1], brfB$importance[, 1],

26 impute.rfsrc

rfq$importance[, 1], rfqB$importance[, 1])
legn <- c("BRF", "BRF-block", "RFQ", "RFQ-block")
colr <- rep(4,20+q)
colr[1:20] <- 2
ylim <- range(c(imp))
nms <- 1:(20+q)
par(mfrow=c(2,2))
barplot(imp[,1],col=colr,las=2,main=legn[1],ylim=ylim,names.arg=nms)
barplot(imp[,2],col=colr,las=2,main=legn[2],ylim=ylim,names.arg=nms)
barplot(imp[,3],col=colr,las=2,main=legn[3],ylim=ylim,names.arg=nms)
barplot(imp[,4],col=colr,las=2,main=legn[4],ylim=ylim,names.arg=nms)

}

##--
##
confidence intervals for G-mean permutation VIMP using subsampling
##
##--

if (library("caret", logical.return = TRUE)) {

experimental settings
n <- 1000
q <- 20
ir <- 6
f <- as.formula(Class ~ .)

simulate the data, create minority class data
d <- twoClassSim(n, linearVars = 15, noiseVars = q)
d$Class <- factor(as.numeric(d$Class) - 1)
idx.0 <- which(d$Class == 0)
idx.1 <- sample(which(d$Class == 1), sum(d$Class == 1) / ir , replace = FALSE)
d <- d[c(idx.0,idx.1),, drop = FALSE]

RFQ
o <- imbalanced(Class ~ ., d, importance = "permute", block.size = 10)

subsample RFQ
smp.o <- subsample(o, B = 100)
plot(smp.o, cex.axis = .7)

}

impute.rfsrc Impute Only Mode

impute.rfsrc 27

Description

Fast imputation mode. A random forest is grown and used to impute missing data. No ensemble
estimates or error rates are calculated.

Usage

S3 method for class 'rfsrc'
impute(formula, data,
ntree = 100, nodesize = 1, nsplit = 10,
nimpute = 2, fast = FALSE, blocks,
mf.q, max.iter = 10, eps = 0.01,
ytry = NULL, always.use = NULL, verbose = TRUE,
...)

Arguments

formula A symbolic description of the model to be fit. Can be left unspecified if there are
no outcomes or we don’t care to distinguish between y-outcomes and x-variables
in the imputation. Ignored when using multivariate missForest imputation.

data Data frame containing the data to be imputed.

ntree Number of trees to grow.

nodesize Forest average terminal node size.

nsplit Non-negative integer value used to specify random splitting.

nimpute Number of iterations of the missing data algorithm. Ignored for multivariate
missForest; in which case the algorithm iterates until a convergence criteria is
achieved (users can however enforce a maximum number of iterations with the
option max.iter).

fast Use fast random forests, rfsrcFast, in place of rfsrc? Improves speed but is
less accurate.

blocks Integer value specifying the number of blocks the data should be broken up into
(by rows). This can improve computational efficiency when the sample size is
large but imputation efficiency decreases. By default, no action is taken if left
unspecified.

mf.q Use this to turn on missForest (which is off by default). Specifies fraction of
variables (between 0 and 1) used as responses in multivariate missForest im-
putation. When set to 1 this corresponds to missForest, otherwise multivariate
missForest is used. Can also be an integer, in which case this equals the number
of multivariate responses.

max.iter Maximum number of iterations used when implementing multivariate missFor-
est imputation.

eps Tolerance value used to determine convergence of multivariate missForest im-
putation.

ytry Number of variables used as pseudo-responses in unsupervised forests. See
details below.

28 impute.rfsrc

always.use Character vector of variable names to always be included as a response in mul-
tivariate missForest imputation. Does not apply for other imputation methods.

verbose Send verbose output to terminal (only applies to multivariate missForest impu-
tation).

... Further arguments passed to or from other methods.

Details

1. Grow a forest and use this to impute data. All external calculations such as ensemble calcu-
lations, error rates, etc. are turned off. Use this function if your only interest is imputing the
data.

2. Split statistics are calculated using non-misssing data only. If a node splits on a variable with
missing data, the variable’s missing data is imputed by randomly drawing values from non-
missing in-bag data. The purpose of this is to make it possible to assign cases to daughter
nodes based on the split.

3. If no formula is specified, unsupervised splitting is implemented using a ytry value of sqrt(p)
where p equals the number of variables. More precisely, mtry variables are selected at ran-
dom, and for each of these a random subset of ytry variables are selected and defined as the
multivariate pseudo-responses. A multivariate composite splitting rule of dimension ytry is
then applied to each of the mtry multivariate regression problems and the node split on the
variable leading to the best split (Tang and Ishwaran, 2017).

4. If mf.q is specified, a multivariate version of missForest imputation (Stekhoven and Buhlmann,
2012) is applied. Specifically, a fraction mf.q of variables are used as multivariate responses
and split by the remaining variables using multivariate composite splitting (Tang and Ish-
waran, 2017). Missing data for responses are imputed by prediction. The process is repeated
using a new set of variables for responses (mutually exclusive to the previous fit), until all
variables have been imputed. This is one iteration. The entire process is repeated, and the
algorithm iterated until a convergence criteria is met (specified using options max.iter and
eps). Integer values for mf.q are allowed and interpreted as a request that mf.q variables be
selected for the multivariate response. If mf.q=1, the algorithm reverts to the original missFor-
est procedure. This is generally the most accurate of all the imputation procedures, but also
the most computationally demanding. See examples below for strategies to increase speed.

5. Prior to imputation, the data is processed and records with all values missing are removed, as
are variables having all missing values.

6. If there is no missing data, either before or after processing of the data, the algorithm returns
the processed data and no imputation is performed.

7. All options are the same as rfsrc and the user should consult the rfsrc help file for details.

Value

Invisibly, the data frame containing the orginal data with imputed data overlaid.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

impute.rfsrc 29

References

Ishwaran H., Kogalur U.B., Blackstone E.H. and Lauer M.S. (2008). Random survival forests, Ann.
App. Statist., 2:841-860.

Stekhoven D.J. and Buhlmann P. (2012). MissForest–non-parametric missing value imputation for
mixed-type data. Bioinformatics, 28(1):112-118.

Tang F. and Ishwaran H. (2017). Random forest missing data algorithms. Statistical Analysis and
Data Mining, 10:363-377.

See Also

rfsrc, rfsrc.fast

Examples

--
example of survival imputation
--

default everything - unsupervised splitting
data(pbc, package = "randomForestSRC")
pbc1.d <- impute(data = pbc)

imputation using outcome splitting
f <- as.formula(Surv(days, status) ~ .)
pbc2.d <- impute(f, data = pbc, nsplit = 3)

random splitting can be reasonably good
pbc3.d <- impute(f, data = pbc, splitrule = "random", nimpute = 5)

--
example of regression imputation
--

air1.d <- impute(data = airquality, nimpute = 5)
air2.d <- impute(Ozone ~ ., data = airquality, nimpute = 5)
air3.d <- impute(Ozone ~ ., data = airquality, fast = TRUE)

--
multivariate missForest imputation
--

data(pbc, package = "randomForestSRC")

missForest algorithm - uses 1 variable at a time for the response
pbc.d <- impute(data = pbc, mf.q = 1)

multivariate missForest - use 10 percent of variables as responses
i.e. multivariate missForest
pbc.d <- impute(data = pbc, mf.q = .01)

30 impute.rfsrc

missForest but faster by using random splitting
pbc.d <- impute(data = pbc, mf.q = 1, splitrule = "random")

missForest but faster by increasing nodesize
pbc.d <- impute(data = pbc, mf.q = 1, nodesize = 20, splitrule = "random")

missForest but faster by using rfsrcFast
pbc.d <- impute(data = pbc, mf.q = 1, fast = TRUE)

--
another example of multivariate missForest imputation
(suggested by John Sheffield)
--

test_rows <- 1000

set.seed(1234)

a <- rpois(test_rows, 500)
b <- a + rnorm(test_rows, 50, 50)
c <- b + rnorm(test_rows, 50, 50)
d <- c + rnorm(test_rows, 50, 50)
e <- d + rnorm(test_rows, 50, 50)
f <- e + rnorm(test_rows, 50, 50)
g <- f + rnorm(test_rows, 50, 50)
h <- g + rnorm(test_rows, 50, 50)
i <- h + rnorm(test_rows, 50, 50)

fake_data <- data.frame(a, b, c, d, e, f, g, h, i)

fake_data_missing <- data.frame(lapply(fake_data, function(x) {
x[runif(test_rows) <= 0.4] <- NA
x

}))

imputed_data <- impute(
data = fake_data_missing,
mf.q = 0.2,
ntree = 100,
fast = TRUE,
verbose = TRUE

)

par(mfrow=c(3,3))
o=lapply(1:ncol(imputed_data), function(j) {

pt <- is.na(fake_data_missing[, j])
x <- fake_data[pt, j]
y <- imputed_data[pt, j]
plot(x, y, pch = 16, cex = 0.8, xlab = "raw data",
ylab = "imputed data", col = 2)

points(x, y, pch = 1, cex = 0.8, col = gray(.9))
lines(supsmu(x, y, span = .25), lty = 1, col = 4, lwd = 4)
mtext(colnames(imputed_data)[j])

max.subtree.rfsrc 31

NULL
})

max.subtree.rfsrc Acquire Maximal Subtree Information

Description

Extract maximal subtree information from a RF-SRC object. Used for variable selection and iden-
tifying interactions between variables.

Usage

S3 method for class 'rfsrc'
max.subtree(object,
max.order = 2, sub.order = FALSE, conservative = FALSE, ...)

Arguments

object An object of class (rfsrc, grow) or (rfsrc, forest).

max.order Non-negative integer specifying the target number of order depths. Default is to
return the first and second order depths. Used to identify predictive variables.
Setting ‘max.order=0’ returns the first order depth for each variable by tree. A
side effect is that ‘conservative’ is automatically set to FALSE.

sub.order Set this value to TRUE to return the minimal depth of each variable relative to an-
other variable. Used to identify interrelationship between variables. See details
below.

conservative If TRUE, the threshold value for selecting variables is calculated using a con-
servative marginal approximation to the minimal depth distribution (the method
used in Ishwaran et al. 2010). Otherwise, the minimal depth distribution is
the tree-averaged distribution. The latter method tends to give larger threshold
values and discovers more variables, especially in high-dimensions.

... Further arguments passed to or from other methods.

Details

The maximal subtree for a variable x is the largest subtree whose root node splits on x. Thus,
all parent nodes of x’s maximal subtree have nodes that split on variables other than x. The largest
maximal subtree possible is the root node. In general, however, there can be more than one maximal
subtree for a variable. A maximal subtree may also not exist if there are no splits on the variable.
See Ishwaran et al. (2010, 2011) for details.

The minimal depth of a maximal subtree (the first order depth) measures predictiveness of a variable
x. It equals the shortest distance (the depth) from the root node to the parent node of the maximal
subtree (zero is the smallest value possible). The smaller the minimal depth, the more impact x

32 max.subtree.rfsrc

has on prediction. The mean of the minimal depth distribution is used as the threshold value for
deciding whether a variable’s minimal depth value is small enough for the variable to be classified
as strong.

The second order depth is the distance from the root node to the second closest maximal subtree of
x. To specify the target order depth, use the max.order option (e.g., setting ‘max.order=2’ returns
the first and second order depths). Setting ‘max.order=0’ returns the first order depth for each
variable for each tree.

Set ‘sub.order=TRUE’ to obtain the minimal depth of a variable relative to another variable. This
returns a pxp matrix, where p is the number of variables, and entries (i,j) are the normalized relative
minimal depth of a variable j within the maximal subtree for variable i, where normalization adjusts
for the size of i’s maximal subtree. Entry (i,i) is the normalized minimal depth of i relative to the
root node. The matrix should be read by looking across rows (not down columns) and identifies in-
terrelationship between variables. Small (i,j) entries indicate interactions. See find.interaction
for related details.

For competing risk data, maximal subtree analyses are unconditional (i.e., they are non-event spe-
cific).

Value

Invisibly, a list with the following components:

order Order depths for a given variable up to max.order averaged over a tree and
the forest. Matrix of dimension pxmax.order. If ‘max.order=0’, a matrix of
pxntree is returned containing the first order depth for each variable by tree.

count Averaged number of maximal subtrees, normalized by the size of a tree, for each
variable.

nodes.at.depth Number of non-terminal nodes by depth for each tree.

sub.order Average minimal depth of a variable relative to another variable. Can be NULL.

threshold Threshold value (the mean minimal depth) used to select variables.

threshold.1se Mean minimal depth plus one standard error.

topvars Character vector of names of the final selected variables.

topvars.1se Character vector of names of the final selected variables using the 1se threshold
rule.

percentile Minimal depth percentile for each variable.

density Estimated minimal depth density.

second.order.threshold

Threshold for second order depth.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

nutrigenomic 33

References

Ishwaran H., Kogalur U.B., Gorodeski E.Z, Minn A.J. and Lauer M.S. (2010). High-dimensional
variable selection for survival data. J. Amer. Statist. Assoc., 105:205-217.

Ishwaran H., Kogalur U.B., Chen X. and Minn A.J. (2011). Random survival forests for high-
dimensional data. Statist. Anal. Data Mining, 4:115-132.

See Also

holdout.vimp.rfsrc, var.select.rfsrc, vimp.rfsrc

Examples

--
survival analysis
first and second order depths for all variables
--

data(veteran, package = "randomForestSRC")
v.obj <- rfsrc(Surv(time, status) ~ . , data = veteran)
v.max <- max.subtree(v.obj)

first and second order depths
print(round(v.max$order, 3))

the minimal depth is the first order depth
print(round(v.max$order[, 1], 3))

strong variables have minimal depth less than or equal
to the following threshold
print(v.max$threshold)

this corresponds to the set of variables
print(v.max$topvars)

--
regression analysis
try different levels of conservativeness
--

mtcars.obj <- rfsrc(mpg ~ ., data = mtcars)
max.subtree(mtcars.obj)$topvars
max.subtree(mtcars.obj, conservative = TRUE)$topvars

nutrigenomic Nutrigenomic Study

34 nutrigenomic

Description

Study the effects of five diet treatments on 21 liver lipids and 120 hepatic gene expression in wild-
type and PPAR-alpha deficient mice. We use a multivariate mixed random forest analysis by re-
gressing gene expression, diet and genotype (the x-variables) on lipid expressions (the multivariate
y-responses).

References

Martin P.G. et al. (2007). Novel aspects of PPAR-alpha-mediated regulation of lipid and xenobiotic
metabolism revealed through a nutrigenomic study. Hepatology, 45(3), 767–777.

Examples

--
multivariate regression forests using Mahalanobis splitting
lipids (all real values) used as the multivariate y
--

load the data
data(nutrigenomic, package = "randomForestSRC")

parse into y and x data
ydta <- nutrigenomic$lipids
xdta <- data.frame(nutrigenomic$genes,

diet = nutrigenomic$diet,
genotype = nutrigenomic$genotype)

multivariate mixed forest call
obj <- rfsrc(get.mv.formula(colnames(ydta)),

data.frame(ydta, xdta),
importance=TRUE, nsplit = 10,
splitrule = "mahalanobis")

print(obj)

--
plot the standarized performance and VIMP values
--

acquire the error rate for each of the 21-coordinates
standardize to allow for comparison across coordinates
serr <- get.mv.error(obj, standardize = TRUE)

acquire standardized VIMP
svimp <- get.mv.vimp(obj, standardize = TRUE)

par(mfrow = c(1,2))
plot(serr, xlab = "Lipids", ylab = "Standardized Performance")
matplot(svimp, xlab = "Genes/Diet/Genotype", ylab = "Standardized VIMP")

--

partial.rfsrc 35

plot some trees
--

plot(get.tree(obj, 1))
plot(get.tree(obj, 2))
plot(get.tree(obj, 3))

--
##
Compare above to (1) user specified covariance matrix
(2) default composite (independent) splitting
##
--

user specified sigma matrix
obj2 <- rfsrc(get.mv.formula(colnames(ydta)),

data.frame(ydta, xdta),
importance = TRUE, nsplit = 10,
splitrule = "mahalanobis",
sigma = cov(ydta))

print(obj2)

default independence split rule
obj3 <- rfsrc(get.mv.formula(colnames(ydta)),

data.frame(ydta, xdta),
importance=TRUE, nsplit = 10)

print(obj3)

compare vimp
imp <- data.frame(mahalanobis = rowMeans(get.mv.vimp(obj, standardize = TRUE)),

mahalanobis2 = rowMeans(get.mv.vimp(obj2, standardize = TRUE)),
default = rowMeans(get.mv.vimp(obj3, standardize = TRUE)))

print(head(100 * imp[order(imp$mahalanobis, decreasing = TRUE),], 15))

partial.rfsrc Acquire Partial Effect of a Variable

Description

Direct, fast inferface for partial effect of a variable. Works for all families.

Usage

partial.rfsrc(object, oob = TRUE,
partial.type = NULL, partial.xvar = NULL, partial.values = NULL,
partial.xvar2 = NULL, partial.values2 = NULL,
partial.time = NULL, get.tree = NULL, seed = NULL, do.trace = FALSE, ...)

36 partial.rfsrc

Arguments

object An object of class (rfsrc, grow).

oob By default out-of-bag values are returned, but inbag values can be requested by
setting this option to FALSE.

partial.type Character vector specifying type of predicted value requested. See details below.

partial.xvar Character value specifying the single primary partial x-variable to be used.

partial.values Vector of values that the primary partialy x-variable will assume.

partial.xvar2 Vector of character values specifying the second order x-variables to be used.
partial.values2

Vector of values that the second order x-variables will assume. Each second or-
der x-variable can only assume a single value. This the length of partial.xvar2
and partial.values2 will be the same. In addition, the user must do the ap-
propriate conversion for factors, and represent a value as a numeric element.

partial.time For survival families, the time at which the predicted survival value is evaluated
at (depends on partial.type).

get.tree Vector of integer(s) identifying trees over which the partial values are calculated
over. By default, uses all trees in the forest.

seed Negative integer specifying seed for the random number generator.

do.trace Number of seconds between updates to the user on approximate time to com-
pletion.

... Further arguments passed to or from other methods.

Details

Used for direct, efficient call to obtain partial plot effects. This function is intended primarily for
experts.

Out-of-bag (OOB) values are returned by default.

For factors, the partial value should be encoded as a positive integer reflecting the level number of
the factor. The actual label of the factor should not be used.

The utility function get.partial.plot.data is supplied for processing returned raw partial effects
in a format more convenient for plotting. Options are specified as in plot.variable. See examples
for illustration.

Raw partial plot effects data is returned either as an array or a list of length equal to the number of
outcomes (length is one for univariate families) with entries depending on the underlying family:

1. For regression, partial plot data is returned as a list in regrOutput with dim [n] x [length(partial.values)].

2. For classification, partial plot data is returned as a list in classOutput of dim [n] x [1 +
yvar.nlevels[.]] x [length(partial.values)].

3. For mixed multivariate regression, values are returned in list format both in regrOutput and
classOutput

4. For survival, values are returned as either a matrix or array in survOutput. Depending on
partial type specified this can be:

partial.rfsrc 37

• For partial type surv returns the survival function of dim [n] x [length(partial.time)]
x [length(partial.values)].

• For partial type mort returns mortality of dim [n] x [length(partial.values)].
• For partial type chf returns the cumulative hazard function of dim [n] x [length(partial.time)]
x [length(partial.values)].

5. For competing risks, values are returned as either a matrix or array in survOutput. Depending
on the options specified this can be:

• For partial type years.lost returns the expected number of life years lost of dim [n] x
[length(event.info$event.type)] x [length(partial.values)].

• For partial type cif returns the cumulative incidence function of dim [n] x [length(partial.time)]
x [length(event.info$event.type)] x [length(partial.values)].

• For partial type chf returns the cumulative hazard function of dim [n] x [length(partial.time)]
x [length(event.info$event.type)] x [length(partial.values)].

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

References

Ishwaran H., Kogalur U.B. (2007). Random survival forests for R, Rnews, 7(2):25-31.

Ishwaran H., Kogalur U.B., Blackstone E.H. and Lauer M.S. (2008). Random survival forests, Ann.
App. Statist., 2:841-860.

See Also

plot.variable.rfsrc

Examples

--
##
regression
##
--

airq.obj <- rfsrc(Ozone ~ ., data = airquality)

partial effect for wind
partial.obj <- partial(airq.obj,

partial.xvar = "Wind",
partial.values = airq.obj$xvar$Wind)

pdta <- get.partial.plot.data(partial.obj)

plot partial values
plot(pdta$x, pdta$yhat, type = "b", pch = 16,

xlab = "wind", ylab = "partial effect of wind")

38 partial.rfsrc

--
##
regression: partial effects for two variables simultaneously
##
--

airq.obj <- rfsrc(Ozone ~ ., data = airquality)

specify wind and temperature values of interest
wind <- sort(unique(airq.obj$xvar$Wind))
temp <- sort(unique(airq.obj$xvar$Temp))

partial effect for wind, for a given temp
pdta <- do.call(rbind, lapply(temp, function(x2) {

o <- partial(airq.obj,
partial.xvar = "Wind", partial.xvar2 = "Temp",
partial.values = wind, partial.values2 = x2)

cbind(wind, x2, get.partial.plot.data(o)$yhat)
}))
pdta <- data.frame(pdta)
colnames(pdta) <- c("wind", "temp", "effectSize")

coplot of partial effect of wind and temp
coplot(effectSize ~ wind|temp, pdta, pch = 16, overlap = 0)

--
##
regression: partial effects for three variables simultaneously
(can be slow, so modify accordingly)
##
--

n <- 1000
x <- matrix(rnorm(n * 3), ncol = 3)
y <- x[, 1] + x[, 1] * x[, 2] + x[, 1] * x[, 2] * x[, 3]
o <- rfsrc(y ~ ., data = data.frame(y = y, x))

define target x values
x1 <- seq(-3, 3, length = 40)
x2 <- x3 <- seq(-3, 3, length = 10)

extract second order partial effects
pdta <- do.call(rbind,

lapply(x3, function(x3v) {
cat("outer loop x3 = ", x3v, "\n")
do.call(rbind,lapply(x2, function(x2v) {

o <- partial(o,
partial.xvar = "X1",
partial.values = x1,
partial.xvar2 = c("X2", "X3"),
partial.values2 = c(x2v, x3v))

cbind(x1, x2v, x3v, get.partial.plot.data(o)$yhat)

partial.rfsrc 39

}))
}))

pdta <- data.frame(pdta)
colnames(pdta) <- c("x1", "x2", "x3", "effectSize")

coplot of partial effects
coplot(effectSize ~ x1|x2*x3, pdta, pch = 16, overlap = 0)

--
##
classification
##
--

iris.obj <- rfsrc(Species ~., data = iris)

partial effect for sepal length
partial.obj <- partial(iris.obj,

partial.xvar = "Sepal.Length",
partial.values = iris.obj$xvar$Sepal.Length)

extract partial effects for each species outcome
pdta1 <- get.partial.plot.data(partial.obj, target = "setosa")
pdta2 <- get.partial.plot.data(partial.obj, target = "versicolor")
pdta3 <- get.partial.plot.data(partial.obj, target = "virginica")

plot the results
par(mfrow=c(1,1))
plot(pdta1$x, pdta1$yhat, type="b", pch = 16,

xlab = "sepal length", ylab = "adjusted probability",
ylim = range(pdta1$yhat,pdta2$yhat,pdta3$yhat))

points(pdta2$x, pdta2$yhat, col = 2, type = "b", pch = 16)
points(pdta3$x, pdta3$yhat, col = 4, type = "b", pch = 16)
legend("topleft", legend=levels(iris.obj$yvar), fill = c(1, 2, 4))

--
##
survival
##
--

data(veteran, package = "randomForestSRC")
v.obj <- rfsrc(Surv(time,status)~., veteran, nsplit = 10, ntree = 100)

partial effect of age on mortality
partial.obj <- partial(v.obj,

partial.type = "mort",
partial.xvar = "age",
partial.values = v.obj$xvar$age,
partial.time = v.obj$time.interest)

pdta <- get.partial.plot.data(partial.obj)

40 partial.rfsrc

plot(lowess(pdta$x, pdta$yhat, f = 1/3),
type = "l", xlab = "age", ylab = "adjusted mortality")

partial effects of karnofsky score on survival
karno <- quantile(v.obj$xvar$karno)
partial.obj <- partial(v.obj,

partial.type = "surv",
partial.xvar = "karno",
partial.values = karno,
partial.time = v.obj$time.interest)

pdta <- get.partial.plot.data(partial.obj)

matplot(pdta$partial.time, t(pdta$yhat), type = "l", lty = 1,
xlab = "time", ylab = "karnofsky adjusted survival")

legend("topright", legend = paste0("karnofsky = ", karno), fill = 1:5)

--
##
competing risk
##
--

data(follic, package = "randomForestSRC")
follic.obj <- rfsrc(Surv(time, status) ~ ., follic, nsplit = 3, ntree = 100)

partial effect of age on years lost
partial.obj <- partial(follic.obj,

partial.type = "years.lost",
partial.xvar = "age",
partial.values = follic.obj$xvar$age,
partial.time = follic.obj$time.interest)

pdta1 <- get.partial.plot.data(partial.obj, target = 1)
pdta2 <- get.partial.plot.data(partial.obj, target = 2)

par(mfrow=c(2,2))
plot(lowess(pdta1$x, pdta1$yhat),

type = "l", xlab = "age", ylab = "adjusted years lost relapse")
plot(lowess(pdta2$x, pdta2$yhat),

type = "l", xlab = "age", ylab = "adjusted years lost death")

partial effect of age on cif
partial.obj <- partial(follic.obj,

partial.type = "cif",
partial.xvar = "age",
partial.values = quantile(follic.obj$xvar$age),
partial.time = follic.obj$time.interest)

pdta1 <- get.partial.plot.data(partial.obj, target = 1)
pdta2 <- get.partial.plot.data(partial.obj, target = 2)

matplot(pdta1$partial.time, t(pdta1$yhat), type = "l", lty = 1,
xlab = "time", ylab = "age adjusted cif for relapse")

pbc 41

matplot(pdta2$partial.time, t(pdta2$yhat), type = "l", lty = 1,
xlab = "time", ylab = "age adjusted cif for death")

--
##
multivariate mixed outcomes
##
--

mtcars2 <- mtcars
mtcars2$carb <- factor(mtcars2$carb)
mtcars2$cyl <- factor(mtcars2$cyl)
mtcars.mix <- rfsrc(Multivar(carb, mpg, cyl) ~ ., data = mtcars2)

partial effect of displacement for each the three-outcomes
partial.obj <- partial(mtcars.mix,

partial.xvar = "disp",
partial.values = mtcars.mix$xvar$disp)

pdta1 <- get.partial.plot.data(partial.obj, m.target = "carb")
pdta2 <- get.partial.plot.data(partial.obj, m.target = "mpg")
pdta3 <- get.partial.plot.data(partial.obj, m.target = "cyl")

par(mfrow=c(2,2))
plot(lowess(pdta1$x, pdta1$yhat), type = "l", xlab="displacement", ylab="carb")
plot(lowess(pdta2$x, pdta2$yhat), type = "l", xlab="displacement", ylab="mpg")
plot(lowess(pdta3$x, pdta3$yhat), type = "l", xlab="displacement", ylab="cyl")

pbc Primary Biliary Cirrhosis (PBC) Data

Description

Data from the Mayo Clinic trial in primary biliary cirrhosis (PBC) of the liver conducted between
1974 and 1984. A total of 424 PBC patients, referred to Mayo Clinic during that ten-year interval,
met eligibility criteria for the randomized placebo controlled trial of the drug D-penicillamine. The
first 312 cases in the data set participated in the randomized trial and contain largely complete data.

Source

Flemming and Harrington, 1991, Appendix D.1.

References

Flemming T.R and Harrington D.P., (1991) Counting Processes and Survival Analysis. New York:
Wiley.

42 peakVO2

Examples

data(pbc, package = "randomForestSRC")
pbc.obj <- rfsrc(Surv(days, status) ~ ., pbc, nsplit = 3)

peakVO2 Systolic Heart Failure Data

Description

The data involve 2231 patients with systolic heart failure who underwent cardiopulmonary stress
testing at the Cleveland Clinic. The primary end point was all-cause death. In total, 39 variables
were measured for each patient, including baseline clinical values and exercise stress test results. A
key variable of interest is peak VO2 (mL/kg per min), the peak respiratory exchange ratio. More
details regarding the data can be found in Hsich et al. (2011).

References

Hsich E., Gorodeski E.Z.,Blackstone E.H., Ishwaran H. and Lauer M.S. (2011). Identifying impor-
tant risk factors for survival in systolic heart failure patients using random survival forests. Circu-
lation: Cardio. Qual. Outcomes, 4(1), 39-45.

Examples

load the data
data(peakVO2, package = "randomForestSRC")

random survival forest analysis
o <- rfsrc(Surv(ttodead, died)~., peakVO2)
print(o)

partial effect of peak V02 on mortality
partial.o <- partial(o,

partial.type = "mort",
partial.xvar = "peak.vo2",
partial.values = o$xvar$peak.vo2,
partial.time = o$time.interest)

pdta.m <- get.partial.plot.data(partial.o)

partial effect of peak V02 on survival
pvo2 <- quantile(o$xvar$peak.vo2)
partial.o <- partial(o,

partial.type = "surv",
partial.xvar = "peak.vo2",
partial.values = pvo2,
partial.time = o$time.interest)

plot.competing.risk.rfsrc 43

pdta.s <- get.partial.plot.data(partial.o)

compare the two plots
par(mfrow=c(1,2))

plot(lowess(pdta.m$x, pdta.m$yhat, f = 2/3),
type = "l", xlab = "peak VO2", ylab = "adjusted mortality")

rug(o$xvar$peak.vo2)

matplot(pdta.s$partial.time, t(pdta.s$yhat), type = "l", lty = 1,
xlab = "years", ylab = "peak VO2 adjusted survival")

legend("bottomleft", legend = paste0("peak VO2 = ", pvo2),
bty = "n", cex = .75, fill = 1:5)

plot.competing.risk.rfsrc

Plots for Competing Risks

Description

Plot useful summary curves from a random survival forest competing risk analysis.

Usage

S3 method for class 'rfsrc'
plot.competing.risk(x, plots.one.page = FALSE, ...)

Arguments

x An object of class (rfsrc, grow) or (rfsrc, predict).

plots.one.page Should plots be placed on one page?

... Further arguments passed to or from other methods.

Details

Given a random survival forest object from a competing risk analysis (Ishwaran et al. 2014), plots
from top to bottom, left to right: (1) cause-specific cumulative hazard function (CSCHF) for each
event, (2) cumulative incidence function (CIF) for each event, and (3) continuous probability curves
(CPC) for each event (Pepe and Mori, 1993).

Does not apply to right-censored data. Whenever possible, out-of-bag (OOB) values are displayed.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

44 plot.quantreg.rfsrc

References

Ishwaran H., Gerds T.A., Kogalur U.B., Moore R.D., Gange S.J. and Lau B.M. (2014). Random
survival forests for competing risks. Biostatistics, 15(4):757-773.

Pepe, M.S. and Mori, M., (1993). Kaplan-Meier, marginal or conditional probability curves in
summarizing competing risks failure time data? Statistics in Medicine, 12(8):737-751.

See Also

follic, hd, rfsrc, wihs

Examples

--
follicular cell lymphoma
--

data(follic, package = "randomForestSRC")
follic.obj <- rfsrc(Surv(time, status) ~ ., follic, nsplit = 3, ntree = 100)
print(follic.obj)
plot.competing.risk(follic.obj)

--
Hodgkin's Disease
--

data(hd, package = "randomForestSRC")
hd.obj <- rfsrc(Surv(time, status) ~ ., hd, nsplit = 3, ntree = 100)
print(hd.obj)
plot.competing.risk(hd.obj)

--
competing risk analysis of pbc data from the survival package
events are transplant (1) and death (2)
--

if (library("survival", logical.return = TRUE)) {
data(pbc, package = "survival")
pbc$id <- NULL
plot.competing.risk(rfsrc(Surv(time, status) ~ ., pbc))

}

plot.quantreg.rfsrc Plot Quantiles from Quantile Regression Forests

Description

Plots quantiles obtained from a quantile regression forest. Additionally insets the continuous rank
probability score (crps), a useful diagnostic of accuracy.

plot.rfsrc 45

Usage

S3 method for class 'rfsrc'
plot.quantreg(x, prbL = .25, prbU = .75,

m.target = NULL, crps = TRUE, subset = NULL, ...)

Arguments

x A quantile regression object obtained from calling quantreg.
prbL Lower quantile (preferably < .5).
prbU Upper quantile (preferably > .5).
m.target Character value for multivariate families specifying the target outcome to be

used. If left unspecified, the algorithm will choose a default target.
crps Calculate crps and inset it?
subset Restricts plotted values to a subset of the data. Default is to use the entire data.
... Further arguments passed to or from other methods.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

See Also

quantreg.rfsrc

plot.rfsrc Plot Error Rate and Variable Importance from a RF-SRC analysis

Description

Plot out-of-bag (OOB) error rates and variable importance (VIMP) from a RF-SRC analysis. This
is the default plot method for the package.

Usage

S3 method for class 'rfsrc'
plot(x, m.target = NULL,
plots.one.page = TRUE, sorted = TRUE, verbose = TRUE, ...)

Arguments

x An object of class (rfsrc, grow), (rfsrc, synthetic), or (rfsrc, predict).
m.target Character value for multivariate families specifying the target outcome to be

used. If left unspecified, the algorithm will choose a default target.
plots.one.page Should plots be placed on one page?
sorted Should variables be sorted by importance values?
verbose Should VIMP be printed?
... Further arguments passed to or from other methods.

46 plot.rfsrc

Details

Plot cumulative OOB error rates as a function of number of trees and variable importance (VIMP)
if available. Note that the default settings are now such that the error rate is no longer calculated
on every tree and VIMP is only calculated if requested. To get OOB error rates for ever tree, use
the option block.size = 1 when growing or restoring the forest. Likewise, to view VIMP, use the
option importance when growing or restoring the forest.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

References

Breiman L. (2001). Random forests, Machine Learning, 45:5-32.

Ishwaran H. and Kogalur U.B. (2007). Random survival forests for R, Rnews, 7(2):25-31.

Examples

--
classification example
--

iris.obj <- rfsrc(Species ~ ., data = iris,
block.size = 1, importance = TRUE)

plot(iris.obj)

--
competing risk example
--

use the pbc data from the survival package
events are transplant (1) and death (2)
if (library("survival", logical.return = TRUE)) {

data(pbc, package = "survival")
pbc$id <- NULL
plot(rfsrc(Surv(time, status) ~ ., pbc, block.size = 1))

}

--
multivariate mixed forests
--

mtcars.new <- mtcars
mtcars.new$cyl <- factor(mtcars.new$cyl)
mtcars.new$carb <- factor(mtcars.new$carb, ordered = TRUE)
mv.obj <- rfsrc(cbind(carb, mpg, cyl) ~., data = mtcars.new, block.size = 1)
plot(mv.obj, m.target = "carb")
plot(mv.obj, m.target = "mpg")
plot(mv.obj, m.target = "cyl")

plot.subsample.rfsrc 47

plot.subsample.rfsrc Plot Subsampled VIMP Confidence Intervals

Description

Plots VIMP (variable importance) confidence regions obtained from subsampling a forest.

Usage

S3 method for class 'rfsrc'
plot.subsample(x, alpha = .01, xvar.names,
standardize = TRUE, normal = TRUE, jknife = FALSE,
target, m.target = NULL, pmax = 75, main = "", sorted = TRUE, ...)

Arguments

x An object obtained from calling subample.

alpha Desired level of significance.

xvar.names Names of the x-variables to be used. If not specified all variables used.

standardize Standardize VIMP? For regression families, VIMP is standardized by dividing
by the variance and then multipled by 100. For all other families, VIMP is scaled
by 100.

normal Use parametric normal confidence regions or nonparametric regions? Generally,
parametric regions perform better.

jknife Use the delete-d jackknife variance estimator?

target For classification families, an integer or character value specifying the class
VIMP will be conditioned on (default is to use unconditional VIMP). For com-
peting risk families, an integer value between 1 and J indicating the event VIMP
is requested, where J is the number of event types. The default is to use the first
event.

m.target Character value for multivariate families specifying the target outcome to be
used. If left unspecified, the algorithm will choose a default target.

pmax Trims the data to this number of variables (sorted by VIMP).

main Title used for plot.

sorted Should variables be sorted by importance values?

... Further arguments that can be passed to bxp.

Details

Most of the options used by the R function bxp will work here and can be used for customization
of plots. Currently the following parameters will work:

"xaxt", "yaxt", "las", "cex.axis", "col.axis", "cex.main", "col.main", "sub", "cex.sub", "col.sub",
"ylab", "cex.lab", "col.lab"

48 plot.survival.rfsrc

Value

Invisibly, returns the boxplot data that is plotted.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

References

Ishwaran H. and Lu M. (2017). Standard errors and confidence intervals for variable importance in
random forest regression, classification, and survival.

Politis, D.N. and Romano, J.P. (1994). Large sample confidence regions based on subsamples under
minimal assumptions. The Annals of Statistics, 22(4):2031-2050.

Shao, J. and Wu, C.J. (1989). A general theory for jackknife variance estimation. The Annals of
Statistics, 17(3):1176-1197.

See Also

subsample.rfsrc

Examples

o <- rfsrc(Ozone ~ ., airquality)
oo <- subsample(o)
plot.subsample(oo)
plot.subsample(oo, xvar.names = o$xvar.names[1:3])
plot.subsample(oo, jknife = FALSE)
plot.subsample(oo, alpha = .01)
plot(oo,cex.axis=.5)

plot.survival.rfsrc Plot of Survival Estimates

Description

Plot various survival estimates.

Usage

S3 method for class 'rfsrc'
plot.survival(x, show.plots = TRUE, subset,
collapse = FALSE, cens.model = c("km", "rfsrc"), ...)

plot.survival.rfsrc 49

Arguments

x An object of class (rfsrc, grow) or (rfsrc, predict).

show.plots Should plots be displayed?

subset Vector indicating which cases from x we want estimates for. All cases used if
not specified.

collapse Collapse the survival function?

cens.model Using the training data, specifies method for estimating the censoring distribu-
tion used in the inverse probability of censoring weights (IPCW) for calculating
the Brier score:

km: Uses the Kaplan-Meier estimator.
rfscr: Uses a censoring random survival forest estimator.

... Further arguments passed to or from other methods.

Details

Produces the following plots (going from top to bottom, left to right):

1. Forest estimated survival function for each individual (thick red line is overall ensemble sur-
vival, thick green line is Nelson-Aalen estimator).

2. Brier score (0=perfect, 1=poor, and 0.25=guessing) stratified by ensemble mortality. Based on
the IPCW method described in Gerds et al. (2006). Stratification is into 4 groups correspond-
ing to the 0-25, 25-50, 50-75 and 75-100 percentile values of mortality. Red line is overall
(non-stratified) Brier score.

3. Continuous rank probability score (CRPS) equal to the integrated Brier score divided by time.

4. Plot of mortality of each individual versus observed time. Points in blue correspond to events,
black points are censored observations. Not given for prediction settings lacking survival
response information.

Whenever possible, out-of-bag (OOB) values are used.

Only applies to survival families. In particular, fails for competing risk analyses. Use plot.competing.risk
in such cases.

Mortality (Ishwaran et al., 2008) represents estimated risk for an individual calibrated to the scale
of number of events (as a specific example, if i has a mortality value of 100, then if all individuals
had the same x-values as i, we would expect an average of 100 events).

The utility function get.brier.survival can be used to extract the Brier score among other useful
quantities.

Value

Invisibly, the conditional and unconditional Brier scores, and the integrated Brier score.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

50 plot.variable.rfsrc

References

Gerds T.A and Schumacher M. (2006). Consistent estimation of the expected Brier score in general
survival models with right-censored event times, Biometrical J., 6:1029-1040.

Graf E., Schmoor C., Sauerbrei W. and Schumacher M. (1999). Assessment and comparison of
prognostic classification schemes for survival data, Statist. in Medicine, 18:2529-2545.

Ishwaran H. and Kogalur U.B. (2007). Random survival forests for R, Rnews, 7(2):25-31.

Ishwaran H., Kogalur U.B., Blackstone E.H. and Lauer M.S. (2008). Random survival forests, Ann.
App. Statist., 2:841-860.

See Also

plot.competing.risk.rfsrc, predict.rfsrc, rfsrc

Examples

veteran data
data(veteran, package = "randomForestSRC")
plot.survival(rfsrc(Surv(time, status)~ ., veteran), cens.model = "rfsrc")

pbc data
data(pbc, package = "randomForestSRC")
pbc.obj <- rfsrc(Surv(days, status) ~ ., pbc)

use subset to focus on specific individuals
plot.survival(pbc.obj, subset = 3)
plot.survival(pbc.obj, subset = c(3, 10))
plot.survival(pbc.obj, subset = c(3, 10), collapse = TRUE)

get.brier.survival function does many nice things!
plot(get.brier.survival(pbc.obj, cens.model="km")$brier.score,type="s", col=2)
lines(get.brier.survival(pbc.obj, cens.model="rfsrc")$brier.score, type="s", col=4)
legend("bottomright", legend=c("cens.model = km", "cens.model = rfsrc"), fill=c(2,4))

plot.variable.rfsrc Plot Marginal Effect of Variables

Description

Plot the marginal effect of an x-variable on the class probability (classification), response (regres-
sion), mortality (survival), or the expected years lost (competing risk). Users can select between
marginal (unadjusted, but fast) and partial plots (adjusted, but slower).

plot.variable.rfsrc 51

Usage

S3 method for class 'rfsrc'
plot.variable(x, xvar.names, target,
m.target = NULL, time, surv.type = c("mort", "rel.freq",
"surv", "years.lost", "cif", "chf"), class.type =
c("prob", "bayes"), partial = FALSE, oob = TRUE,
show.plots = TRUE, plots.per.page = 4, granule = 5, sorted = TRUE,
nvar, npts = 25, smooth.lines = FALSE, subset, ...)

Arguments

x An object of class (rfsrc, grow), (rfsrc, synthetic), or (rfsrc, plot.variable).

xvar.names Names of the x-variables to be used.

target For classification, an integer or character value specifying the class to focus on
(defaults to the first class). For competing risks, an integer value between 1 and
J indicating the event of interest, where J is the number of event types. The
default is to use the first event type.

m.target Character value for multivariate families specifying the target outcome to be
used. If left unspecified, the algorithm will choose a default target.

time For survival, the time at which the predicted survival value is evaluated at (de-
pends on surv.type).

surv.type For survival, specifies the predicted value. See details below.

class.type For classification, specifies the predicted value. See details below.

partial Should partial plots be used?

oob OOB (TRUE) or in-bag (FALSE) predicted values.

show.plots Should plots be displayed?

plots.per.page Integer value controlling page layout.

granule Integer value controlling whether a plot for a specific variable should be treated
as a factor and therefore given as a boxplot. Larger values coerce boxplots.

sorted Should variables be sorted by importance values.

nvar Number of variables to be plotted. Default is all.

npts Maximum number of points used when generating partial plots for continuous
variables.

smooth.lines Use lowess to smooth partial plots.

subset Vector indicating which rows of the x-variable matrix x$xvar to use. All rows
are used if not specified. Do not define subset based on the original data (which
could have been processed due to missing values or for other reasons in the
previous forest call) but define subset based on the rows of x$xvar.

... Further arguments passed to or from other methods.

52 plot.variable.rfsrc

Details

The vertical axis displays the ensemble predicted value, while x-variables are plotted on the hori-
zontal axis.

1. For regression, the predicted response is used.

2. For classification, it is the predicted class probability specified by ‘target’, or the class of
maximum probability depending on ‘class.type’ is set to "prob" or "bayes".

3. For multivariate families, it is the predicted value of the outcome specified by ‘m.target’ and
if that is a classification outcome, by ‘target’.

4. For survival, the choices are:

• Mortality (mort). Mortality (Ishwaran et al., 2008) represents estimated risk for an in-
dividual calibrated to the scale of number of events (as a specific example, if i has a
mortality value of 100, then if all individuals had the same x-values as i, we would expect
an average of 100 events).

• Relative frequency of mortality (rel.freq).
• Predicted survival (surv), where the predicted survival is for the time point specified

using time (the default is the median follow up time).

5. For competing risks, the choices are:

• The expected number of life years lost (years.lost).
• The cumulative incidence function (cif).
• The cumulative hazard function (chf).

In all three cases, the predicted value is for the event type specified by ‘target’. For cif and
chf the quantity is evaluated at the time point specified by time.

For partial plots use ‘partial=TRUE’. Their interpretation are different than marginal plots. The
y-value for a variable X , evaluated at X = x, is

f̃(x) =
1

n

n∑
i=1

f̂(x, xi,o),

where xi,o represents the value for all other variables other than X for individual i and f̂ is the
predicted value. Generating partial plots can be very slow. Choosing a small value for npts can
speed up computational times as this restricts the number of distinct x values used in computing f̃ .

For continuous variables, red points are used to indicate partial values and dashed red lines in-
dicate a smoothed error bar of +/- two standard errors. Black dashed line are the partial values.
Set ‘smooth.lines=TRUE’ for lowess smoothed lines. For discrete variables, partial values are in-
dicated using boxplots with whiskers extending out approximately two standard errors from the
mean. Standard errors are meant only to be a guide and should be interpreted with caution.

Partial plots can be slow. Setting ‘npts’ to a smaller number can help.

For greater customization and computational speed for partial plot calls, consider using the function
partial.rfsrc which provides a direct interface for calculating partial plot data.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

plot.variable.rfsrc 53

References

Friedman J.H. (2001). Greedy function approximation: a gradient boosting machine, Ann. of
Statist., 5:1189-1232.

Ishwaran H., Kogalur U.B. (2007). Random survival forests for R, Rnews, 7(2):25-31.

Ishwaran H., Kogalur U.B., Blackstone E.H. and Lauer M.S. (2008). Random survival forests, Ann.
App. Statist., 2:841-860.

Ishwaran H., Gerds T.A., Kogalur U.B., Moore R.D., Gange S.J. and Lau B.M. (2014). Random
survival forests for competing risks. Biostatistics, 15(4):757-773.

See Also

rfsrc, synthetic.rfsrc, partial.rfsrc, predict.rfsrc

Examples

--
survival/competing risk
--

survival
data(veteran, package = "randomForestSRC")
v.obj <- rfsrc(Surv(time,status)~., veteran, ntree = 100)
plot.variable(v.obj, plots.per.page = 3)
plot.variable(v.obj, plots.per.page = 2, xvar.names = c("trt", "karno", "age"))
plot.variable(v.obj, surv.type = "surv", nvar = 1, time = 200)
plot.variable(v.obj, surv.type = "surv", partial = TRUE, smooth.lines = TRUE)
plot.variable(v.obj, surv.type = "rel.freq", partial = TRUE, nvar = 2)

example of plot.variable calling a pre-processed plot.variable object
p.v <- plot.variable(v.obj, surv.type = "surv", partial = TRUE, smooth.lines = TRUE)
plot.variable(p.v)
p.v$plots.per.page <- 1
p.v$smooth.lines <- FALSE
plot.variable(p.v)

competing risks
data(follic, package = "randomForestSRC")
follic.obj <- rfsrc(Surv(time, status) ~ ., follic, nsplit = 3, ntree = 100)
plot.variable(follic.obj, target = 2)

--
regression
--

airquality
airq.obj <- rfsrc(Ozone ~ ., data = airquality)
plot.variable(airq.obj, partial = TRUE, smooth.lines = TRUE)
plot.variable(airq.obj, partial = TRUE, subset = airq.obj$xvar$Solar.R < 200)

54 predict.rfsrc

motor trend cars
mtcars.obj <- rfsrc(mpg ~ ., data = mtcars)
plot.variable(mtcars.obj, partial = TRUE, smooth.lines = TRUE)

--
classification
--

iris
iris.obj <- rfsrc(Species ~., data = iris)
plot.variable(iris.obj, partial = TRUE)

motor trend cars: predict number of carburetors
mtcars2 <- mtcars
mtcars2$carb <- factor(mtcars2$carb,

labels = paste("carb", sort(unique(mtcars$carb))))
mtcars2.obj <- rfsrc(carb ~ ., data = mtcars2)
plot.variable(mtcars2.obj, partial = TRUE)

--
multivariate regression
--
mtcars.mreg <- rfsrc(Multivar(mpg, cyl) ~., data = mtcars)
plot.variable(mtcars.mreg, m.target = "mpg", partial = TRUE, nvar = 1)
plot.variable(mtcars.mreg, m.target = "cyl", partial = TRUE, nvar = 1)

--
multivariate mixed outcomes
--
mtcars2 <- mtcars
mtcars2$carb <- factor(mtcars2$carb)
mtcars2$cyl <- factor(mtcars2$cyl)
mtcars.mix <- rfsrc(Multivar(carb, mpg, cyl) ~ ., data = mtcars2)
plot.variable(mtcars.mix, m.target = "cyl", target = "4", partial = TRUE, nvar = 1)
plot.variable(mtcars.mix, m.target = "cyl", target = 2, partial = TRUE, nvar = 1)

predict.rfsrc Prediction for Random Forests for Survival, Regression, and Classifi-
cation

Description

Obtain predicted values using a forest. Also returns performance values if the test data contains
y-outcomes.

predict.rfsrc 55

Usage

S3 method for class 'rfsrc'
predict(object,
newdata,
m.target = NULL,
importance = c(FALSE, TRUE, "none", "anti", "permute", "random"),
get.tree = NULL,
block.size = if (any(is.element(as.character(importance),

c("none", "FALSE")))) NULL else 10,
na.action = c("na.omit", "na.impute", "na.random"),
outcome = c("train", "test"),
perf.type = NULL,
proximity = FALSE,
forest.wt = FALSE,
ptn.count = 0,
distance = FALSE,
var.used = c(FALSE, "all.trees", "by.tree"),
split.depth = c(FALSE, "all.trees", "by.tree"), seed = NULL,
do.trace = FALSE, membership = FALSE, statistics = FALSE,

...)

Arguments

object An object of class (rfsrc, grow) or (rfsrc, forest).

newdata Test data. If missing, the original grow (training) data is used.

m.target Character vector for multivariate families specifying the target outcomes to be
used. The default uses all coordinates.

importance Method used for variable importance (VIMP). Also see vimp for more flexibility,
including joint vimp calculations. See holdoutvimp for an alternate importance
measure.

get.tree Vector of integer(s) identifying trees over which the ensembles are calculated
over. By default, uses all trees in the forest. As an example, the user can extract
the ensemble, the VIMP , or proximity from a single tree (or several trees). Note
that block.size will be over-ridden so that it is no larger than the requested
number of trees. See example below illustrating how to extract VIMP for each
tree.

block.size Should the error rate be calculated on every tree? When NULL, it will only be
calculated on the last tree. To view the error rate on every nth tree, set the value
to an integer between 1 and ntree. If importance is requested, VIMP is calcu-
lated in "blocks" of size equal to block.size, thus resulting in a compromise
between ensemble and permutation VIMP.

na.action Missing value action. The default na.omit removes the entire record if any entry
is NA. Selecting ‘na.random’ uses fast random imputation, while ‘na.impute’
uses the imputation method described in rfsrc.

56 predict.rfsrc

outcome Determines whether the y-outcomes from the training data or the test data are
used to calculate the predicted value. The default and natural choice is train
which uses the original training data. Option is ignored when newdata is miss-
ing as the training data is used for the test data in such settings. The option is
also ignored whenever the test data is devoid of y-outcomes. See the details and
examples below for more information.

perf.type Optional character value for requesting metric used for predicted value, variable
importance (VIMP) and error rate. If not specified, values returned are calcu-
lated by the default action used for the family. Currently applicable only to clas-
sification and multivariate classification; allowed values are perf.type="misclass"
(default), perf.type="brier" and perf.type="gmean".

proximity Should proximity between test observations be calculated? Possible choices are
"inbag", "oob", "all", TRUE, or FALSE — but some options may not be valid
and will depend on the context of the predict call. The safest choice is TRUE if
proximity is desired.

distance Should distance between test observations be calculated? Possible choices are
"inbag", "oob", "all", TRUE, or FALSE — but some options may not be valid
and will depend on the context of the predict call. The safest choice is TRUE if
distance is desired.

forest.wt Should the forest weight matrix for test observations be calculated? Choices are
the same as proximity.

ptn.count The number of terminal nodes that each tree in the grow forest should be pruned
back to. The terminal node membership for the pruned forest is returned but no
other action is taken. The default is ptn.count=0 which does no pruning.

var.used Record the number of times a variable is split?

split.depth Return minimal depth for each variable for each case?

seed Negative integer specifying seed for the random number generator.

do.trace Number of seconds between updates to the user on approximate time to com-
pletion.

membership Should terminal node membership and inbag information be returned?

statistics Should split statistics be returned? Values can be parsed using stat.split.

... Further arguments passed to or from other methods.

Details

Predicted values are obtained by "dropping" test data down the trained forest (forest calculated
using training data). Performance values are returned if test data contains y-outcome values. Single
as well as joint VIMP are also returned if requested.

If no test data is provided, the original training data is used, and the code reverts to restore mode
allowing the user to restore the original trained forest. This feature allows extracting outputs from
the forest not asked for in the original grow call.

If ‘outcome="test"’, the predictor is calculated by using y-outcomes from the test data (outcome
information must be present). Terminal nodes from the trained forest are recalculated using y-
outcomes from the test set. This yields a modified predictor in which the topology of the forest is

predict.rfsrc 57

based solely on the training data, but where predicted values are obtained from test data. Error rates
and VIMP are calculated by bootstrapping the test data and using out-of-bagging to ensure unbiased
estimates.

csv=TRUE returns case specific VIMP; cse=TRUE returns case specific error rates. Applies to all
families except survival. These options can also be applied while training.

Value

An object of class (rfsrc, predict), which is a list with the following components:

call The original grow call to rfsrc.

family The family used in the analysis.

n Sample size of test data (depends upon NA values).

ntree Number of trees in the grow forest.

yvar Test set y-outcomes or original grow y-outcomes if none.

yvar.names A character vector of the y-outcome names.

xvar Data frame of test set x-variables.

xvar.names A character vector of the x-variable names.

leaf.count Number of terminal nodes for each tree in the grow forest. Vector of length
ntree.

proximity Symmetric proximity matrix of the test data.

forest The grow forest.

membership Matrix recording terminal node membership for the test data where each column
contains the node number that a case falls in for that tree.

inbag Matrix recording inbag membership for the test data where each column con-
tains the number of times that a case appears in the bootstrap sample for that
tree.

var.used Count of the number of times a variable was used in growing the forest.

imputed.indv Vector of indices of records in test data with missing values.

imputed.data Data frame comprising imputed test data. The first columns are the y-outcomes
followed by the x-variables.

split.depth Matrix (i,j) or array (i,j,k) recording the minimal depth for variable j for case i,
either averaged over the forest, or by tree k.

node.stats Split statistics returned when statistics=TRUE which can be parsed using
stat.split.

err.rate Cumulative OOB error rate for the test data if y-outcomes are present.

importance Test set variable importance (VIMP). Can be NULL.

predicted Test set predicted value.

predicted.oob OOB predicted value (NULL unless ‘outcome="test"’).

quantile Quantile value at probabilities requested.

58 predict.rfsrc

quantile.oob OOB quantile value at probabilities requested (NULL unless ‘outcome="test"’).

++++++++ for classification settings, additionally ++++++++

class In-bag predicted class labels.

class.oob OOB predicted class labels (NULL unless ‘outcome="test"’).

++++++++ for multivariate settings, additionally ++++++++

regrOutput List containing performance values for test multivariate regression responses
(applies only in multivariate settings).

clasOutput List containing performance values for test multivariate categorical (factor) re-
sponses (applies only in multivariate settings).

++++++++ for survival settings, additionally ++++++++

chf Cumulative hazard function (CHF).

chf.oob OOB CHF (NULL unless ‘outcome="test"’).

survival Survival function.

survival.oob OOB survival function (NULL unless ‘outcome="test"’).

time.interest Ordered unique death times.

ndead Number of deaths.

++++++++ for competing risks, additionally ++++++++

chf Cause-specific cumulative hazard function (CSCHF) for each event.

chf.oob OOB CSCHF for each event (NULL unless ‘outcome="test"’).

cif Cumulative incidence function (CIF) for each event.

cif.oob OOB CIF (NULL unless ‘outcome="test"’).

Note

The dimensions and values of returned objects depend heavily on the underlying family and whether
y-outcomes are present in the test data. In particular, items related to performance will be NULL
when y-outcomes are not present. For multivariate families, predicted values, VIMP, error rate,
and performance values are stored in the lists regrOutput and clasOutput which can be extracted
using functions get.mv.error, get.mv.predicted and get.mv.vimp.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

predict.rfsrc 59

References

Breiman L. (2001). Random forests, Machine Learning, 45:5-32.

Ishwaran H., Kogalur U.B., Blackstone E.H. and Lauer M.S. (2008). Random survival forests, Ann.
App. Statist., 2:841-860.

Ishwaran H. and Kogalur U.B. (2007). Random survival forests for R, Rnews, 7(2):25-31.

See Also

holdout.vimp.rfsrc, plot.competing.risk.rfsrc, plot.rfsrc, plot.survival.rfsrc, plot.variable.rfsrc,
rfsrc, rfsrc.fast, stat.split.rfsrc, synthetic.rfsrc, vimp.rfsrc

Examples

--
typical train/testing scenario
--
options(rf.cores=2, mc.cores=2)

data(veteran, package = "randomForestSRC")
train <- sample(1:nrow(veteran), round(nrow(veteran) * 0.80))
veteran.grow <- rfsrc(Surv(time, status) ~ ., veteran[train,], ntree = 10)
veteran.pred <- predict(veteran.grow, veteran[-train,])
print(veteran.grow)
print(veteran.pred)

--
restore mode
- if predict is called without specifying the test data
the original training data is used and the forest is restored
--

first train the forest
airq.obj <- rfsrc(Ozone ~ ., data = airquality)

now we restore it and compare it to the original call
they are identical
predict(airq.obj)
print(airq.obj)

we can retrieve various outputs that were not asked for in
in the original call

here we extract the proximity matrix
prox <- predict(airq.obj, proximity = TRUE)$proximity
print(prox[1:10,1:10])

here we extract the number of times a variable was used to grow
the grow forest
var.used <- predict(airq.obj, var.used = "by.tree")$var.used
print(head(var.used))

60 predict.rfsrc

--
prediction when test data has missing values
--

data(pbc, package = "randomForestSRC")
trn <- pbc[1:312,]
tst <- pbc[-(1:312),]
o <- rfsrc(Surv(days, status) ~ ., trn)

default imputation method used by rfsrc
print(predict(o, tst, na.action = "na.impute"))

random imputation
print(predict(o, tst, na.action = "na.random"))

--
requesting different performance for classification
--

default performance is misclassification
o <- rfsrc(Species~., iris)
print(o)

get (normalized) brier performance
print(predict(o, perf.type = "brier"))

--
vimp for each tree: illustrates get.tree
--

regression analysis but no VIMP
o <- rfsrc(mpg~., mtcars)

now extract VIMP for each tree using get.tree
vimp.tree <- do.call(rbind, lapply(1:o$ntree, function(b) {

predict(o, get.tree = b, importance = TRUE)$importance
}))

boxplot of tree VIMP
boxplot(vimp.tree, outline = FALSE, col = "cyan")
abline(h = 0, lty = 2, col = "red")

summary information of tree VIMP
print(summary(vimp.tree))

extract tree-averaged VIMP using importance=TRUE
remember to set block.size to 1
print(predict(o, importance = TRUE, block.size = 1)$importance)

use direct call to vimp() for tree-averaged VIMP
print(vimp(o, block.size = 1)$importance)

predict.rfsrc 61

--
vimp for just a few trees
illustrates how to get vimp if you have a large data set
--

survival analysis but no VIMP
data(pbc, package = "randomForestSRC")
o <- rfsrc(Surv(days, status) ~ ., pbc, ntree = 2000)

get vimp for a small number of trees
print(predict(o, get.tree=1:250, importance = TRUE)$importance)

--
case-specific vimp
returns VIMP for each case
--

o <- rfsrc(mpg~., mtcars)
op <- predict(o, importance = TRUE, csv = TRUE)
csvimp <- get.mv.csvimp(op, standardize=TRUE)
print(csvimp)

--
case-specific error rate
returns tree-averaged error rate for each case
--

o <- rfsrc(mpg~., mtcars)
op <- predict(o, importance = TRUE, cse = TRUE)
cserror <- get.mv.cserror(op, standardize=TRUE)
print(cserror)

--
predicted probability and predicted class labels are returned
in the predict object for classification analyses
--

data(breast, package = "randomForestSRC")
breast.obj <- rfsrc(status ~ ., data = breast[(1:100),])
breast.pred <- predict(breast.obj, breast[-(1:100),])
print(head(breast.pred$predicted))
print(breast.pred$class)

--
unique feature of randomForestSRC
cross-validation can be used when factor labels differ over
training and test data
--

first we convert all x-variables to factors

62 predict.rfsrc

data(veteran, package = "randomForestSRC")
veteran2 <- data.frame(lapply(veteran, factor))
veteran2$time <- veteran$time
veteran2$status <- veteran$status

split the data into unbalanced train/test data (25/75)
the train/test data have the same levels, but different labels
train <- sample(1:nrow(veteran2), round(nrow(veteran2) * .25))
summary(veteran2[train,])
summary(veteran2[-train,])

train the forest and use this to predict on test data
o.grow <- rfsrc(Surv(time, status) ~ ., veteran2[train,])
o.pred <- predict(o.grow, veteran2[-train ,])
print(o.grow)
print(o.pred)

even harder ... factor level not previously encountered in training
veteran3 <- veteran2[1:3,]
veteran3$celltype <- factor(c("newlevel", "1", "3"))
o2.pred <- predict(o.grow, veteran3)
print(o2.pred)
the unusual level is treated like a missing value but is not removed
print(o2.pred$xvar)

--
example illustrating the flexibility of outcome = "test"
illustrates restoration of forest via outcome = "test"
--

first we train the forest
data(pbc, package = "randomForestSRC")
pbc.grow <- rfsrc(Surv(days, status) ~ ., pbc)

use predict with outcome = TEST
pbc.pred <- predict(pbc.grow, pbc, outcome = "test")

notice that error rates are the same!!
print(pbc.grow)
print(pbc.pred)

note this is equivalent to restoring the forest
pbc.pred2 <- predict(pbc.grow)
print(pbc.grow)
print(pbc.pred)
print(pbc.pred2)

similar example, but with na.action = "na.impute"
airq.obj <- rfsrc(Ozone ~ ., data = airquality, na.action = "na.impute")
print(airq.obj)
print(predict(airq.obj))
... also equivalent to outcome="test" but na.action = "na.impute" required
print(predict(airq.obj, airquality, outcome = "test", na.action = "na.impute"))

predict.rfsrc 63

classification example
iris.obj <- rfsrc(Species ~., data = iris)
print(iris.obj)
print(predict.rfsrc(iris.obj, iris, outcome = "test"))

--
another example illustrating outcome = "test"
unique way to check reproducibility of the forest
--

training step
set.seed(542899)
data(pbc, package = "randomForestSRC")
train <- sample(1:nrow(pbc), round(nrow(pbc) * 0.50))
pbc.out <- rfsrc(Surv(days, status) ~ ., data=pbc[train,])

standard prediction call
pbc.train <- predict(pbc.out, pbc[-train,], outcome = "train")
##non-standard predict call: overlays the test data on the grow forest
pbc.test <- predict(pbc.out, pbc[-train,], outcome = "test")

check forest reproducibilility by comparing "test" predicted survival
curves to "train" predicted survival curves for the first 3 individuals
Time <- pbc.out$time.interest
matplot(Time, t(pbc.train$survival[1:3,]), ylab = "Survival", col = 1, type = "l")
matlines(Time, t(pbc.test$survival[1:3,]), col = 2)

--
... just for _fun_ ...
survival analysis using mixed multivariate outcome analysis
compare the predicted value to RSF
--

train survival forest using pbc data
data(pbc, package = "randomForestSRC")
rsf.obj <- rfsrc(Surv(days, status) ~ ., pbc)
yvar <- rsf.obj$yvar

fit a mixed outcome forest using days and status as y-variables
pbc.mod <- pbc
pbc.mod$status <- factor(pbc.mod$status)
mix.obj <- rfsrc(Multivar(days, status) ~., pbc.mod)

compare oob predicted values
rsf.pred <- rsf.obj$predicted.oob
mix.pred <- mix.obj$regrOutput$days$predicted.oob
plot(rsf.pred, mix.pred)

compare C-index error rate
rsf.err <- get.cindex(yvar$days, yvar$status, rsf.pred)
mix.err <- 1 - get.cindex(yvar$days, yvar$status, mix.pred)
cat("RSF :", rsf.err, "\n")

64 print.rfsrc

cat("multivariate forest:", mix.err, "\n")

print.rfsrc Print Summary Output of a RF-SRC Analysis

Description

Print summary output from a RF-SRC analysis. This is the default print method for the package.

Usage

S3 method for class 'rfsrc'
print(x, outcome.target = NULL, ...)

Arguments

x An object of class (rfsrc, grow), (rfsrc, synthetic), or (rfsrc, predict).

outcome.target Character value for multivariate families specifying the target outcome to be
used. The default is to use the first coordinate from the continuous outcomes
(otherwise if none, the first coordinate from the categorical outcomes).

... Further arguments passed to or from other methods.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

References

Ishwaran H. and Kogalur U.B. (2007). Random survival forests for R, Rnews, 7/2:25-31.

Examples

options(rf.cores=2, mc.cores=2)
iris.obj <- rfsrc(Species ~., data = iris, ntree=10)
print(iris.obj)

quantreg.rfsrc 65

quantreg.rfsrc Quantile Regression Forests

Description

Grows a univariate or multivariate quantile regression forest and returns its conditional quantile and
density values. Can be used for both training and testing purposes.

Usage

S3 method for class 'rfsrc'
quantreg(formula, data, object, newdata,
method = "local", splitrule = NULL, prob = NULL, prob.epsilon = NULL,
oob = TRUE, fast = FALSE, maxn = 1e3, ...)

Arguments

formula A symbolic description of the model to be fit. Must be specified unless object
is given.

data Data frame containing the y-outcome and x-variables in the model. Must be
specified unless object is given.

object (Optional) A previously grown quantile regression forest.
newdata (Optional) Test data frame used for prediction. Note that prediction on test data

must always be done with the quantreg function and not the predict function.
See example below.

method Method used to calculate quantiles. Three methods are provided: (1) A varia-
tion of the method used in Meinshausen (2006) based on forest weight (method
= "forest"); (2) The Greenwald-Khanna algorithm, suited for big data, and
specified by any one of the following: "gk", "GK", "G-K", "g-k"; (3) The de-
fault method, method = "local", which uses the local adjusted cdf approach of
Zhang et al. (2019). This does not rely on forest weights and is reasonably fast.
See below for further discussion.

splitrule The default action is local adaptive quantile regression splitting, but this can
be over-ridden by the user. Not applicable to multivariate forests. See details
below.

prob Target quantile probabilities when training. If left unspecified, uses percentiles
(1 through 99) for method = "forest", and for Greenwald-Khanna selects equally
spaced percentiles optimized for accuracy (see below).

prob.epsilon Greenwald-Khanna allowable error for quantile probabilities when training.
oob Return OOB (out-of-bag) quantiles? If false, in-bag values are returned.
fast Use fast random forests, rfsrc.fast, in place of rfsrc? Improves speed but

may be less accurate.
maxn Maximum number of unique y training values used when calculating the condi-

tional density.
... Further arguments to be passed to the rfsrc function used for fitting the quantile

regression forest.

66 quantreg.rfsrc

Details

The most common method for calculating RF quantiles uses the method described in Meinshausen
(2006) using forest weights. The forest weights method employed here (specified using method="forest"),
however differs in that quantiles are estimated using a weighted local cumulative distribution func-
tion estimator. For this reason, results may differ from Meinshausen (2006). Moreover, results may
also differ as the default splitting rule uses local adaptive quantile regression splitting instead of
CART regression mean squared splitting which was used by Meinshausen (2006). Note that local
adaptive quantile regression splitting is not available for multivariate forests which reverts to the
default multivariate composite splitting rule. In multivariate regression, users however do have the
option to over-ride this using Mahalanobis splitting by setting splitrule="mahalanobis"

A second method for estimating quantiles uses the Greenwald-Khanna (2001) algorithm (invoked
by method="gk", "GK", "G-K" or "g-k"). While this will not be as accurate as forest weights, the
high memory efficiency of Greenwald-Khanna makes it feasible to implement in big data settings
unlike forest weights.

The Greenwald-Khanna algorithm is implemented roughly as follows. To form a distribution of
values for each case, from which we sample to determine quantiles, we create a chain of values
for the case as we grow the forest. Every time a case lands in a terminal node, we insert all of its
co-inhabitants to its chain of values.

The best case scenario is when tree node size is 1 because each case gets only one insert into its
chain for that tree. The worst case scenario is when node size is so large that trees stump. This is
because each case receives insertions for the entire in-bag population.

What the user needs to know is that Greenwald-Khanna can become slow in counter-intutive settings
such as when node size is large. The easy fix is to change the epsilon quantile approximation that
is requested. You will see a significant speed-up just by doubling prob.epsilon. This is because
the chains stay a lot smaller as epsilon increases, which is exactly what you want when node sizes
are large. Both time and space requirements for the algorithm are affected by epsilon.

The best results for Greenwald-Khanna come from setting the number of quantiles equal to 2 times
the sample size and epsilon to 1 over 2 times the sample size which is the default values used if left
unspecified. This will be slow, especially for big data, and less stringent choices should be used if
computational speed is of concern.

Finally, the default method, method="local", implements the locally adjusted cdf estimator of Zhang
et al. (2019). This does not use forest weights and is reasonably fast and can be used for large
data. However, this relies on the assumption of homogeneity of the error distribution, i.e. that
errors are iid and therefore have equal variance. While this is reasonably robust to departures of
homogeneity, there are instances where this may perform poorly; see Zhang et al. (2019) for details.
If hetereogeneity is suspected we recommend method="forest".

Value

Returns the object quantreg containing quantiles for each of the requested probabilities (which
can be conveniently extracted using get.quantile). Also contains the conditional density (and
conditional cdf) for each case in the training data (or test data if provided) evaluated at each of the
unique grow y-values. The conditional density can be used to calculate conditional moments, such
as the mean and standard deviation. Use get.quantile.stat as a way to conveniently obtain these
quantities.

quantreg.rfsrc 67

For multivariate forests, returned values will be a list of length equal to the number of target out-
comes.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

References

Greenwald M. and Khanna S. (2001). Space-efficient online computation of quantile summaries.
Proceedings of ACM SIGMOD, 30(2):58-66.

Meinshausen N. (2006) Quantile regression forests, Journal of Machine Learning Research, 7:983-
999.

Zhang H., Zimmerman J., Nettleton D. and Nordman D.J. (2019). Random forest prediction inter-
vals. The American Statistician. 4:1-5.

See Also

rfsrc

Examples

--
regression example
--

standard call
o <- quantreg(mpg ~ ., mtcars)

extract conditional quantiles
print(get.quantile(o))
print(get.quantile(o, c(.25, .50, .75)))

extract conditional mean and standard deviation
print(get.quantile.stat(o))

continuous rank probabiliy score (crps) performance
plot(get.quantile.crps(o), type = "l")

--
train/test regression example
--

train (grow) call followed by test call
o <- quantreg(mpg ~ ., mtcars[1:20,])
o.tst <- quantreg(object = o, newdata = mtcars[-(1:20),])

extract test set quantiles and conditional statistics
print(get.quantile(o.tst))

68 quantreg.rfsrc

print(get.quantile.stat(o.tst))

--
quantile regression for Boston Housing using forest method
--

if (library("mlbench", logical.return = TRUE)) {

quantile regression with mse splitting
data(BostonHousing)
o <- quantreg(medv ~ ., BostonHousing, method = "forest", nodesize = 1)

continuous rank probabiliy score (crps)
plot(get.quantile.crps(o), type = "l")

quantile regression plot
plot.quantreg(o, .05, .95)
plot.quantreg(o, .25, .75)

(A) extract 25,50,75 quantiles
quant.dat <- get.quantile(o, c(.25, .50, .75))

(B) values expected under normality
quant.stat <- get.quantile.stat(o)
c.mean <- quant.stat$mean
c.std <- quant.stat$std
q.25.est <- c.mean + qnorm(.25) * c.std
q.75.est <- c.mean + qnorm(.75) * c.std

compare (A) and (B)
print(head(data.frame(quant.dat[, -2], q.25.est, q.75.est)))

}

--
multivariate mixed outcomes example
quantiles are only returned for the continous outcomes
--

dta <- mtcars
dta$cyl <- factor(dta$cyl)
dta$carb <- factor(dta$carb, ordered = TRUE)
o <- quantreg(cbind(carb, mpg, cyl, disp) ~., data = dta)

plot.quantreg(o, m.target = "mpg")
plot.quantreg(o, m.target = "disp")

--
multivariate regression example using Mahalanobis splitting
--

quantreg.rfsrc 69

dta <- mtcars
o <- quantreg(cbind(mpg, disp) ~., data = dta, splitrule = "mahal")

plot.quantreg(o, m.target = "mpg")
plot.quantreg(o, m.target = "disp")

--
example of quantile regression for ordinal data
--

use the wine data for illustration
data(wine, package = "randomForestSRC")

run quantile regression
o <- quantreg(quality ~ ., wine, ntree = 100)

extract "probabilities" = density values
qo.dens <- o$quantreg$density
yunq <- o$quantreg$yunq
colnames(qo.dens) <- yunq

convert y to a factor
yvar <- factor(cut(o$yvar, c(-1, yunq), labels = yunq))

confusion matrix
qo.confusion <- get.confusion(yvar, qo.dens)
print(qo.confusion)

normalized Brier score
cat("Brier:", 100 * get.brier.error(yvar, qo.dens), "\n")

--
example of large data using Greenwald-Khanna algorithm
--

load the data and do quick and dirty imputation
data(housing, package = "randomForestSRC")
housing <- impute(SalePrice ~ ., housing,

ntree = 50, nimpute = 1, splitrule = "random")

Greenwald-Khanna algorithm
request a small number of quantiles
o <- quantreg(SalePrice ~ ., housing, method = "gk",

prob = (1:20) / 20, prob.epsilon = 1 / 20, ntree = 250)
plot.quantreg(o)

--
using mse splitting with local cdf method for large data
--

load the data and do quick and dirty imputation
data(housing, package = "randomForestSRC")

70 rfsrc

housing <- impute(SalePrice ~ ., housing,
ntree = 50, nimpute = 1, splitrule = "random")

use mse splitting and reduce number of trees
o <- quantreg(SalePrice ~ ., housing, splitrule = "mse", ntree = 250)
plot.quantreg(o)

rfsrc Fast Unified Random Forests for Survival, Regression, and Classifica-
tion (RF-SRC)

Description

Fast OpenMP parallel computing of random forests (Breiman 2001) for regression, classification,
survival analysis (Ishwaran et al. 2008), competing risks (Ishwaran et al. 2012), multivariate
(Segal and Xiao 2011), unsupervised (Mantero and Ishwaran 2020), quantile regression (Mein-
hausen 2006, Zhang et al. 2019, Greenwald-Khanna 2001), and class imbalanced q-classification
(O’Brien and Ishwaran 2019). Different splitting rules invoked under deterministic or random split-
ting (Geurts et al. 2006, Ishwaran 2015) are available for all families. Different types of variable
importance (VIMP), holdout VIMP, as well as confidence regions (Ishwaran and Lu 2019) can be
calculated for single and grouped variables. Minimal depth variable selection (Ishwaran et al. 2010,
2011). Fast interface for missing data imputation using a variety of different random forest methods
(Tang and Ishwaran 2017).

New items to be aware of:

1. For computational speed, the default VIMP is no longer "permute" (Breiman-Cutler permuta-
tion importance) and has been switched to "anti" (importance="anti", importance=TRUE;
see below for details). Be aware in some situations, such as highly imbalanced classifi-
cation, that permutation VIMP may perform better. Permutation VIMP is obtained using
importance="permute".

2. save.memory can be used for big data to save memory; especially useful for survival and
competing risks.

3. Mahalanobis splitting for multivariate regression with correlated y-outcomes (splitrule="mahalanobis").
Now allows for a user specified covariance matrix.

4. Visualize trees on your Safari or Google Chrome browser (works for all families). See
get.tree.

This is the main entry point to the randomForestSRC package. For more information about this
package and OpenMP parallel processing, use the command package?randomForestSRC.

rfsrc 71

Usage

rfsrc(formula, data, ntree = 500,
mtry = NULL, ytry = NULL,
nodesize = NULL, nodedepth = NULL,
splitrule = NULL, nsplit = NULL,
importance = c(FALSE, TRUE, "none", "anti", "permute", "random"),
block.size = if (any(is.element(as.character(importance),

c("none", "FALSE")))) NULL else 10,
bootstrap = c("by.root", "none", "by.user"),
samptype = c("swor", "swr"), samp = NULL, membership = FALSE,
sampsize = if (samptype == "swor") function(x){x * .632} else function(x){x},
na.action = c("na.omit", "na.impute"), nimpute = 1,
ntime = 150, cause,
perf.type = NULL,
proximity = FALSE, distance = FALSE, forest.wt = FALSE,
xvar.wt = NULL, yvar.wt = NULL, split.wt = NULL, case.wt = NULL,
forest = TRUE,
save.memory = FALSE,
var.used = c(FALSE, "all.trees", "by.tree"),
split.depth = c(FALSE, "all.trees", "by.tree"),
seed = NULL,
do.trace = FALSE,
statistics = FALSE,
...)

convenient interface for growing a CART tree
rfsrc.cart(formula, data, ntree = 1, mtry = ncol(data), bootstrap = "none", ...)

Arguments

formula Object of class ’formula’ describing the model to fit. Interaction terms are not
supported. If missing, unsupervised splitting is implemented.

data Data frame containing the y-outcome and x-variables.

ntree Number of trees.

mtry Number of variables to possibly split at each node. Default is number of vari-
ables divided by 3 for regression. For all other families (including unsupervised
settings), the square root of number of variables. Values are rounded up.

ytry The number of randomly selected pseudo-outcomes for unsupervised families
(see details below). Default is ytry=1.

nodesize Minumum size of terminal node. The defaults are: survival (15), competing risk
(15), regression (5), classification (1), mixed outcomes (3), unsupervised (3). It
is recommended to experiment with different nodesize values.

nodedepth Maximum depth to which a tree should be grown. Parameter is ignored by
default.

splitrule Splitting rule (see below).

72 rfsrc

nsplit Non-negative integer specifying number of random splits for splitting a vari-
able. When zero, all split values are used (deterministic splitting), which can be
slower. By default 10 is used.

importance Method for computing variable importance (VIMP); see below. Default action is
importance="none" but VIMP can be recovered later using vimp or predict.

block.size Determines how cumulative error rate is calculated. When NULL, only done once
for entire forest; thus plot of the cumulative error rate will result in a flat line.
To view the cumulative error rate on every nth tree, set the value to an integer
between 1 and ntree. As an intended side effect, if importance is requested,
VIMP is calculated in "blocks" of size equal to block.size, thus resulting in a
compromise between ensemble and tree VIMP. The default action in that case is
to use 10 trees.

bootstrap Bootstrap protocol. Default is by.root which bootstraps the data by sampling
with or without replacement (without replacement is the default; see the option
samptype below). If none, the data is not bootstrapped (it is not possible to
return OOB ensembles or prediction error in this case). If by.user, the bootstrap
specified by samp is used.

samptype Type of bootstrap used when by.root is in effect. Choices are swor (sampling
without replacement; the default) and swr (sampling with replacement).

samp Bootstrap specification when by.user is in effect. Array of dim n x ntree spec-
ifying how many times each record appears inbag in the bootstrap for each tree.

membership Should terminal node membership and inbag information be returned?

sampsize Function specifying bootstrap size when by.root is in effect. For sampling
without replacement, it is the requested size of the sample, which by default is
.632 times the sample size. For sampling with replacement, it is the sample size.
Can also be specified using a number.

na.action Action taken if the data contains NA’s. Possible values are na.omit or na.impute.
The default na.omit removes the entire record if any entry is NA. Selecting
na.impute imputes the data (see below for details). Also see the function
impute for fast imputation.

nimpute Number of iterations of the missing data algorithm. Performance measures such
as out-of-bag (OOB) error rates are optimistic if nimpute is greater than 1.

ntime Integer value used for survival to constrain ensemble calculations to an ntime
grid of time points over the observed event times. Alternatively if a vector of
values of length greater than one is supplied, it is assumed these are the time
points to be used (these will be adjusted to match closest observed event times).
Setting ntime to zero (or NULL) uses all observed event times.

cause Integer value between 1 and J indicating the event of interest for splitting a node
for competing risks, where J is the number of event types. If not specified, the
default is to use a composite splitting rule that averages over all event types.
Can also be a vector of non-negative weights of length J specifying weights for
each event (for example, a vector of ones reverts to the default composite split
statistic). Regardless of how cause is specified, estimates for all event types are
returned.

rfsrc 73

perf.type Optional character value specifying metric used for predicted value, variable im-
portance (VIMP), and error rate. Reverts to the family default metric if not speci-
fied. perf.type="none" turns off performance entirely which is a useful way to
turn off C-index calculations for big survival data (which can be expensive). Val-
ues allowed for univariate/multivariate classification are: perf.type="misclass"
(default), perf.type="brier" and perf.type="gmean".

proximity Proximity of cases as measured by the frequency of sharing the same terminal
node. This is an nxn matrix, which can be large. Choices are inbag, oob,
all, TRUE, or FALSE. Setting proximity = TRUE is equivalent to proximity =
"inbag".

distance Distance between cases as measured by the ratio of the sum of the count of
edges from each case to their immediate common ancestor node to the sum of
the count of edges from each case to the root node. If the cases are co-terminal
for a tree, this measure is zero and reduces to 1 - the proximity measure. This
is an nxn matrix, which can be large. Choices are inbag, oob, all, TRUE, or
FALSE. Setting distance = TRUE is equivalent to distance = "inbag".

forest.wt Calculate the forest weight matrix? Creates an nxn matrix which can be used for
prediction and constructing customized estimators. Choices are similar to prox-
imity: inbag, oob, all, TRUE, or FALSE. The default is TRUE which is equivalent
to inbag.

xvar.wt Vector of non-negative weights (does not have to sum to 1) representing the
probability of selecting a variable for splitting. Default is uniform weights.

yvar.wt Used for sending in features with custom splitting. For expert use only.

split.wt Vector of non-negative weights used for multiplying the split statistic for a vari-
able. A large value encourages the node to split on a specific variable. Default
is uniform weights.

case.wt Vector of non-negative weights (does not have to sum to 1) for sampling cases.
Observations with larger weights will be selected with higher probability in the
bootstrap (or subsampled) samples. It is generally better to use real weights
rather than integers. See the breast data example below illustrating its use for
class imbalanced data.

forest Save key forest values? Used for prediction on new data and required by many
of the package functions. Turn this off if you are only interested in training a
forest.

save.memory Save memory? Default is to store terminal node quantities used for prediction
on test data. This yields rapid prediction but can be memory intensive for big
data, especially competing risks and survival models. Turn this flag off in those
cases.

var.used Return statistics on number of times a variable split? Default is FALSE. Possible
values are all.trees which returns total number of splits of each variable, and
by.tree which returns a matrix of number a splits for each variable for each
tree.

split.depth Records the minimal depth for each variable. Default is FALSE. Possible val-
ues are all.trees which returns a matrix of the average minimal depth for a

74 rfsrc

variable (columns) for a specific case (rows), and by.tree which returns a three-
dimensional array recording minimal depth for a specific case (first dimension)
for a variable (second dimension) for a specific tree (third dimension).

seed Negative integer specifying seed for the random number generator.

do.trace Number of seconds between updates to the user on approximate time to com-
pletion.

statistics Should split statistics be returned? Values can be parsed using stat.split.

... Further arguments passed to or from other methods.

Details

1. Types of forests
There is no need to set the type of forest as the package automagically determines the under-
lying random forest requested from the type of outcome and the formula supplied. There are
several possible scenarios:

(a) Regression forests for continuous outcomes.
(b) Classification forests for factor outcomes.
(c) Multivariate forests for continuous and/or factor outcomes and for mixed (both type) of

outcomes.
(d) Unsupervised forests when there is no outcome.
(e) Survival forests for right-censored survival.
(f) Competing risk survival forests for competing risk.

2. Splitting

(a) Splitting rules are specified by the option splitrule.
(b) For all families, pure random splitting can be invoked by setting splitrule="random".
(c) For all families, computational speed can be increased using randomized splitting invoked

by the option nsplit. See Improving Computational Speed.

3. Available splitting rules

• Regression analysis:
(a) splitrule="mse" (default split rule): weighted mean-squared error splitting (Breiman

et al. 1984, Chapter 8.4).
(b) splitrule="quantile.regr": quantile regression splitting via the "check-loss" func-

tion. Requires specifying the target quantiles. See quantreg.rfsrc for further de-
tails.

(c) la.quantile.regr: local adaptive quantile regression splitting. See quantreg.rfsrc.
• Classification analysis:

(a) splitrule="gini" (default splitrule): Gini index splitting (Breiman et al. 1984,
Chapter 4.3).

(b) splitrule="auc": AUC (area under the ROC curve) splitting for both two-class
and multiclass setttings. AUC splitting is appropriate for imbalanced data. See
imbalanced for more information.

(c) splitrule="entropy": entropy splitting (Breiman et al. 1984, Chapter 2.5, 4.3).
• Survival analysis:

rfsrc 75

(a) splitrule="logrank" (default splitrule): log-rank splitting (Segal, 1988; Leblanc
and Crowley, 1993).

(b) splitrule="bs.gradient": gradient-based (global non-quantile) brier score split-
ting. The time horizon used for the Brier score is set to the 90th percentile of the
observed event times. This can be over-ridden by the option prob, which must be a
value between 0 and 1 (set to .90 by default).

(c) splitrule="logrankscore": log-rank score splitting (Hothorn and Lausen, 2003).
• Competing risk analysis (for details see Ishwaran et al., 2014):

(a) splitrule="logrankCR" (default splitrule): modified weighted log-rank splitting
rule modeled after Gray’s test (Gray, 1988). Use this to find *all* variables that are
informative and when the goal is long term prediction.

(b) splitrule="logrank": weighted log-rank splitting where each event type is treated
as the event of interest and all other events are treated as censored. The split rule is
the weighted value of each of log-rank statistics, standardized by the variance. Use
this to find variables that affect a *specific* cause of interest and when the goal is
a targeted analysis of a specific cause. However in order for this to be effective,
remember to set the cause option to the targeted cause of interest. See examples
below.

• Multivariate analysis:
(a) Default is the multivariate normalized composite split rule using mean-squared error

and Gini index (Tang and Ishwaran, 2017).
(b) splitrule="mahalanobis": Mahalanobis splitting that adjusts for correlation (also

allows for a user specified covariance matrix, see example below). Only works for
multivariate regression (all outcomes must be real).

• Unsupervised analysis: In settings where there is no outcome, unsupervised splitting that
uses pseudo-outcomes is applied using the default multivariate splitting rule (see below
for details) Also see sidClustering for a more sophisticated method for unsupervised
analysis (Mantero and Ishwaran, 2020).

• Custom splitting: All families except unsupervised are available for user defined custom
splitting. Some basic C-programming skills are required. The harness for defining these
rules is in splitCustom.c. In this file we give examples of how to code rules for regres-
sion, classification, survival, and competing risk. Each family can support up to sixteen
custom split rules. Specifying splitrule="custom" or splitrule="custom1" will trig-
ger the first split rule for the family defined by the training data set. Multivariate families
will need a custom split rule for both regression and classification. In the examples, we
demonstrate how the user is presented with the node specific membership. The task is
then to define a split statistic based on that membership. Take note of the instructions in
splitCustom.c on how to register the custom split rules. It is suggested that the exist-
ing custom split rules be kept in place for reference and that the user proceed to develop
splitrule="custom2" and so on. The package must be recompiled and installed for the
custom split rules to become available.

4. Improving computational speed
See the function rfsrc.fast for a fast implementation of rfsrc. Key methods for increasing
speed are as follows:

• Nodesize
Increasing nodesize has the greatest effect in speeding calculations. In some big data
settings this can also lead to better prediction performance.

76 rfsrc

• Save memory
Use option save.memory="TRUE" for big data competing risk and survival models. By
default the package stores terminal node quantities to be used in prediction for test data
but this can be memory intensive for big data.

• Block size
Make sure block.size="NULL" (or set to number of trees) so that the cumulative error is
calculated only once.

• Turn off performace
The C-index error rate calculation can be very expensive for big survival data. Set
perf.type="none" to turn this off and all other performance calculations (then consider
using the function get.brier.survival as a fast way to get survival performance).
perf.type="none" applies to all other families as well.

• Randomized splitting rules
Set nsplit to a small non-zero integer value. Then a maximum of nsplit split points are
chosen randomly for each of the candidate splitting variables when splitting a tree node,
thus significantly reducing computational costs.
For more details about randomized splitting see Loh and Shih (1997), Dietterich (2000),
and Lin and Jeon (2006). Geurts et al. (2006) introduced extremely randomized trees us-
ing the extra-trees algorithm. This algorithm corresponds to nsplit=1. In our experience
however this may be too low for general use (Ishwaran, 2015).
For completely randomized (pure random) splitting use splitrule="random". In pure
splitting, nodes are split by randomly selecting a variable and randomly selecting its split
point (Cutler and Zhao, 2001).

• Subsampling
Reduce the size of the bootstrap using sampsize and samptype. See rfsrc.fast for a
fast forest implementation using subsampling.

• Unique time points
Setting ntime to a reasonably small value such as 50 constrains survival ensemble calcu-
lations to a restricted grid of time points and significantly improves computational times.

• Large number of variables
Try filtering variables ahead of time. Make sure not to request VIMP (variable impor-
tance can always be recovered later using vimp or predict). Also if variable selection
is desired, but is too slow, consider using max.subtree which calculates minimal depth,
a measure of the depth that a variable splits, and yields fast variable selection (Ishwaran,
2010).

5. Prediction Error
Prediction error is calculated using OOB data. The metric used is mean-squared-error for
regression, and misclassification error for classification. A normalized Brier score (relative
to a coin-toss) and the AUC (area under the ROC curve) is also provided upon printing a
classification forest. Performance for Brier score can be specified using perf.type="brier".
G-mean performance is also available, see the function imbalanced for more details.
For survival, prediction error is measured by 1-C, where C is Harrell’s (Harrell et al., 1982)
concordance index. Prediction error is between 0 and 1, and measures how well the predictor
correctly ranks (classifies) two random individuals in terms of survival. A value of 0.5 is no
better than random guessing. A value of 0 is perfect.
When bootstrapping is by none, a coherent OOB subset is not available to assess prediction
error. Thus, all outputs dependent on this are suppressed. In such cases, prediction error

rfsrc 77

is only available via classical cross-validation (the user will need to use the predict.rfsrc
function).

6. Variable Importance (VIMP)
VIMP is calculated using OOB data in several ways. importance="permute" yields permu-
tation VIMP (Breiman-Cutler importance) by permuting OOB cases. importance="random"
uses random left/right assignments whenever a split is encountered for the target variable.
The default importance="anti" (equivalent to importance=TRUE) assigns cases to the anti
(opposite) split.
VIMP depends upon block.size, an integer value between 1 and ntree, specifying number
of trees in a block used for VIMP. When block.size=1, VIMP is calculated for each tree.
When block.size="ntree", VIMP is calculated for the entire forest by comparing the per-
turbed OOB forest ensemble (using all trees) to the unperturbed OOB forest ensemble (using
all trees). This yields ensemble VIMP, which does not measure the tree average effect of a
variable, but rather its overall forest effect.
A useful compromise between tree VIMP and ensemble VIMP can be obtained by setting
block.size to a value between 1 and ntree. Smaller values generally gives better accuracy,
however computational times will be higher because VIMP is calculated over more blocks.
However, see imbalanced for imbalanced classification data where larger block.size often
works better (O’Brien and Ishwaran, 2019).
See vimp for a user interface for extracting VIMP and subsampling for calculating confidence
intervals for VIMP.
Also see holdout.vimp for holdout VIMP, which calculates importance by holding out vari-
ables. This is more conservative, but with good false discovery properties.
For classification, VIMP is returned as a matrix with J+1 columns where J is the number of
classes. The first column "all" is the unconditional VIMP, while the remaining columns are
conditional VIMP calculated using only OOB cases with the class label.

7. Multivariate Forests
Multivariate forests can be specified in two ways:
rfsrc(Multivar(y1, y2, ..., yd) ~ . , my.data, ...)
rfsrc(cbind(y1, y2, ..., yd) ~ . , my.data, ...)
By default, a multivariate normalized composite splitting rule is used to split nodes (for mul-
tivariate regression, users have the option to use Mahalanobis splitting).
The nature of the outcomes informs the code as to what type of multivariate forest is grown;
i.e. whether it is real-valued, categorical, or a combination of both (mixed). Performance
measures (when requested) are returned for all outcomes.
Helper functions get.mv.formula, get.mv.predicted, get.mv.error can be used for defin-
ing the multivariate forest formula and extracting predicted values (all outcomes) and VIMP
(all variables, all outcomes; assuming importance was requested in the call). The latter two
functions also work for univariate (regular) forests. Both functions return standardized val-
ues (dividing by the variance for regression, or multiplying by 100, otherwise) using option
standardize="TRUE".

8. Unsupervised Forests and sidClustering
See sidClustering sidClustering for a more sophisticated method for unsupervised analysis.
Otherwise a more direct (but naive) way to proceed is to use the unsupervised splitting rule.
The following are equivalent ways to grow an unsupervised forest via unsupervised splitting:

78 rfsrc

rfsrc(data = my.data)
rfsrc(Unsupervised() ~ ., data = my.data)
In unsupervised mode, features take turns acting as target y-outcomes and x-variables for
splitting. Specifically, mtry x-variables are randomly selected for splitting the node. Then for
each mtry feature, ytry variables are selected from the remaining features to act as the target
pseduo-outcomes. Splitting uses the multivariate normalized composite splitting rule.
The default value of ytry is 1 but can be increased. As illustration, the following equivalent
unsupervised calls set mtry=10 and ytry=5:
rfsrc(data = my.data, ytry = 5, mtry = 10)
rfsrc(Unsupervised(5) ~ ., my.data, mtry = 10)
Note that all performance values (error rates, VIMP, prediction) are turned off in unsupervised
mode.

9. Survival, Competing Risks

(a) Survival settings require a time and censoring variable which should be identifed in the
formula as the outcome using the standard Surv formula specification. A typical formula
call looks like:
Surv(my.time, my.status) ~ .
where my.time and my.status are the variables names for the event time and status
variable in the users data set.

(b) For survival forests (Ishwaran et al. 2008), the censoring variable must be coded as a
non-negative integer with 0 reserved for censoring and (usually) 1=death (event).

(c) For competing risk forests (Ishwaran et al., 2013), the implementation is similar to sur-
vival, but with the following caveats:

• Censoring must be coded as a non-negative integer, where 0 indicates right-censoring,
and non-zero values indicate different event types. While 0,1,2,..,J is standard,
and recommended, events can be coded non-sequentially, although 0 must always be
used for censoring.

• Setting the splitting rule to logrankscore will result in a survival analysis in which
all events are treated as if they are the same type (indeed, they will coerced as such).

• Generally, competing risks requires a larger nodesize than survival settings.

10. Missing data imputation
na.action="na.impute" imputes missing data (both x and y-variables) using the missing
data algorithm of Ishwaran et al. (2008). But also see the impute for an alternate way to do
fast and accurate imputation.
The missing data algorithm can be iterated by setting nimpute to a positive integer greater
than 1. When iterated, at the completion of each iteration, missing data is imputed using OOB
non-missing terminal node data which is then used as input to grow a new forest. A side effect
of iteration is that missing values in the returned objects xvar, yvar are replaced by imputed
values. In other words the incoming data is overlaid with the missing data. Also, performance
measures such as error rates and VIMP become optimistically biased.
Records in which all outcome and x-variable information are missing are removed from the
forest analysis. Variables having all missing values are also removed.

11. Allowable data types and factors
Data types must be real valued, integer, factor or logical – however all except factors are
coerced and treated as if real valued. For ordered x-variable factors, splits are similar to real

rfsrc 79

valued variables. For unordered factors, a split will move a subset of the levels in the parent
node to the left daughter, and the complementary subset to the right daughter. All possible
complementary pairs are considered and apply to factors with an unlimited number of levels.
However, there is an optimization check to ensure number of splits attempted is not greater
than number of cases in a node or the value of nsplit.
For coherence, an immutable map is applied to each factor that ensures factor levels in the
training data are consistent with the factor levels in any subsequent test data. This map is
applied to each factor before and after the native C library is executed. Because of this, if all
x-variables all factors, then computational time will be long in high dimensional problems.
Consider converting factors to real if this is the case.

Value

An object of class (rfsrc, grow) with the following components:

call The original call to rfsrc.

family The family used in the analysis.

n Sample size of the data (depends upon NA’s, see na.action).

ntree Number of trees grown.

mtry Number of variables randomly selected for splitting at each node.

nodesize Minimum size of terminal nodes.

nodedepth Maximum depth allowed for a tree.

splitrule Splitting rule used.

nsplit Number of randomly selected split points.

yvar y-outcome values.

yvar.names A character vector of the y-outcome names.

xvar Data frame of x-variables.

xvar.names A character vector of the x-variable names.

xvar.wt Vector of non-negative weights specifying the probability used to select a vari-
able for splitting a node.

split.wt Vector of non-negative weights specifying multiplier by which the split statistic
for a covariate is adjusted.

cause.wt Vector of weights used for the composite competing risk splitting rule.

leaf.count Number of terminal nodes for each tree in the forest. Vector of length ntree. A
value of zero indicates a rejected tree (can occur when imputing missing data).
Values of one indicate tree stumps.

proximity Proximity matrix recording the frequency of pairs of data points occur within
the same terminal node.

forest If forest=TRUE, the forest object is returned. This object is used for prediction
with new test data sets and is required for other R-wrappers.

forest.wt Forest weight matrix.

membership Matrix recording terminal node membership where each column records node
mebership for a case for a tree (rows).

80 rfsrc

splitrule Splitting rule used.

inbag Matrix recording inbag membership where each column contains the number of
times that a case appears in the bootstrap sample for a tree (rows).

var.used Count of the number of times a variable is used in growing the forest.

imputed.indv Vector of indices for cases with missing values.

imputed.data Data frame of the imputed data. The first column(s) are reserved for the y-
outcomes, after which the x-variables are listed.

split.depth Matrix (i,j) or array (i,j,k) recording the minimal depth for variable j for case i,
either averaged over the forest, or by tree k.

node.stats Split statistics returned when statistics=TRUE which can be parsed using
stat.split.

err.rate Tree cumulative OOB error rate.

err.block.rate When importance=TRUE, vector of the cumulative error rate for each ensemble
block comprised of block.size trees. So with block.size = 10, entries are the
cumulative error rate for the first 10 trees, the first 20 trees, 30 trees, and so on.
As another exmple, if block.size = 1, entries are the error rate for each tree.

importance Variable importance (VIMP) for each x-variable.

predicted In-bag predicted value.

predicted.oob OOB predicted value.

++++++++ for classification settings, additionally ++++++++

class In-bag predicted class labels.

class.oob OOB predicted class labels.

++++++++ for multivariate settings, additionally ++++++++

regrOutput List containing performance values for multivariate regression outcomes (ap-
plies only in multivariate settings).

clasOutput List containing performance values for multivariate categorical (factor) out-
comes (applies only in multivariate settings).

++++++++ for survival settings, additionally ++++++++

survival In-bag survival function.

survival.oob OOB survival function.

chf In-bag cumulative hazard function (CHF).

chf.oob OOB CHF.

time.interest Ordered unique death times.

ndead Number of deaths.

rfsrc 81

++++++++ for competing risks, additionally ++++++++

chf In-bag cause-specific cumulative hazard function (CSCHF) for each event.

chf.oob OOB CSCHF.

cif In-bag cumulative incidence function (CIF) for each event.

cif.oob OOB CIF.

Note

Values returned depend heavily on the family. In particular, predicted values from the forest
(predicted and predicted.oob) are as follows:

1. For regression, a vector of predicted y-outcomes.

2. For classification, a matrix with columns containing the estimated class probability for each
class. Performance values and VIMP for classification are reported as a matrix with J+1
columns where J is the number of classes. The first column "all" is the unconditional value
for performance (VIMP), while the remaining columns are performance (VIMP) conditioned
on cases corresponding to that class label.

3. For survival, a vector of mortality values (Ishwaran et al., 2008) representing estimated risk for
each individual calibrated to the scale of the number of events (as a specific example, if i has a
mortality value of 100, then if all individuals had the same x-values as i, we would expect an
average of 100 events). Also returned are matrices containing the CHF and survival function.
Each row corresponds to an individual’s ensemble CHF or survival function evaluated at each
time point in time.interest.

4. For competing risks, a matrix with one column for each event recording the expected number
of life years lost due to the event specific cause up to the maximum follow up (Ishwaran
et al., 2013). Also returned are the cause-specific cumulative hazard function (CSCHF)
and the cumulative incidence function (CIF) for each event type. These are encoded as a
three-dimensional array, with the third dimension used for the event type, each time point in
time.interest making up the second dimension (columns), and the case (individual) being
the first dimension (rows).

5. For multivariate families, predicted values (and other performance values such as VIMP and
error rates) are stored in the lists regrOutput and clasOutput which can be extracted using
functions get.mv.error, get.mv.predicted and get.mv.vimp.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

References

Breiman L., Friedman J.H., Olshen R.A. and Stone C.J. (1984). Classification and Regression
Trees, Belmont, California.

Breiman L. (2001). Random forests, Machine Learning, 45:5-32.

Cutler A. and Zhao G. (2001). PERT-Perfect random tree ensembles. Comp. Sci. Statist., 33:
490-497.

82 rfsrc

Dietterich, T. G. (2000). An experimental comparison of three methods for constructing ensembles
of decision trees: bagging, boosting, and randomization. Machine Learning, 40, 139-157.

Gray R.J. (1988). A class of k-sample tests for comparing the cumulative incidence of a competing
risk, Ann. Statist., 16: 1141-1154.

Geurts, P., Ernst, D. and Wehenkel, L., (2006). Extremely randomized trees. Machine learning,
63(1):3-42.

Greenwald M. and Khanna S. (2001). Space-efficient online computation of quantile summaries.
Proceedings of ACM SIGMOD, 30(2):58-66.

Harrell et al. F.E. (1982). Evaluating the yield of medical tests, J. Amer. Med. Assoc., 247:2543-
2546.

Hothorn T. and Lausen B. (2003). On the exact distribution of maximally selected rank statistics,
Comp. Statist. Data Anal., 43:121-137.

Ishwaran H. (2007). Variable importance in binary regression trees and forests, Electronic J. Statist.,
1:519-537.

Ishwaran H. and Kogalur U.B. (2007). Random survival forests for R, Rnews, 7(2):25-31.

Ishwaran H., Kogalur U.B., Blackstone E.H. and Lauer M.S. (2008). Random survival forests, Ann.
App. Statist., 2:841-860.

Ishwaran H., Kogalur U.B., Gorodeski E.Z, Minn A.J. and Lauer M.S. (2010). High-dimensional
variable selection for survival data. J. Amer. Statist. Assoc., 105:205-217.

Ishwaran H., Kogalur U.B., Chen X. and Minn A.J. (2011). Random survival forests for high-
dimensional data. Stat. Anal. Data Mining, 4:115-132

Ishwaran H., Gerds T.A., Kogalur U.B., Moore R.D., Gange S.J. and Lau B.M. (2014). Random
survival forests for competing risks. Biostatistics, 15(4):757-773.

Ishwaran H. and Malley J.D. (2014). Synthetic learning machines. BioData Mining, 7:28.

Ishwaran H. (2015). The effect of splitting on random forests. Machine Learning, 99:75-118.

Lin, Y. and Jeon, Y. (2006). Random forests and adaptive nearest neighbors. J. Amer. Statist.
Assoc., 101(474), 578-590.

Lu M., Sadiq S., Feaster D.J. and Ishwaran H. (2018). Estimating individual treatment effect in
observational data using random forest methods. J. Comp. Graph. Statist, 27(1), 209-219

Ishwaran H. and Lu M. (2019). Standard errors and confidence intervals for variable importance in
random forest regression, classification, and survival. Statistics in Medicine, 38, 558-582.

LeBlanc M. and Crowley J. (1993). Survival trees by goodness of split, J. Amer. Statist. Assoc.,
88:457-467.

Loh W.-Y and Shih Y.-S (1997). Split selection methods for classification trees, Statist. Sinica,
7:815-840.

Mantero A. and Ishwaran H. (2021). Unsupervised random forests. Statistical Analysis and Data
Mining, 14(2):144-167.

Meinshausen N. (2006) Quantile regression forests, Journal of Machine Learning Research, 7:983-
999.

Mogensen, U.B, Ishwaran H. and Gerds T.A. (2012). Evaluating random forests for survival analy-
sis using prediction error curves, J. Statist. Software, 50(11): 1-23.

rfsrc 83

O’Brien R. and Ishwaran H. (2019). A random forests quantile classifier for class imbalanced data.
Pattern Recognition, 90, 232-249

Segal M.R. (1988). Regression trees for censored data, Biometrics, 44:35-47.

Segal M.R. and Xiao Y. Multivariate random forests. (2011). Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery. 1(1):80-87.

Tang F. and Ishwaran H. (2017). Random forest missing data algorithms. Statistical Analysis and
Data Mining, 10:363-377.

Zhang H., Zimmerman J., Nettleton D. and Nordman D.J. (2019). Random forest prediction inter-
vals. The American Statistician. 4:1-5.

See Also

find.interaction.rfsrc,

get.tree.rfsrc,

holdout.vimp.rfsrc,

imbalanced.rfsrc, impute.rfsrc,

max.subtree.rfsrc,

partial.rfsrc, plot.competing.risk.rfsrc, plot.rfsrc, plot.survival.rfsrc, plot.variable.rfsrc,
predict.rfsrc, print.rfsrc,

quantreg.rfsrc,

rfsrc, rfsrc.anonymous, rfsrc.cart, rfsrc.fast,

sidClustering.rfsrc,

stat.split.rfsrc, subsample.rfsrc, synthetic.rfsrc,

tune.rfsrc,

var.select.rfsrc, vimp.rfsrc

Examples

##--
survival analysis
##--
options(rf.cores=2, mc.cores=2)

veteran data
randomized trial of two treatment regimens for lung cancer
data(veteran, package = "randomForestSRC")
v.obj <- rfsrc(Surv(time, status) ~ ., data = veteran,

ntree = 10, block.size = 1)

plot tree number 3
plot(get.tree(v.obj, 3))

print results of trained forest
print(v.obj)

plot results of trained forest

84 rfsrc

plot(v.obj)

plot survival curves for first 10 individuals -- direct way
matplot(v.obj$time.interest, 100 * t(v.obj$survival.oob[1:10,]),

xlab = "Time", ylab = "Survival", type = "l", lty = 1)

plot survival curves for first 10 individuals
using function "plot.survival"
plot.survival(v.obj, subset = 1:10)

obtain Brier score using KM and RSF censoring distribution estimators
bs.km <- get.brier.survival(v.obj, cens.model = "km")$brier.score
bs.rsf <- get.brier.survival(v.obj, cens.model = "rfsrc")$brier.score

plot the brier score
plot(bs.km, type = "s", col = 2)
lines(bs.rsf, type ="s", col = 4)
legend("topright", legend = c("cens.model = km", "cens.model = rfsrc"), fill = c(2,4))

plot CRPS (continuous rank probability score) as function of time
here's how to calculate the CRPS for every time point
trapz <- randomForestSRC:::trapz
time <- v.obj$time.interest
crps.km <- sapply(1:length(time), function(j) {

trapz(time[1:j], bs.km[1:j, 2] / diff(range(time[1:j])))
})
crps.rsf <- sapply(1:length(time), function(j) {

trapz(time[1:j], bs.rsf[1:j, 2] / diff(range(time[1:j])))
})
plot(time, crps.km, ylab = "CRPS", type = "s", col = 2)
lines(time, crps.rsf, type ="s", col = 4)
legend("bottomright", legend=c("cens.model = km", "cens.model = rfsrc"), fill=c(2,4))

fast nodesize optimization for veteran data
optimal nodesize in survival is larger than other families
see the function "tune" for more examples
tune.nodesize(Surv(time,status) ~ ., veteran)

Primary biliary cirrhosis (PBC) of the liver
data(pbc, package = "randomForestSRC")
pbc.obj <- rfsrc(Surv(days, status) ~ ., pbc)
print(pbc.obj)

save.memory example for survival
growing many deep trees creates memory issue without this option!
data(pbc, package = "randomForestSRC")
print(rfsrc(Surv(days, status) ~ ., pbc, splitrule = "random",

ntree = 25000, nodesize = 1, save.memory = TRUE))

rfsrc 85

##--
trees can be plotted for any family
see get.tree for details and more examples
##--

survival where factors have many levels
data(veteran, package = "randomForestSRC")
vd <- veteran
vd$celltype=factor(vd$celltype)
vd$diagtime=factor(vd$diagtime)
vd.obj <- rfsrc(Surv(time,status)~., vd, ntree = 100, nodesize = 5)
plot(get.tree(vd.obj, 3))

classification
iris.obj <- rfsrc(Species ~., data = iris)
plot(get.tree(iris.obj, 25, class.type = "bayes"))
plot(get.tree(iris.obj, 25, target = "setosa"))
plot(get.tree(iris.obj, 25, target = "versicolor"))
plot(get.tree(iris.obj, 25, target = "virginica"))

--
simple example of VIMP using iris classification
--

directly from trained forest
print(rfsrc(Species~.,iris,importance=TRUE)$importance)

VIMP (and performance) use misclassification error by default
but brier prediction error can be requested
print(rfsrc(Species~.,iris,importance=TRUE,perf.type="brier")$importance)

example using vimp function (see vimp help file for details)
iris.obj <- rfsrc(Species ~., data = iris)
print(vimp(iris.obj)$importance)
print(vimp(iris.obj,perf.type="brier")$importance)

example using hold out vimp (see holdout.vimp help file for details)
print(holdout.vimp(Species~.,iris)$importance)
print(holdout.vimp(Species~.,iris,perf.type="brier")$importance)

--
confidence interval for vimp using subsampling
compare with holdout vimp
--

new York air quality measurements
o <- rfsrc(Ozone ~ ., data = airquality)
so <- subsample(o)
plot(so)

compare with holdout vimp

86 rfsrc

print(holdout.vimp(Ozone ~ ., data = airquality)$importance)

##--
example of imputation in survival analysis
##--

data(pbc, package = "randomForestSRC")
pbc.obj2 <- rfsrc(Surv(days, status) ~ ., pbc, na.action = "na.impute")

same as above but iterate the missing data algorithm
pbc.obj3 <- rfsrc(Surv(days, status) ~ ., pbc,

na.action = "na.impute", nimpute = 3)

fast way to impute data (no inference is done)
see impute for more details
pbc.imp <- impute(Surv(days, status) ~ ., pbc, splitrule = "random")

##--
compare RF-SRC to Cox regression
Illustrates C-index and Brier score measures of performance
assumes "pec" and "survival" libraries are loaded
##--

if (library("survival", logical.return = TRUE)
& library("pec", logical.return = TRUE)
& library("prodlim", logical.return = TRUE))

{
##prediction function required for pec
predictSurvProb.rfsrc <- function(object, newdata, times, ...){
ptemp <- predict(object,newdata=newdata,...)$survival
pos <- sindex(jump.times = object$time.interest, eval.times = times)
p <- cbind(1,ptemp)[, pos + 1]
if (NROW(p) != NROW(newdata) || NCOL(p) != length(times))

stop("Prediction failed")
p

}

data, formula specifications
data(pbc, package = "randomForestSRC")
pbc.na <- na.omit(pbc) ##remove NA's
surv.f <- as.formula(Surv(days, status) ~ .)
pec.f <- as.formula(Hist(days,status) ~ 1)

run cox/rfsrc models
for illustration we use a small number of trees
cox.obj <- coxph(surv.f, data = pbc.na, x = TRUE)
rfsrc.obj <- rfsrc(surv.f, pbc.na, ntree = 150)

compute bootstrap cross-validation estimate of expected Brier score
see Mogensen, Ishwaran and Gerds (2012) Journal of Statistical Software
set.seed(17743)

rfsrc 87

prederror.pbc <- pec(list(cox.obj,rfsrc.obj), data = pbc.na, formula = pec.f,
splitMethod = "bootcv", B = 50)

print(prederror.pbc)
plot(prederror.pbc)

compute out-of-bag C-index for cox regression and compare to rfsrc
rfsrc.obj <- rfsrc(surv.f, pbc.na)
cat("out-of-bag Cox Analysis ...", "\n")
cox.err <- sapply(1:100, function(b) {
if (b%%10 == 0) cat("cox bootstrap:", b, "\n")
train <- sample(1:nrow(pbc.na), nrow(pbc.na), replace = TRUE)
cox.obj <- tryCatch({coxph(surv.f, pbc.na[train,])}, error=function(ex){NULL})
if (!is.null(cox.obj)) {
get.cindex(pbc.na$days[-train], pbc.na$status[-train], predict(cox.obj, pbc.na[-train,]))
} else NA

})
cat("\n\tOOB error rates\n\n")
cat("\tRSF : ", rfsrc.obj$err.rate[rfsrc.obj$ntree], "\n")
cat("\tCox regression : ", mean(cox.err, na.rm = TRUE), "\n")

}

##--
competing risks
##--

WIHS analysis
cumulative incidence function (CIF) for HAART and AIDS stratified by IDU

data(wihs, package = "randomForestSRC")
wihs.obj <- rfsrc(Surv(time, status) ~ ., wihs, nsplit = 3, ntree = 100)
plot.competing.risk(wihs.obj)
cif <- wihs.obj$cif.oob
Time <- wihs.obj$time.interest
idu <- wihs$idu
cif.haart <- cbind(apply(cif[,,1][idu == 0,], 2, mean),

apply(cif[,,1][idu == 1,], 2, mean))
cif.aids <- cbind(apply(cif[,,2][idu == 0,], 2, mean),

apply(cif[,,2][idu == 1,], 2, mean))
matplot(Time, cbind(cif.haart, cif.aids), type = "l",

lty = c(1,2,1,2), col = c(4, 4, 2, 2), lwd = 3,
ylab = "Cumulative Incidence")

legend("topleft",
legend = c("HAART (Non-IDU)", "HAART (IDU)", "AIDS (Non-IDU)", "AIDS (IDU)"),
lty = c(1,2,1,2), col = c(4, 4, 2, 2), lwd = 3, cex = 1.5)

illustrates the various splitting rules
illustrates event specific and non-event specific variable selection
if (library("survival", logical.return = TRUE)) {

use the pbc data from the survival package
events are transplant (1) and death (2)
data(pbc, package = "survival")

88 rfsrc

pbc$id <- NULL

modified Gray's weighted log-rank splitting
(equivalent to cause=c(1,1) and splitrule="logrankCR")
pbc.cr <- rfsrc(Surv(time, status) ~ ., pbc)

log-rank cause-1 specific splitting and targeted VIMP for cause 1
pbc.log1 <- rfsrc(Surv(time, status) ~ ., pbc,

splitrule = "logrankCR", cause = c(1,0), importance = TRUE)

log-rank cause-2 specific splitting and targeted VIMP for cause 2
pbc.log2 <- rfsrc(Surv(time, status) ~ ., pbc,

splitrule = "logrankCR", cause = c(0,1), importance = TRUE)

extract VIMP from the log-rank forests: event-specific
extract minimal depth from the Gray log-rank forest: non-event specific
var.perf <- data.frame(md = max.subtree(pbc.cr)$order[, 1],

vimp1 = 100 * pbc.log1$importance[,1],
vimp2 = 100 * pbc.log2$importance[,2])

print(var.perf[order(var.perf$md),], digits = 2)

}

--
regression analysis
--

new York air quality measurements
airq.obj <- rfsrc(Ozone ~ ., data = airquality, na.action = "na.impute")

partial plot of variables (see plot.variable for more details)
plot.variable(airq.obj, partial = TRUE, smooth.lines = TRUE)

motor trend cars
mtcars.obj <- rfsrc(mpg ~ ., data = mtcars)

--
regression with custom bootstrap
--

ntree <- 25
n <- nrow(mtcars)
s.size <- n / 2
swr <- TRUE
samp <- randomForestSRC:::make.sample(ntree, n, s.size, swr)
o <- rfsrc(mpg ~ ., mtcars, bootstrap = "by.user", samp = samp)

--
classification analysis
--

iris data
iris.obj <- rfsrc(Species ~., data = iris)

rfsrc 89

wisconsin prognostic breast cancer data
data(breast, package = "randomForestSRC")
breast.obj <- rfsrc(status ~ ., data = breast, block.size=1)
plot(breast.obj)

--
big data set, reduce number of variables using simple method
--

use Iowa housing data set
data(housing, package = "randomForestSRC")

original data contains lots of missing data, use fast imputation
however see impute for other methods
housing2 <- impute(data = housing, fast = TRUE)

run shallow trees to find variables that split any tree
xvar.used <- rfsrc(SalePrice ~., housing2, ntree = 250, nodedepth = 4,

var.used="all.trees", mtry = Inf, nsplit = 100)$var.used

now fit forest using filtered variables
xvar.keep <- names(xvar.used)[xvar.used >= 1]
o <- rfsrc(SalePrice~., housing2[, c("SalePrice", xvar.keep)])
print(o)

--
imbalanced classification data
see the "imbalanced" function for further details
##
(a) use balanced random forests with undersampling of the majority class
Specifically let n0, n1 be sample sizes for majority, minority
cases. We sample 2 x n1 cases with majority, minority cases chosen
with probabilities n1/n, n0/n where n=n0+n1
##
(b) balanced random forests using "imbalanced"
##
(c) q-classifier (RFQ) using "imbalanced"
##
--

Wisconsin breast cancer example
data(breast, package = "randomForestSRC")
breast <- na.omit(breast)

balanced random forests - brute force
y <- breast$status
obdirect <- rfsrc(status ~ ., data = breast, nsplit = 10,

case.wt = randomForestSRC:::make.wt(y),
sampsize = randomForestSRC:::make.size(y))

print(obdirect)
print(get.imbalanced.performance(obdirect))

90 rfsrc

balanced random forests - using "imbalanced"
ob <- imbalanced(status ~ ., data = breast, method = "brf")
print(ob)
print(get.imbalanced.performance(ob))

q-classifier (RFQ) - using "imbalanced"
oq <- imbalanced(status ~ ., data = breast)
print(oq)
print(get.imbalanced.performance(oq))

q-classifier (RFQ) - with auc splitting
oqauc <- imbalanced(status ~ ., data = breast, splitrule = "auc")
print(oqauc)
print(get.imbalanced.performance(oqauc))

--
unsupervised analysis
--

two equivalent ways to implement unsupervised forests
mtcars.unspv <- rfsrc(Unsupervised() ~., data = mtcars)
mtcars2.unspv <- rfsrc(data = mtcars)

illustration of sidClustering for the mtcars data
see sidClustering for more details
mtcars.sid <- sidClustering(mtcars, k = 1:10)
print(split(mtcars, mtcars.sid$cl[, 3]))
print(split(mtcars, mtcars.sid$cl[, 10]))

--
bivariate regression using Mahalanobis splitting
also illustrates user specified covariance matrix
--

if (library("mlbench", logical.return = TRUE)) {

load boston housing data, specify the bivariate regression
data(BostonHousing)
f <- formula("Multivar(lstat, nox) ~.")

Mahalanobis splitting
bh.mreg <- rfsrc(f, BostonHousing, importance = TRUE, splitrule = "mahal")

performance error and vimp
vmp <- get.mv.vimp(bh.mreg)
pred <- get.mv.predicted(bh.mreg)

standardized error and vimp
err.std <- get.mv.error(bh.mreg, standardize = TRUE)
vmp.std <- get.mv.vimp(bh.mreg, standardize = TRUE)

rfsrc 91

same analysis, but with user specified covariance matrix
sigma <- cov(BostonHousing[, c("lstat","nox")])
bh.mreg2 <- rfsrc(f, BostonHousing, splitrule = "mahal", sigma = sigma)

}

--
multivariate mixed forests (nutrigenomic study)
study effects of diet, lipids and gene expression for mice
diet, genotype and lipids used as the multivariate y
genes used for the x features
--

load the data (data is a list)
data(nutrigenomic, package = "randomForestSRC")

assemble the multivariate y data
ydta <- data.frame(diet = nutrigenomic$diet,

genotype = nutrigenomic$genotype,
nutrigenomic$lipids)

multivariate mixed forest call
uses "get.mv.formula" for conveniently setting formula
mv.obj <- rfsrc(get.mv.formula(colnames(ydta)),

data.frame(ydta, nutrigenomic$genes),
importance=TRUE, nsplit = 10)

print results for diet and genotype y values
print(mv.obj, outcome.target = "diet")
print(mv.obj, outcome.target = "genotype")

extract standardized VIMP
svimp <- get.mv.vimp(mv.obj, standardize = TRUE)

plot standardized VIMP for diet, genotype and lipid for each gene
boxplot(t(svimp), col = "bisque", cex.axis = .7, las = 2,

outline = FALSE,
ylab = "standardized VIMP",
main = "diet/genotype/lipid VIMP for each gene")

--
custom splitting using the pre-coded examples
--

motor trend cars
mtcars.obj <- rfsrc(mpg ~ ., data = mtcars, splitrule = "custom")

iris analysis
iris.obj <- rfsrc(Species ~., data = iris, splitrule = "custom1")

WIHS analysis
wihs.obj <- rfsrc(Surv(time, status) ~ ., wihs, nsplit = 3,

ntree = 100, splitrule = "custom1")

92 rfsrc.anonymous

rfsrc.anonymous Anonymous Random Forests

Description

Anonymous random forests applies random forests but is carefully modified so as not to save the
original training data. This allows users to share their forest with other researchers but without
having to share their original data.

Usage

rfsrc.anonymous(formula, data, forest = TRUE, ...)

Arguments

formula A symbolic description of the model to be fit. If missing, unsupervised splitting
is implemented.

data Data frame containing the y-outcome and x-variables.

forest Should the forest object be returned? Used for prediction on new data and re-
quired by many of the package functions.

... Further arguments as in rfsrc. See the rfsrc help file for details.

Details

Calls rfsrc and returns an object with the training data removed so that users can share their forest
while maintaining privacy of their data.

In order to predict on test data, it is however necessary for certain minimal information to be saved
from the training data. This includes the names of the original variables, and if factor variables
are present, the levels of the factors. The mean value and maximal class value for real and factor
variables in the training data are also stored for the purposes of imputation on test data (see below).
The topology of grow trees is also saved, which includes among other things, the split values used
for splitting tree nodes.

For the most privacy, we recommend that variable names be made non-identifiable and that data be
coerced to real values. If factors are required, the user should consider using non-identifiable factor
levels. However, in all cases, it is the users responsibility to de-identify their data and to check that
data privacy holds. We provide NO GUARANTEES of this.

Missing data is especially delicate with anonymous forests. Training data cannot be imputed and the
option na.action="na.impute" simply reverts to na.action="na.omit". Therefore if you have
training data with missing values consider using pre-imputing the data using impute. It is however
possible to impute on test data. The option na.action="na.impute" in the prediction call triggers
a rough and fast imputation method where the value of missing test data are replaced by the mean
(or maximal class) value from the training data. A second option na.action="na.random" uses a
fast random imputation method.

rfsrc.anonymous 93

In general, it is important to keep in mind that while anonymous forests tries to play nice with other
functions in the package, it only works with calls that do not specifically require training data.

Value

An object of class (rfsrc, grow, anonymous).

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

See Also

rfsrc

Examples

--
regression
--
print(rfsrc.anonymous(mpg ~ ., mtcars))

--
plot anonymous regression tree (using get.tree)
TBD CURRENTLY NOT IMPLEMENTED
--
plot(get.tree(rfsrc.anonymous(mpg ~ ., mtcars), 10))

--
classification
--
print(rfsrc.anonymous(Species ~ ., iris))

--
survival
--
data(veteran, package = "randomForestSRC")
print(rfsrc.anonymous(Surv(time, status) ~ ., data = veteran))

--
competing risks
--
data(wihs, package = "randomForestSRC")
print(rfsrc.anonymous(Surv(time, status) ~ ., wihs, ntree = 100))

--
unsupervised forests
--
print(rfsrc.anonymous(data = iris))

94 rfsrc.fast

--
multivariate regression
--
print(rfsrc.anonymous(Multivar(mpg, cyl) ~., data = mtcars))

--
prediction on test data with missing values using pbc data
cases 1 to 312 have no missing values
cases 313 to 418 having missing values
--
data(pbc, package = "randomForestSRC")
pbc.obj <- rfsrc.anonymous(Surv(days, status) ~ ., pbc)
print(pbc.obj)

mean value imputation
print(predict(pbc.obj, pbc[-(1:312),], na.action = "na.impute"))

random imputation
print(predict(pbc.obj, pbc[-(1:312),], na.action = "na.random"))

--
train/test setting but tricky because factor labels differ over
training and test data
--

first we convert all x-variables to factors
data(veteran, package = "randomForestSRC")
veteran.factor <- data.frame(lapply(veteran, factor))
veteran.factor$time <- veteran$time
veteran.factor$status <- veteran$status

split the data into train/test data (25/75)
the train/test data have the same levels, but different labels
train <- sample(1:nrow(veteran), round(nrow(veteran) * .5))
summary(veteran.factor[train,])
summary(veteran.factor[-train,])

grow the forest on the training data and predict on the test data
v.grow <- rfsrc.anonymous(Surv(time, status) ~ ., veteran.factor[train,])
v.pred <- predict(v.grow, veteran.factor[-train,])
print(v.grow)
print(v.pred)

rfsrc.fast Fast Random Forests

rfsrc.fast 95

Description

Fast approximate random forests using subsampling with forest options set to encourage computa-
tional speed. Applies to all families.

Usage

rfsrc.fast(formula, data,
ntree = 500,
nsplit = 10,
bootstrap = "by.root",
sampsize = function(x){min(x * .632, max(150, x ^ (3/4)))},
samptype = "swor",
samp = NULL,
ntime = 50,
forest = FALSE,
save.memory = TRUE,
...)

Arguments

formula Model to be fit. If missing, unsupervised splitting is implemented.

data Data frame containing the y-outcome and x-variables.

ntree Number of trees.

nsplit Non-negative integer value specifying number of random split points used to
split a node (deterministic splitting corresponds to the value zero and can be
slower).

bootstrap Bootstrap protocol used in growing a tree.

sampsize Function specifying size of subsampled data. Can also be a number.

samptype Type of bootstrap used.

samp Bootstrap specification when "by.user" is used.

ntime Integer value used for survival to constrain ensemble calculations to a grid of
ntime time points.

forest Save key forest values? Turn this on if you want prediction on test data.

save.memory Save memory? Setting this to FALSE stores terminal node quantities used for
prediction on test data. This yields rapid prediction but can be memory intensive
for big data, especially competing risks and survival models.

... Further arguments to be passed to rfsrc.

Details

Calls rfsrc by choosing options (like subsampling) to encourage computational speeds. This will
provide a good approximation but will not be as good as default settings of rfsrc.

Value

An object of class (rfsrc, grow).

96 rfsrc.fast

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

See Also

rfsrc

Examples

--
regression
--

load the Iowa housing data
data(housing, package = "randomForestSRC")

do quick and *dirty* imputation
housing <- impute(SalePrice ~ ., housing,

ntree = 50, nimpute = 1, splitrule = "random")

grow a fast forest
o1 <- rfsrc.fast(SalePrice ~ ., housing)
o2 <- rfsrc.fast(SalePrice ~ ., housing, nodesize = 1)
print(o1)
print(o2)

grow a fast bivariate forest
o3 <- rfsrc.fast(cbind(SalePrice,Overall.Qual) ~ ., housing)
print(o3)

--
classification
--

data(wine, package = "randomForestSRC")
wine$quality <- factor(wine$quality)
o <- rfsrc.fast(quality ~ ., wine)
print(o)

--
grow fast random survival forests without C-calculation
use brier score to assess model performance
compare pure random splitting to logrank splitting
--

data(peakVO2, package = "randomForestSRC")
f <- as.formula(Surv(ttodead, died)~.)
o1 <- rfsrc.fast(f, peakVO2, perf.type = "none")
o2 <- rfsrc.fast(f, peakVO2, perf.type = "none", splitrule = "random")
bs1 <- get.brier.survival(o1, cens.model = "km")
bs2 <- get.brier.survival(o2, cens.model = "km")

rfsrc.news 97

plot(bs2$brier.score, type = "s", col = 2)
lines(bs1$brier.score, type = "s", col = 4)
legend("bottomright", legend = c("random", "logrank"), fill = c(2,4))

--
competing risks
--

data(wihs, package = "randomForestSRC")
o <- rfsrc.fast(Surv(time, status) ~ ., wihs)
print(o)

--
class imbalanced data using gmean performance
--

data(breast, package = "randomForestSRC")
breast <- na.omit(breast)
f <- as.formula(status ~ .)
o <- rfsrc.fast(f, breast, perf.type = "gmean")
print(o)

--
class imbalanced data using random forests quantile-classifer (RFQ)
fast=TRUE => rfsrc.fast
see imbalanced function for further details
--

data(breast, package = "randomForestSRC")
breast <- na.omit(breast)
f <- as.formula(status ~ .)
o <- imbalanced(f, breast, fast = TRUE)
print(o)

rfsrc.news Show the NEWS file

Description

Show the NEWS file of the randomForestSRC package.

Usage

rfsrc.news(...)

Arguments

... Further arguments passed to or from other methods.

98 sidClustering.rfsrc

Value

None.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

sidClustering.rfsrc sidClustering using SID (Staggered Interaction Data) for Unsuper-
vised Clustering

Description

Clustering of unsupervised data using SID (Mantero and Ishwaran, 2020). Also implements the
artificial two-class approach of Breiman (2003).

Usage

S3 method for class 'rfsrc'
sidClustering(data,
method = "sid",
k = NULL,
reduce = TRUE,
ntree = 500,
ntree.reduce = function(p, vtry){100 * p / vtry},
fast = FALSE,
x.no.sid = NULL,
use.sid.for.x = TRUE,
x.only = NULL, y.only = NULL,
dist.sharpen = TRUE, ...)

Arguments

data Data frame containing the unsupervised data.

method The method used for unsupervised clustering. Default is "sid" which implements
sidClustering using SID (Staggered Interaction Data; see Mantero and Ishwaran,
2020). A second approach transforms the unsupervised learning problem into
a two-class supervised problem (Breiman, 2003) using artificial data created
using mode 1 or mode 2 of Shi-Horvath (2006). This approach is specified
by any one of the following: "sh", "SH", "sh1", "SH1" for mode 1, or "sh2",
"SH2" for mode 2. Finally, a third approach is a plain vanilla method where the
data are used both as features and response with splitting implemented using the
multivariate splitting rule. This is faster than sidClustering but potentially less
accurate. This method is specified using "unsupv".

sidClustering.rfsrc 99

k Requested number of clusters. Can be a number or a vector. If a fixed number,
returns a vector recording clustering of data. If a vector, returns a matrix of
clusters with each column recording the clustering of the data for the specified
number of clusters.

reduce Apply dimension reduction? Uses holdout vimp which is computationally in-
tensive and conservative but has good false discovery properties. Only applies
to method="sid".

ntree Number of trees used by sidClustering in the main analysis.

ntree.reduce Number of trees used by holdout vimp in the reduction step. See holdout.vimp
for details.

fast Use fast random forests, rfsrcFast, in place of rfsrc? Improves speed but is
less accurate.

x.no.sid Features not to be "sid-ified": meaning that these features are to be included
in the final design matrix without SID processing. Can be either a data frame
(should not overlap with data), or a character vector containing the names of
features from the original data that the user wishes to protect from sidification.
Applies only to method="sid".

use.sid.for.x If FALSE, reverses features and outcomes in the SID analysis. Thus, staggered
interactions are used for the outcomes rather than staggered features. This is
much slower and is generally much less effective. This option is only retained
for legacy reasons. Applies only to method="sid".

x.only Use only these variables for the features. Applies only to method="unsupv".

y.only Use only these variables for the multivariate outcomes. Applies only to method="unsupv".

dist.sharpen By default, distance sharpening is requested, which applies Euclidean distance
to the random forest distance matrix to sharpen it. Because of this, the returned
distance matrix will not have values between 0 and 1 (as for random forests
distance) when this option is in effect. Distance sharpening is a useful, but
slow step. Set this option to FALSE to improve computational times, however
clustering performance will not be as good. Applies only when method="sid"
or method="unsupv".

... Further arguments to be passed to the rfsrc function to specify random forest
parameters.

Details

Given an unsupervised data set, random forests is used to calculate the distance between all pairs of
data points. The distance matrix is used for clustering the unsupervised data where the default is to
use hierarchcial clustering. Users can apply other clustering procedures to the distance matrix. See
the examples below.

The default method, method="sid", implements sidClustering. The sidClustering algorithm begins
by first creating an enhanced SID (Staggered Interaction Data) feature space by sidification of the
original variables. Sidification results in: (a) SID main features which are the original features
that have been shifted in order to make them strictly positive and staggered so all of their ranges
are mutually exclusive; and (b) SID interaction features which are the multiplicative interactions
formed between every pair of SID main features. Multivariate random forests are then trained to

100 sidClustering.rfsrc

predict the main SID features using the interaction SID features as predictors. The basic premise is
if features are informative for clusters, then they will vary over the space in a systematic manner,
and because each SID interaction feature is uniquely determined by the original feature values used
to form the interaction, cuts along the SID interaction feature will be able to find the regions where
the informative features vary by cluster, thereby not only reducing impurity, but also separating the
clusters which are dependent on those features. See Mantero and Ishwaran (2020) for details.

Because SID uses all pairwise interactions, the dimension of the feature space is proportional to
the square of the number of original features (or even larger if factors are present). Thus it is
helpful to reduce the feature space. The reduction step (applied by default) utilizes holdout VIMP
to accomplish this. It is recommended this step be skipped only when the dimension is reasonably
small. For very large data sets this step may be slow.

A second approach (Breiman, 2003; Shi-Horvath, 2006) transforms the unsupervised learning prob-
lem into a two class supervised problem. The first class consists of the original observations, while
the second class is artificially created. The idea is that in detecting the first class out of the second,
the model will generate the random forest proximity between observations of which those for the
original class can be extracted and used for clustering. Note in this approach the distance matrix
is defined to equal one minus the proximity. This is unlike the distance matrix from SID which is
not proximity based. Artificial data is created using "mode 1" or "mode 2" of Shi-Horvath (2006).
Mode 1 randomly draws from each set of observed features. Mode 2 draws a uniform value from
the minimum and maximum values of a feature.

Mantero and Ishwaran (2020) studied both methods and found SID worked well in all settings,
whereas Breiman/Shi-Horvath was sensitive to cluster structure. Performance was poor when clus-
ters were hidden in lower dimensional subspaces; for example when interactions were present or
in mixed variable settings (factors/continuous variables). See the V-shaped cluster example below.
Generally Shi-Horvath mode 1 outperforms mode 2.

Finally, a third method where the data is used for both the features and outcome is implemented
using method="unsupv". Tree nodes are split using the multivariate splitting rule. This is much
faster than sidClustering but potentially less accurate.

There is an internal function sid.perf.metric for evaluating performance of the procedures using
a normalized measure score. Smaller values indicate better performance. See Mantero and Ishwaran
(2020) for details.

Value

A list with the following components:

clustering Vector or matrix containing indices mapping data points to their clusters.

rf Random forest object (either a multivariate forest or RF-C object).

dist Distance matrix.

sid The "sid-ified" data. Conveniently broken up into separate values for outcomes
and features used by the multivariate forest.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

sidClustering.rfsrc 101

References

Breiman, L. (2003). Manual on setting up, using and understanding random forest, V4.0. University
of California Berkeley, Statistics Department, Berkeley.

Mantero A. and Ishwaran H. (2021). Unsupervised random forests. Statistical Analysis and Data
Mining, 14(2):144-167.

Shi, T. and Horvath, S. (2006). Unsupervised learning with random forest predictors. Journal of
Computational and Graphical Statistics, 15(1):118-138.

See Also

rfsrc, rfsrc.fast

Examples

--
mtcars example
--

default SID method
o1 <- sidClustering(mtcars)
print(split(mtcars, o1$cl[, 10]))

using artifical class approach
o1.sh <- sidClustering(mtcars, method = "sh")
print(split(mtcars, o1.sh$cl[, 10]))

--
glass data set
--

if (library("mlbench", logical.return = TRUE)) {

this is a supervised problem, so we first strip the class label
data(Glass)
glass <- Glass
y <- Glass$Type
glass$Type <- NULL

default SID call
o2 <- sidClustering(glass, k = 6)
print(table(y, o2$cl))
print(sid.perf.metric(y, o2$cl))

compare with Shi-Horvath mode 1
o2.sh <- sidClustering(glass, method = "sh1", k = 6)
print(table(y, o2.sh$cl))
print(sid.perf.metric(y, o2.sh$cl))

plain-vanilla unsupervised analysis

102 sidClustering.rfsrc

o2.un <- sidClustering(glass, method = "unsupv", k = 6)
print(table(y, o2.un$cl))
print(sid.perf.metric(y, o2.un$cl))

}

--
vowel data set
--

if (library("mlbench", logical.return = TRUE) &&
library("cluster", logical.return = TRUE)) {

strip the class label
data(Vowel)
vowel <- Vowel
y <- Vowel$Class
vowel$Class <- NULL

SID
o3 <- sidClustering(vowel, k = 11)
print(table(y, o3$cl))
print(sid.perf.metric(y, o3$cl))

compare to Shi-Horvath which performs poorly in
mixed variable settings
o3.sh <- sidClustering(vowel, method = "sh1", k = 11)
print(table(y, o3.sh$cl))
print(sid.perf.metric(y, o3.sh$cl))

Shi-Horvath improves with PAM clustering
but still not as good as SID
o3.sh.pam <- pam(o3.sh$dist, k = 11)$clustering
print(table(y, o3.sh.pam))
print(sid.perf.metric(y, o3.sh.pam))

plain-vanilla unsupervised analysis
o3.un <- sidClustering(vowel, method = "unsupv", k = 11)
print(table(y, o3.un$cl))
print(sid.perf.metric(y, o3.un$cl))

}

--
two-d V-shaped cluster (y=x, y=-x) sitting in 12-dimensions
illustrates superiority of SID to Breiman/Shi-Horvath
--

p <- 10
m <- 250
n <- 2 * m
std <- .2

stat.split.rfsrc 103

x <- runif(n, 0, 1)
noise <- matrix(runif(n * p, 0, 1), n)
y <- rep(NA, n)
y[1:m] <- x[1:m] + rnorm(m, sd = std)
y[(m+1):n] <- -x[(m+1):n] + rnorm(m, sd = std)
vclus <- data.frame(clus = c(rep(1, m), rep(2,m)), x = x, y = y, noise)

SID
o4 <- sidClustering(vclus[, -1], k = 2)
print(table(vclus[, 1], o4$cl))
print(sid.perf.metric(vclus[, 1], o4$cl))

Shi-Horvath
o4.sh <- sidClustering(vclus[, -1], method = "sh1", k = 2)
print(table(vclus[, 1], o4.sh$cl))
print(sid.perf.metric(vclus[, 1], o4.sh$cl))

plain-vanilla unsupervised analysis
o4.un <- sidClustering(vclus[, -1], method = "unsupv", k = 2)
print(table(vclus[, 1], o4.un$cl))
print(sid.perf.metric(vclus[, 1], o4.un$cl))

--
two-d V-shaped cluster using fast random forests
--

o5 <- sidClustering(vclus[, -1], k = 2, fast = TRUE)
print(table(vclus[, 1], o5$cl))
print(sid.perf.metric(vclus[, 1], o5$cl))

stat.split.rfsrc Acquire Split Statistic Information

Description

Extract split statistic information from the forest. The function returns a list of length ntree, in
which each element corresponds to a tree. The element [[b]] is itself a vector of length xvar.names
identified by its x-variable name. Each element [[b]]$xvar contains the complete list of splits on
xvar with associated identifying information. The information is as follows:

1. treeID Tree identifier.

2. nodeID Node identifier.

3. parmID Variable indentifier.

4. contPT Value node was split in the case of a continuous variable.

5. mwcpSZ Size of the multi-word complementary pair in the case of a factor split.

104 stat.split.rfsrc

6. dpthID Zero (0) based depth of split.

7. spltTY Split type for parent node:

stat.split.rfsrc 105

bit 1 bit 0 meaning
—– —– ——-
0 0 0 = both daughters have valid splits
0 1 1 = only the right daughter is terminal
1 0 2 = only the left daughter is terminal
1 1 3 = both daughters are terminal

8. spltEC End cut statistic for real valued variables between [0,0.5] that is small when the split
is towards the edge and large when the split is towards the middle. Subtracting this value
from 0.5 yields the end cut statistic studied in Ishwaran (2014) and is a way to identify ECP
behavior (end cut preference behavior).

9. spltST Split statistic:

(a) For objects of class (rfsrc, grow), this is the split statistic that resulted in the variable
being choosen for the split.

(b) For an object of class (rfsrc, pred) this is the variance of the response within the node for
the test data. This value is relevant only for real valued responses. In classification and
survival, it is not relevant.

Usage

S3 method for class 'rfsrc'
stat.split(object, ...)

Arguments

object An object of class (rfsrc, grow), (rfsrc, synthetic) or (rfsrc, predict)

... Further arguments passed to or from other methods.

Value

Invisibly, a list with the following components:

... ...

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

References

Ishwaran H. (2015). The effect of splitting on random forests. Machine Learning, 99:75-118.

Examples

run a forest, then make a call to stat.split
grow.obj <- rfsrc(mpg ~., data = mtcars, membership=TRUE, statistics=TRUE)
stat.obj <- stat.split(grow.obj)

106 subsample.rfsrc

nice wrapper to extract split-statistic for desired variable
for continuous variables plots ECP data
get.split <- function(splitObj, xvar, inches = 0.1, ...) {

which.var <- which(names(splitObj[[1]]) == xvar)
ntree <- length(splitObj)
stat <- data.frame(do.call(rbind, sapply(1:ntree, function(b) {
splitObj[[b]][which.var]})))

dpth <- stat$dpthID
ecp <- 1/2 - stat$spltEC
sp <- stat$contPT
if (!all(is.na(sp))) {

fgC <- function(x) {
as.numeric(as.character(cut(x, breaks = c(-1, 0.2, 0.35, 0.5),
labels = c(1, 4, 2))))

}
symbols(jitter(sp), jitter(dpth), ecp, inches = inches, bg = fgC(ecp),

xlab = xvar, ylab = "node depth", ...)
legend("topleft", legend = c("low ecp", "med ecp", "high ecp"),

fill = c(1, 4, 2))
}
invisible(stat)

}

use get.split to investigate ECP behavior of variables
get.split(stat.obj, "disp")

subsample.rfsrc Subsample Forests for VIMP Confidence Intervals

Description

Use subsampling to calculate confidence intervals and standard errors for VIMP (variable impor-
tance). Applies to all families.

Usage

S3 method for class 'rfsrc'
subsample(obj,
B = 100,
block.size = 1,
importance,
subratio = NULL,
stratify = TRUE,
performance = FALSE,
performance.only = FALSE,
joint = FALSE,
xvar.names = NULL,

subsample.rfsrc 107

bootstrap = FALSE,
verbose = TRUE)

Arguments

obj A forest grow object.

B Number of subsamples (or number of bootstraps).

block.size Specifies number of trees in a block when calculating VIMP. This is over-ridden
if VIMP is present in the original grow call in which case the grow value is used.

importance Optional: specifies the type of importance to be used, selected from one of
"anti", "permute", "random". If not specified reverts to default importance used
by the package. Also, this is over-ridden if the original grow object contains
importance, in which case importance used in the original grow call is used.

subratio Ratio of subsample size to original sample size. The default is approximately
equal to the inverse square root of the sample size.

stratify Use stratified subsampling? See details below.

performance Generalization error? User can also request standard error and confidence re-
gions for generalization error.

performance.only

Only calculate standard error and confidence region for the generalization error
(no VIMP).

joint Joint VIMP for all variables? Users can also request joint VIMP for specific
variables using xvar.names.

xvar.names Specifies variables for calculating joint VIMP. By default all variables are used.

bootstrap Use double bootstrap approach in place of subsampling? Much slower, but po-
tentially more accurate.

verbose Provide verbose output?

Details

Using a previously trained forest, subsamples the data and constructs subsampled forests to estimate
standard errors and confidence intervals for VIMP (Ishwaran and Lu, 2019). If bootstrapping is re-
quested, a double bootstrap is applied in place of subsampling. The option performance="TRUE"
constructs standard errors and confidence regions for the error rate (OOB performance) of the
trained forest. Options joint and xvar.names can be used to obtain joint VIMP for all or some
variables.

If the trained forest does not have VIMP values, the algorithm first needs to calculate VIMP. There-
fore, if the user plans to make repeated calls to subsample, it is advisable to include VIMP in the
original grow call. Also, by calling VIMP in the original call, the type of importance used and
other related parameters are set by values used in the original call which can eliminate confusion
about what parameters are being used in the subsampled forests. Thus, it is generally advised to
call VIMP in the original call.

Subsampled forests are calculated using the same tuning parameters as the original forest. While a
sophisticated algorithm is utilized to acquire as many of these parameters as possible, keep in mind

108 subsample.rfsrc

there are some conditions where this will fail: for example there are certain settings where the user
has specified non-standard sampling in the grow forest.

Delete-d jackknife estimators of the variance (Shao and Wu, 1989) are returned alongside subsam-
pled variance estimators (Politis and Romano, 1994). While these methods are closely related, the
jackknife estimator generally gives *larger* standard errors, which is a form of bias correction, and
which occurs primarily for the signal variables.

By default, stratified subsampling is used for classification, survival, and competing risk families.
For classification, stratification is on the class label, while for survival and competing risk, strat-
ification is on the event type and censoring. Users are discouraged from over-riding this option,
especially in small sample settings, as this could lead to error due to subsampled data not having
full representation of class labels in classification settings, and in survival settings, subsampled data
may be devoid of deaths and/or have reduced number of competing risks. Note also that stratified
sampling is not available for multivariate families – users should especially exercise caution when
selecting subsampling rates here.

The function extract.subsample can be used to extract information from the subsampled ob-
ject. Returned values for VIMP are "standardized" (this means for regression families, VIMP
is standardized by dividing by the variance of Y and multiplying by 100; for all other families,
VIMP is scaled by 100). Use standardize="FALSE" if you want unstandardized VIMP. Setting
the option raw="TRUE" returns a more complete set of information that is used by the function
plot.subsample.rfsrc for plotting confidence intervals. Keep in mind some of this information will
be subsampled VIMP that is "raw" in the sense it equals VIMP from a forest constructed with a
much smaller sample size. This option is for experts only.

When printing or plotting results, the default is to standardize VIMP which can be turned off using
the option standardize. Also these wrappers preset the "alpha" value used for confidence intervals;
users can change this using option alpha.

Value

A list with the following key components:

rf Original forest grow object.

vmp Variable importance values for grow forest.

vmpS Variable importance subsampled values.

subratio Subratio used.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

References

Ishwaran H. and Lu M. (2019). Standard errors and confidence intervals for variable importance in
random forest regression, classification, and survival. Statistics in Medicine, 38, 558-582.

Politis, D.N. and Romano, J.P. (1994). Large sample confidence regions based on subsamples under
minimal assumptions. The Annals of Statistics, 22(4):2031-2050.

Shao, J. and Wu, C.J. (1989). A general theory for jackknife variance estimation. The Annals of
Statistics, 17(3):1176-1197.

subsample.rfsrc 109

See Also

holdout.vimp.rfsrc plot.subsample.rfsrc, rfsrc, vimp.rfsrc

Examples

--
regression
--

training the forest
reg.o <- rfsrc(Ozone ~ ., airquality)

default subsample call
reg.smp.o <- subsample(reg.o)

plot confidence regions
plot.subsample(reg.smp.o)

summary of results
print(reg.smp.o)

joint vimp and confidence region for generalization error
reg.smp.o2 <- subsample(reg.o, performance = TRUE,

joint = TRUE, xvar.names = c("Day", "Month"))
plot.subsample(reg.smp.o2)

now try the double bootstrap (slower)
reg.dbs.o <- subsample(reg.o, B = 25, bootstrap = TRUE)
print(reg.dbs.o)
plot.subsample(reg.dbs.o)

standard error and confidence region for generalization error only
gerror <- subsample(reg.o, performance.only = TRUE)
plot.subsample(gerror)

--
classification
--

3 non-linear, 15 linear, and 5 noise variables
if (library("caret", logical.return = TRUE)) {

d <- twoClassSim(1000, linearVars = 15, noiseVars = 5)

VIMP based on (default) misclassification error
cls.o <- rfsrc(Class ~ ., d)
cls.smp.o <- subsample(cls.o, B = 100)
plot.subsample(cls.smp.o, cex.axis = .7)

same as above, but with VIMP defined using normalized Brier score
cls.o2 <- rfsrc(Class ~ ., d, perf.type = "brier")
cls.smp.o2 <- subsample(cls.o2, B = 100)

110 subsample.rfsrc

plot.subsample(cls.smp.o2, cex.axis = .7)
}

--
class-imbalanced data using RFQ classifier with G-mean VIMP
--

if (library("caret", logical.return = TRUE)) {

experimental settings
n <- 1000
q <- 20
ir <- 6
f <- as.formula(Class ~ .)

simulate the data, create minority class data
d <- twoClassSim(n, linearVars = 15, noiseVars = q)
d$Class <- factor(as.numeric(d$Class) - 1)
idx.0 <- which(d$Class == 0)
idx.1 <- sample(which(d$Class == 1), sum(d$Class == 1) / ir , replace = FALSE)
d <- d[c(idx.0,idx.1),, drop = FALSE]

RFQ classifier
oq <- imbalanced(Class ~ ., d, importance = TRUE, block.size = 10)

subsample the RFQ-classifier
smp.oq <- subsample(oq, B = 100)
plot.subsample(smp.oq, cex.axis = .7)

}

--
survival
--

data(pbc, package = "randomForestSRC")
srv.o <- rfsrc(Surv(days, status) ~ ., pbc)
srv.smp.o <- subsample(srv.o, B = 100)
plot(srv.smp.o)

--
competing risks
target event is death (event = 2)
--

if (library("survival", logical.return = TRUE)) {
data(pbc, package = "survival")
pbc$id <- NULL
cr.o <- rfsrc(Surv(time, status) ~ ., pbc, splitrule = "logrankCR", cause = 2)
cr.smp.o <- subsample(cr.o, B = 100)
plot.subsample(cr.smp.o, target = 2)

}

synthetic 111

--
multivariate
--

if (library("mlbench", logical.return = TRUE)) {
simulate the data
data(BostonHousing)
bh <- BostonHousing
bh$rm <- factor(round(bh$rm))
o <- rfsrc(cbind(medv, rm) ~ ., bh)
so <- subsample(o)
plot.subsample(so)
plot.subsample(so, m.target = "rm")
##generalization error
gerror <- subsample(o, performance.only = TRUE)
plot.subsample(gerror, m.target = "medv")
plot.subsample(gerror, m.target = "rm")

}

--
largish data example - use rfsrc.fast for fast forests
--

if (library("caret", logical.return = TRUE)) {
largish data set
d <- twoClassSim(1000, linearVars = 15, noiseVars = 5)

use a subsampled forest with Brier score performance
remember to set forest=TRUE for rfsrc.fast
o <- rfsrc.fast(Class ~ ., d, ntree = 100,

forest = TRUE, perf.type = "brier")
so <- subsample(o, B = 100)
plot.subsample(so, cex.axis = .7)

}

synthetic Synthetic Random Forests

Description

Grows a synthetic random forest (RF) using RF machines as synthetic features. Applies only to
regression and classification settings.

Usage

S3 method for class 'rfsrc'
synthetic(formula, data, object, newdata,

112 synthetic

ntree = 1000, mtry = NULL, nodesize = 5, nsplit = 10,
mtrySeq = NULL, nodesizeSeq = c(1:10,20,30,50,100),
min.node = 3,
fast = TRUE,
use.org.features = TRUE,
na.action = c("na.omit", "na.impute"),
oob = TRUE,
verbose = TRUE,
...)

Arguments

formula Model to be fit. Must be specified unless object is given.

data Data frame containing the y-outcome and x-variables in the model. Must be
specified unless object is given.

object An object of class (rfsrc, synthetic). Not required when formula and data
are supplied.

newdata Test data used for prediction (optional).

ntree Number of trees.

mtry mtry value for over-arching synthetic forest.

nodesize Nodesize value for over-arching synthetic forest.

nsplit nsplit-randomized splitting for significantly increased speed.

mtrySeq Sequence of mtry values used for fitting the collection of RF machines. If NULL,
default is number of variables divided by 3, rounded up.

nodesizeSeq Sequence of nodesize values used for the fitting the collection of RF machines.

min.node Minimum forest averaged number of nodes a RF machine must exceed in order
to be used as a synthetic feature.

fast Use fast random forests, rfsrc.fast, in place of rfsrc? Improves speed but
may be less accurate.

use.org.features

In addition to synthetic features, should the original features be used when fitting
synthetic forests?

na.action Missing value action. The default na.omit removes the entire record if even
one of its entries is NA. The action na.impute pre-imputes the data using fast
imputation via impute.rfsrc.

oob Preserve "out-of-bagness" so that error rates and VIMP are honest? Default is
yes (‘oob=TRUE’).

verbose Set to TRUE for verbose output.

... Further arguments to be passed to the rfsrc function used for fitting the syn-
thetic forest.

synthetic 113

Details

A collection of random forests are fit using different nodesize values. The predicted values from
these machines are then used as synthetic features (called RF machines) to fit a synthetic random
forest (the original features are also used in constructing the synthetic forest). Currently only im-
plemented for regression and classification settings (univariate and multivariate).

Synthetic features are calculated using out-of-bag (OOB) data to avoid over-using training data.
However, to guarantee that performance values such as error rates and VIMP are honest, bootstrap
draws are fixed across all trees used in the construction of the synthetic forest and its synthetic
features. The option ‘oob=TRUE’ ensures that this happens. Change this option at your own peril.

If values for mtrySeq are given, RF machines are constructed for each combination of nodesize and
mtry values specified by nodesizeSeq mtrySeq.

Value

A list with the following components:

rfMachines RF machines used to construct the synthetic features.

rfSyn The (grow) synthetic RF built over training data.

rfSynPred The predict synthetic RF built over test data (if available).

synthetic List containing the synthetic features.

opt.machine Optimal machine: RF machine with smallest OOB error rate.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

References

Ishwaran H. and Malley J.D. (2014). Synthetic learning machines. BioData Mining, 7:28.

See Also

rfsrc, rfsrc.fast

Examples

--
compare synthetic forests to regular forest (classification)
--

rfsrc and synthetic calls
if (library("mlbench", logical.return = TRUE)) {

simulate the data
ring <- data.frame(mlbench.ringnorm(250, 20))

classification forests
ringRF <- rfsrc(classes ~., ring)

114 synthetic

synthetic forests
1 = nodesize varied
2 = nodesize/mtry varied
ringSyn1 <- synthetic(classes ~., ring)
ringSyn2 <- synthetic(classes ~., ring, mtrySeq = c(1, 10, 20))

test-set performance
ring.test <- data.frame(mlbench.ringnorm(500, 20))
pred.ringRF <- predict(ringRF, newdata = ring.test)
pred.ringSyn1 <- synthetic(object = ringSyn1, newdata = ring.test)$rfSynPred
pred.ringSyn2 <- synthetic(object = ringSyn2, newdata = ring.test)$rfSynPred

print(pred.ringRF)
print(pred.ringSyn1)
print(pred.ringSyn2)

}

--
compare synthetic forest to regular forest (regression)
--

simulate the data
n <- 250
ntest <- 1000
N <- n + ntest
d <- 50
std <- 0.1
x <- matrix(runif(N * d, -1, 1), ncol = d)
y <- 1 * (x[,1] + x[,4]^3 + x[,9] + sin(x[,12]*x[,18]) + rnorm(n, sd = std)>.38)
dat <- data.frame(x = x, y = y)
test <- (n+1):N

regression forests
regF <- rfsrc(y ~ ., dat[-test,],)
pred.regF <- predict(regF, dat[test,])

synthetic forests using fast rfsrc
synF1 <- synthetic(y ~ ., dat[-test,], newdata = dat[test,])
synF2 <- synthetic(y ~ ., dat[-test,],

newdata = dat[test,], mtrySeq = c(1, 10, 20, 30, 40, 50))

standardized MSE performance
mse <- c(tail(pred.regF$err.rate, 1),

tail(synF1$rfSynPred$err.rate, 1),
tail(synF2$rfSynPred$err.rate, 1)) / var(y[-test])

names(mse) <- c("forest", "synthetic1", "synthetic2")
print(mse)

--
multivariate synthetic forests

tune.rfsrc 115

--

mtcars.new <- mtcars
mtcars.new$cyl <- factor(mtcars.new$cyl)
mtcars.new$carb <- factor(mtcars.new$carb, ordered = TRUE)
trn <- sample(1:nrow(mtcars.new), nrow(mtcars.new)/2)
mvSyn <- synthetic(cbind(carb, mpg, cyl) ~., mtcars.new[trn,])
mvSyn.pred <- synthetic(object = mvSyn, newdata = mtcars.new[-trn,])

tune.rfsrc Tune Random Forest for the optimal mtry and nodesize parameters

Description

Finds the optimal mtry and nodesize tuning parameter for a random forest using out-of-sample
error. Applies to all families.

Usage

S3 method for class 'rfsrc'
tune(formula, data,
mtryStart = ncol(data) / 2,
nodesizeTry = c(1:9, seq(10, 100, by = 5)), ntreeTry = 100,
sampsize = function(x){min(x * .632, max(150, x ^ (3/4)))},
nsplit = 1, stepFactor = 1.25, improve = 1e-3, strikeout = 3, maxIter = 25,
trace = FALSE, doBest = FALSE, ...)

S3 method for class 'rfsrc'
tune.nodesize(formula, data,
nodesizeTry = c(1:9, seq(10, 150, by = 5)), ntreeTry = 100,
sampsize = function(x){min(x * .632, max(150, x ^ (4/5)))},
nsplit = 1, trace = TRUE, ...)

Arguments

formula A symbolic description of the model to be fit.

data Data frame containing the y-outcome and x-variables.

mtryStart Starting value of mtry.

nodesizeTry Values of nodesize optimized over.

ntreeTry Number of trees used for the tuning step.

sampsize Function specifying requested size of subsampled data. Can also be passed in as
a number.

nsplit Number of random splits used for splitting.

116 tune.rfsrc

stepFactor At each iteration, mtry is inflated (or deflated) by this value.

improve The (relative) improvement in out-of-sample error must be by this much for the
search to continue.

strikeout The search is discontinued when the relative improvement in OOB error is neg-
ative. However strikeout allows for some tolerance in this. If a negative im-
provement is noted a total of strikeout times, the search is stopped. Increase
this value only if you want an exhaustive search.

maxIter The maximum number of iterations allowed for each mtry bisection search.

trace Print the progress of the search?

doBest Return a forest fit with the optimal mtry and nodesize parameters?

... Further options to be passed to rfsrc.fast.

Details

tune returns a matrix whose first and second columns contain the nodesize and mtry values searched
and whose third column is the corresponding out-of-sample error. Uses standardized error and in the
case of multivariate forests it is the averaged standardized rror over the outcomes and for competing
risks it is the averaged standardized error over the event types.

If doBest=TRUE, also returns a forest object fit using the optimal mtry and nodesize values.

All calculations (including the final optimized forest) are based on the fast forest interface rfsrc.fast
which utilizes subsampling. However, while this yields a fast optimization strategy, such a solution
can only be considered approximate. Users may wish to tweak various options to improve accuracy.
Increasing the default sampsize will definitely help. Increasing ntreeTry (which is set to 100 for
speed) may also help. It is also useful to look at contour plots of the out-of-sample error as a func-
tion of mtry and nodesize (see example below) to identify regions of the parameter space where
error rate is small.

tune.nodesize returns the optimal nodesize where optimization is over nodesize only.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

See Also

rfsrc.fast

Examples

--
White wine classification example
--

load the data
data(wine, package = "randomForestSRC")
wine$quality <- factor(wine$quality)

tune.rfsrc 117

set the sample size manually
o <- tune(quality ~ ., wine, sampsize = 100)

here is the optimized forest
print(o$rf)

visualize the nodesize/mtry OOB surface
if (library("interp", logical.return = TRUE)) {

nice little wrapper for plotting results
plot.tune <- function(o, linear = TRUE) {
x <- o$results[,1]
y <- o$results[,2]
z <- o$results[,3]
so <- interp(x=x, y=y, z=z, linear = linear)
idx <- which.min(z)
x0 <- x[idx]
y0 <- y[idx]
filled.contour(x = so$x,

y = so$y,
z = so$z,
xlim = range(so$x, finite = TRUE) + c(-2, 2),
ylim = range(so$y, finite = TRUE) + c(-2, 2),
color.palette =

colorRampPalette(c("yellow", "red")),
xlab = "nodesize",
ylab = "mtry",
main = "error rate for nodesize and mtry",
key.title = title(main = "OOB error", cex.main = 1),
plot.axes = {axis(1);axis(2);points(x0,y0,pch="x",cex=1,font=2);

points(x,y,pch=16,cex=.25)})
}

plot the surface
plot.tune(o)

}

--
tuning for class imbalanced data problem
- see imbalanced function for details
- use rfq and perf.type = "gmean"
--

data(breast, package = "randomForestSRC")
breast <- na.omit(breast)
o <- tune(status ~ ., data = breast, rfq = TRUE, perf.type = "gmean")
print(o)

--
tune nodesize for competing risk - wihs data
--

118 var.select.rfsrc

data(wihs, package = "randomForestSRC")
plot(tune.nodesize(Surv(time, status) ~ ., wihs, trace = TRUE)$err)

var.select.rfsrc Variable Selection

Description

Variable selection using minimal depth.

Usage

S3 method for class 'rfsrc'
var.select(formula,
data,
object,
cause,
m.target,
method = c("md", "vh", "vh.vimp"),
conservative = c("medium", "low", "high"),
ntree = (if (method == "md") 1000 else 500),
mvars = (if (method != "md") ceiling(ncol(data)/5) else NULL),
mtry = (if (method == "md") ceiling(ncol(data)/3) else NULL),
nodesize = 2, splitrule = NULL, nsplit = 10, xvar.wt = NULL,
refit = (method != "md"), fast = FALSE,
na.action = c("na.omit", "na.impute"),
always.use = NULL, nrep = 50, K = 5, nstep = 1,
prefit = list(action = (method != "md"), ntree = 100,
mtry = 500, nodesize = 3, nsplit = 1),
verbose = TRUE, block.size = 10, seed = NULL,...)

Arguments

formula A symbolic description of the model to be fit. Must be specified unless object
is given.

data Data frame containing the y-outcome and x-variables in the model. Must be
specified unless object is given.

object An object of class (rfsrc, grow). Not required when formula and data are
supplied.

cause Integer value between 1 and J indicating the event of interest for competing
risks, where J is the number of event types (this option applies only to competing
risk families). The default is to use the first event type.

m.target Character value for multivariate families specifying the target outcome to be
used. If left unspecified, the algorithm will choose a default target.

var.select.rfsrc 119

method Variable selection method:
md: minimal depth (default).
vh: variable hunting.
vh.vimp: variable hunting with VIMP (variable importance).

conservative Level of conservativeness of the thresholding rule used in minimal depth selec-
tion:
high: Use the most conservative threshold.
medium: Use the default less conservative tree-averaged threshold.
low: Use the more liberal one standard error rule.

ntree Number of trees to grow.
mvars Number of randomly selected variables used in the variable hunting algorithm

(ignored when ‘method="md"’).
mtry The mtry value used.
nodesize Forest average terminal node size.
splitrule Splitting rule used.
nsplit If non-zero, the specified tree splitting rule is randomized which significantly

increases speed.
xvar.wt Vector of non-negative weights specifying the probability of selecting a variable

for splitting a node. Must be of dimension equal to the number of variables.
Default (NULL) invokes uniform weighting or a data-adaptive method depending
on prefit$action.

refit Should a forest be refit using the selected variables?
fast Speeds up the cross-validation used for variable hunting for a faster analysis.

See miscellanea below.
na.action Action to be taken if the data contains NA values.
always.use Character vector of variable names to always be included in the model selection

procedure and in the final selected model.
nrep Number of Monte Carlo iterations of the variable hunting algorithm.
K Integer value specifying the K-fold size used in the variable hunting algorithm.
nstep Integer value controlling the step size used in the forward selection process of

the variable hunting algorithm. Increasing this will encourage more variables to
be selected.

prefit List containing parameters used in preliminary forest analysis for determining
weight selection of variables. Users can set all or some of the following param-
eters:
action: Determines how (or if) the preliminary forest is fit. See details below.
ntree: Number of trees used in the preliminary analysis.
mtry: mtry used in the preliminary analysis.
nodesize: nodesize used in the preliminary analysis.
nsplit: nsplit value used in the preliminary analysis.

verbose Set to TRUE for verbose output.
block.size VIMP is calculated in "blocks" of trees of this size.
seed Negative integer specifying seed for the random number generator.
... Further arguments passed to forest grow call.

120 var.select.rfsrc

Details

This function implements random forest variable selection using tree minimal depth methodology
(Ishwaran et al., 2010). The option ‘method’ allows for two different approaches:

1. ‘method="md"’
Invokes minimal depth variable selection. Variables are selected using minimal depth variable
selection. Uses all data and all variables simultaneously. This is basically a front-end to the
max.subtree wrapper. Users should consult the max.subtree help file for details.
Set ‘mtry’ to larger values in high-dimensional problems.

2. ‘method="vh"’ or ‘method="vh.vimp"’
Invokes variable hunting. Variable hunting is used for problems where the number of variables
is substantially larger than the sample size (e.g., p/n is greater than 10). It is always prefered
to use ‘method="md"’, but to find more variables, or when computations are high, variable
hunting may be preferred.
When ‘method="vh"’: Using training data from a stratified K-fold subsampling (stratification
based on the y-outcomes), a forest is fit using mvars randomly selected variables (variables
are chosen with probability proportional to weights determined using an initial forest fit; see
below for more details). The mvars variables are ordered by increasing minimal depth and
added sequentially (starting from an initial model determined using minimal depth selection)
until joint VIMP no longer increases (signifying the final model). A forest is refit to the final
model and applied to test data to estimate prediction error. The process is repeated nrep
times. Final selected variables are the top P ranked variables, where P is the average model
size (rounded up to the nearest integer) and variables are ranked by frequency of occurrence.
The same algorithm is used when ‘method="vh.vimp"’, but variables are ordered using VIMP.
This is faster, but not as accurate.

Miscellanea

1. When variable hunting is used, a preliminary forest is run and its VIMP is used to define
the probability of selecting a variable for splitting a node. Thus, instead of randomly select-
ing mvars at random, variables are selected with probability proportional to their VIMP (the
probability is zero if VIMP is negative). A preliminary forest is run once prior to the anal-
ysis if prefit$action=TRUE, otherwise it is run prior to each iteration (this latter scenario
can be slow). When ‘method="md"’, a preliminary forest is fit only if prefit$action=TRUE.
Then instead of randomly selecting mtry variables at random, mtry variables are selected with
probability proportional to their VIMP. In all cases, the entire option is overridden if xvar.wt
is non-null.

2. If object is supplied and ‘method="md"’, the grow forest from object is parsed for min-
imal depth information. While this avoids fitting another forest, thus saving computational
time, certain options no longer apply. In particular, the value of cause plays no role in the
final selected variables as minimal depth is extracted from the grow forest, which has already
been grown under a preselected cause specification. Users wishing to specify cause should
instead use the formula and data interface. Also, if the user requests a prefitted forest via
prefit$action=TRUE, then object is not used and a refitted forest is used in its place for
variable selection. Thus, the effort spent to construct the original grow forest is not used in
this case.

var.select.rfsrc 121

3. If ‘fast=TRUE’, and variable hunting is used, the training data is chosen to be of size n/K,
where n=sample size (i.e., the size of the training data is swapped with the test data). This
speeds up the algorithm. Increasing K also helps.

4. Can be used for competing risk data. When ‘method="vh.vimp"’, variable selection based
on VIMP is confined to an event specific cause specified by cause. However, this can be
unreliable as not all y-outcomes can be guaranteed when subsampling (this is true even when
stratifed subsampling is used as done here).

Value

Invisibly, a list with the following components:

err.rate Prediction error for the forest (a vector of length nrep if variable hunting is
used).

modelsize Number of variables selected.

topvars Character vector of names of the final selected variables.

varselect Useful output summarizing the final selected variables.
rfsrc.refit.obj

Refitted forest using the final set of selected variables (requires ‘refit=TRUE’).

md.obj Minimal depth object. NULL unless ‘method="md"’.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

References

Ishwaran H., Kogalur U.B., Gorodeski E.Z, Minn A.J. and Lauer M.S. (2010). High-dimensional
variable selection for survival data. J. Amer. Statist. Assoc., 105:205-217.

Ishwaran H., Kogalur U.B., Chen X. and Minn A.J. (2011). Random survival forests for high-
dimensional data. Statist. Anal. Data Mining, 4:115-132.

See Also

find.interaction.rfsrc, holdout.vimp.rfsrc, max.subtree.rfsrc, vimp.rfsrc

Examples

--
Minimal depth variable selection
survival analysis
use larger node size which is better for minimal depth
--

data(pbc, package = "randomForestSRC")
pbc.obj <- rfsrc(Surv(days, status) ~ ., pbc, nodesize = 20, importance = TRUE)

default call corresponds to minimal depth selection

122 var.select.rfsrc

vs.pbc <- var.select(object = pbc.obj)
topvars <- vs.pbc$topvars

the above is equivalent to
max.subtree(pbc.obj)$topvars

different levels of conservativeness
var.select(object = pbc.obj, conservative = "low")
var.select(object = pbc.obj, conservative = "medium")
var.select(object = pbc.obj, conservative = "high")

--
Minimal depth variable selection
competing risk analysis
use larger node size which is better for minimal depth
--

competing risk data set involving AIDS in women
data(wihs, package = "randomForestSRC")
vs.wihs <- var.select(Surv(time, status) ~ ., wihs, nsplit = 3,

nodesize = 20, ntree = 100, importance = TRUE)

competing risk analysis of pbc data from survival package
implement cause-specific variable selection
if (library("survival", logical.return = TRUE)) {

data(pbc, package = "survival")
pbc$id <- NULL
var.select(Surv(time, status) ~ ., pbc, cause = 1)
var.select(Surv(time, status) ~ ., pbc, cause = 2)

}

--
Minimal depth variable selection
classification analysis
--

vs.iris <- var.select(Species ~ ., iris)

--
Variable hunting high-dimensional example
van de Vijver microarray breast cancer survival data
nrep is small for illustration; typical values are nrep = 100
--

data(vdv, package = "randomForestSRC")
vh.breast <- var.select(Surv(Time, Censoring) ~ ., vdv,

method = "vh", nrep = 10, nstep = 5)

plot top 10 variables
plot.variable(vh.breast$rfsrc.refit.obj,

xvar.names = vh.breast$topvars[1:10])
plot.variable(vh.breast$rfsrc.refit.obj,

xvar.names = vh.breast$topvars[1:10], partial = TRUE)

vdv 123

similar analysis, but using weights from univarate cox p-values
if (library("survival", logical.return = TRUE))
{

cox.weights <- function(rfsrc.f, rfsrc.data) {
event.names <- all.vars(rfsrc.f)[1:2]
p <- ncol(rfsrc.data) - 2
event.pt <- match(event.names, names(rfsrc.data))
xvar.pt <- setdiff(1:ncol(rfsrc.data), event.pt)
sapply(1:p, function(j) {

cox.out <- coxph(rfsrc.f, rfsrc.data[, c(event.pt, xvar.pt[j])])
pvalue <- summary(cox.out)$coef[5]
if (is.na(pvalue)) 1.0 else 1/(pvalue + 1e-100)

})
}
data(vdv, package = "randomForestSRC")
rfsrc.f <- as.formula(Surv(Time, Censoring) ~ .)
cox.wts <- cox.weights(rfsrc.f, vdv)
vh.breast.cox <- var.select(rfsrc.f, vdv, method = "vh", nstep = 5,

nrep = 10, xvar.wt = cox.wts)
}

vdv van de Vijver Microarray Breast Cancer

Description

Gene expression profiling for predicting clinical outcome of breast cancer (van’t Veer et al., 2002).
Microarray breast cancer data set of 4707 expression values on 78 patients with survival informa-
tion.

References

van’t Veer L.J. et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer.
Nature, 12, 530–536.

Examples

data(vdv, package = "randomForestSRC")

124 vimp.rfsrc

veteran Veteran’s Administration Lung Cancer Trial

Description

Randomized trial of two treatment regimens for lung cancer. This is a standard survival analysis
data set.

Source

Kalbfleisch and Prentice, The Statistical Analysis of Failure Time Data.

References

Kalbfleisch J. and Prentice R, (1980) The Statistical Analysis of Failure Time Data. New York:
Wiley.

Examples

data(veteran, package = "randomForestSRC")

vimp.rfsrc VIMP for Single or Grouped Variables

Description

Calculate variable importance (VIMP) for a single variable or group of variables for training or test
data.

Usage

S3 method for class 'rfsrc'
vimp(object, xvar.names, m.target = NULL,
importance = c("anti", "permute", "random"), block.size = 10,
joint = FALSE, seed = NULL, do.trace = FALSE, ...)

Arguments

object An object of class (rfsrc, grow) or (rfsrc, forest). Requires ‘forest=TRUE’
in the original rfsrc call.

xvar.names Names of the x-variables to be used. If not specified all variables are used.

m.target Character value for multivariate families specifying the target outcome to be
used. If left unspecified, the algorithm will choose a default target.

importance Type of VIMP.

block.size Specifies number of trees in a block when calculating VIMP.

vimp.rfsrc 125

joint Individual or joint VIMP?

seed Negative integer specifying seed for the random number generator.

do.trace Number of seconds between updates to the user on approximate time to com-
pletion.

... Further arguments passed to or from other methods.

Details

Using a previously trained forest, calculate the VIMP for variables xvar.names. By default, VIMP
is calculated for the original data, but the user can specify a new test data for the VIMP calculation
using newdata. See rfsrc for more details about how VIMP is calculated.

‘joint=TRUE’ returns joint VIMP, defined as importance for a group of variables when the group is
perturbed simultaneously.

csv=TRUE return case specific VIMP. Applies to all families except survival families. See example
below.

Value

An object of class (rfsrc, predict) containing importance values.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

References

Ishwaran H. (2007). Variable importance in binary regression trees and forests, Electronic J. Statist.,
1:519-537.

See Also

holdout.vimp.rfsrc, rfsrc

Examples

--
classification example
showcase different vimp
--

iris.obj <- rfsrc(Species ~ ., data = iris)

anti vimp (default)
print(vimp(iris.obj)$importance)

anti vimp using brier prediction error
print(vimp(iris.obj, perf.type = "brier")$importance)

126 vimp.rfsrc

permutation vimp
print(vimp(iris.obj, importance = "permute")$importance)

random daughter vimp
print(vimp(iris.obj, importance = "random")$importance)

joint anti vimp
print(vimp(iris.obj, joint = TRUE)$importance)

paired anti vimp
print(vimp(iris.obj, c("Petal.Length", "Petal.Width"), joint = TRUE)$importance)
print(vimp(iris.obj, c("Sepal.Length", "Petal.Width"), joint = TRUE)$importance)

--
survival example
anti versus permute VIMP with different block sizes
--

data(pbc, package = "randomForestSRC")
pbc.obj <- rfsrc(Surv(days, status) ~ ., pbc)

print(vimp(pbc.obj)$importance)
print(vimp(pbc.obj, block.size=1)$importance)
print(vimp(pbc.obj, importance="permute")$importance)
print(vimp(pbc.obj, importance="permute", block.size=1)$importance)

--
imbalanced classification example
see the imbalanced function for more details
--

data(breast, package = "randomForestSRC")
breast <- na.omit(breast)
f <- as.formula(status ~ .)
o <- rfsrc(f, breast, ntree = 2000)

permutation vimp
print(100 * vimp(o, importance = "permute")$importance)

anti vimp using gmean performance
print(100 * vimp(o, perf.type = "gmean")$importance[, 1])

--
regression example
--

airq.obj <- rfsrc(Ozone ~ ., airquality)
print(vimp(airq.obj))

--
regression example where vimp is calculated on test data
--

wihs 127

set.seed(100080)
train <- sample(1:nrow(airquality), size = 80)
airq.obj <- rfsrc(Ozone~., airquality[train,])

training data vimp
print(airq.obj$importance)
print(vimp(airq.obj)$importance)

test data vimp
print(vimp(airq.obj, newdata = airquality[-train,])$importance)

--
case-specific vimp
returns VIMP for each case
--

o <- rfsrc(mpg~., mtcars)
v <- vimp(o, csv = TRUE)
csvimp <- get.mv.csvimp(v, standardize=TRUE)
print(csvimp)

--
case-specific joint vimp
returns joint VIMP for each case
--

o <- rfsrc(mpg~., mtcars)
v <- vimp(o, joint = TRUE, csv = TRUE)
csvimp <- get.mv.csvimp(v, standardize=TRUE)
print(csvimp)

--
case-specific joint vimp for multivariate regression
returns joint VIMP for each case, for each outcome
--

o <- rfsrc(Multivar(mpg, cyl) ~., data = mtcars)
v <- vimp(o, joint = TRUE, csv = TRUE)
csvimp <- get.mv.csvimp(v, standardize=TRUE)
print(csvimp)

wihs Women’s Interagency HIV Study (WIHS)

Description

Competing risk data set involving AIDS in women.

128 wine

Format

A data frame containing:

time time to event
status censoring status: 0=censoring, 1=HAART initiation, 2=AIDS/Death before HAART
ageatfda age in years at time of FDA approval of first protease inhibitor
idu history of IDU: 0=no history, 1=history
black race: 0=not African-American; 1=African-American
cd4nadir CD4 count (per 100 cells/ul)

Source

Study included 1164 women enrolled in WIHS, who were alive, infected with HIV, and free of clin-
ical AIDS on December, 1995, when the first protease inhibitor (saquinavir mesylate) was approved
by the Federal Drug Administration. Women were followed until the first of the following occurred:
treatment initiation, AIDS diagnosis, death, or administrative censoring (September, 2006). Vari-
ables included history of injection drug use at WIHS enrollment, whether an individual was African
American, age, and CD4 nadir prior to baseline.

References

Bacon M.C, von Wyl V., Alden C., et al. (2005). The Women’s Interagency HIV Study: an obser-
vational cohort brings clinical sciences to the bench, Clin Diagn Lab Immunol, 12(9):1013-1019.

Examples

data(wihs, package = "randomForestSRC")
wihs.obj <- rfsrc(Surv(time, status) ~ ., wihs, nsplit = 3, ntree = 100)

wine White Wine Quality Data

Description

The inputs include objective tests (e.g. PH values) and the output is based on sensory data (median
of at least 3 evaluations made by wine experts) of white wine. Each expert graded the wine quality
between 0 (very bad) and 10 (very excellent).

References

Cortez, P., Cerdeira, A., Almeida, F., Matos T. and Reis, J. (2009). Modeling wine preferences by
data mining from physicochemical properties. In Decision Support Systems, Elsevier, 47(4):547-
553.

wine 129

Examples

load wine and convert to a multiclass problem
data(wine, package = "randomForestSRC")
wine$quality <- factor(wine$quality)

Index

∗ anonymous
rfsrc.anonymous, 92

∗ clustering
sidClustering.rfsrc, 98

∗ confidence interval
subsample.rfsrc, 106

∗ datasets
breast, 6
follic, 9
hd, 14
housing, 19
nutrigenomic, 33
pbc, 41
peakVO2, 42
vdv, 123
veteran, 124
wihs, 127
wine, 128

∗ documentation
rfsrc.news, 97

∗ fast
rfsrc.fast, 94

∗ forest
predict.rfsrc, 54
rfsrc, 70
rfsrc.anonymous, 92
rfsrc.fast, 94
synthetic, 111
tune.rfsrc, 115

∗ imbalanced two-class data
imbalanced.rfsrc, 20

∗ missing data
impute.rfsrc, 26

∗ package
randomForestSRC-package, 2

∗ partial
partial.rfsrc, 35

∗ plot
get.tree.rfsrc, 10

plot.competing.risk.rfsrc, 43
plot.quantreg.rfsrc, 44
plot.rfsrc, 45
plot.subsample.rfsrc, 47
plot.survival.rfsrc, 48
plot.variable.rfsrc, 50

∗ predict
predict.rfsrc, 54
synthetic, 111
vimp.rfsrc, 124

∗ print
print.rfsrc, 64

∗ quantile regression forests
quantreg.rfsrc, 65

∗ splitting behavior
stat.split.rfsrc, 103

∗ subsampling
subsample.rfsrc, 106

∗ tune
tune.rfsrc, 115

∗ unsupervised
sidClustering.rfsrc, 98

∗ variable selection
find.interaction.rfsrc, 7
max.subtree.rfsrc, 31
var.select.rfsrc, 118
vimp.rfsrc, 124

∗ vimp
holdout.vimp.rfsrc, 14
subsample.rfsrc, 106

breast, 6

extract.bootsample (subsample.rfsrc),
106

extract.quantile (quantreg.rfsrc), 65
extract.subsample (subsample.rfsrc), 106

find.interaction
(find.interaction.rfsrc), 7

130

INDEX 131

find.interaction.rfsrc, 6, 7, 83, 121
follic, 9, 44

get.auc (rfsrc), 70
get.bayes.rule (rfsrc), 70
get.brier.error (rfsrc), 70
get.brier.survival

(plot.survival.rfsrc), 48
get.cindex (rfsrc), 70
get.confusion (rfsrc), 70
get.imbalanced.optimize

(imbalanced.rfsrc), 20
get.imbalanced.performance

(imbalanced.rfsrc), 20
get.misclass.error (rfsrc), 70
get.mv.cserror (rfsrc), 70
get.mv.csvimp (rfsrc), 70
get.mv.error (rfsrc), 70
get.mv.formula (rfsrc), 70
get.mv.predicted (rfsrc), 70
get.mv.vimp (rfsrc), 70
get.partial.plot.data (partial.rfsrc),

35
get.pr.auc (imbalanced.rfsrc), 20
get.pr.curve (imbalanced.rfsrc), 20
get.quantile (quantreg.rfsrc), 65
get.rfq.threshold (imbalanced.rfsrc), 20
get.tree, 3, 70
get.tree (get.tree.rfsrc), 10
get.tree.rfsrc, 6, 10, 83

hd, 14, 44
holdout.vimp, 3
holdout.vimp (holdout.vimp.rfsrc), 14
holdout.vimp.rfsrc, 6, 8, 14, 33, 59, 83,

109, 121, 125
housing, 19

imbalanced, 3, 11
imbalanced (imbalanced.rfsrc), 20
imbalanced.rfsrc, 3, 6, 20, 83
impute, 4
impute (impute.rfsrc), 26
impute.rfsrc, 4, 6, 26, 83

max.subtree (max.subtree.rfsrc), 31
max.subtree.rfsrc, 6, 8, 31, 83, 121

nutrigenomic, 33

partial, 4
partial (partial.rfsrc), 35
partial.rfsrc, 4, 6, 35, 53, 83
pbc, 41
peakVO2, 42
plot.competing.risk

(plot.competing.risk.rfsrc), 43
plot.competing.risk.rfsrc, 6, 43, 50, 59,

83
plot.quantreg (plot.quantreg.rfsrc), 44
plot.quantreg.rfsrc, 44
plot.rfsrc, 6, 45, 59, 83
plot.subsample (plot.subsample.rfsrc),

47
plot.subsample.rfsrc, 47, 108, 109
plot.survival (plot.survival.rfsrc), 48
plot.survival.rfsrc, 6, 48, 59, 83
plot.variable (plot.variable.rfsrc), 50
plot.variable.rfsrc, 6, 37, 50, 59, 83
predict.rfsrc, 3, 6, 50, 53, 54, 83
print.bootsample (subsample.rfsrc), 106
print.rfsrc, 6, 64, 83
print.subsample (subsample.rfsrc), 106

quantreg, 3
quantreg (quantreg.rfsrc), 65
quantreg.rfsrc, 3, 6, 45, 65, 83

randomForestSRC (rfsrc), 70
randomForestSRC-package, 2
rfsrc, 3, 6, 15, 22, 29, 44, 50, 53, 59, 67, 70,

83, 92, 93, 95, 96, 101, 109, 113, 125
rfsrc.anonymous, 83, 92
rfsrc.cart, 6, 83
rfsrc.fast, 3, 6, 22, 29, 59, 75, 83, 94, 101,

113, 116
rfsrc.news, 97

sid.perf.metric (sidClustering.rfsrc),
98

sidClustering (sidClustering.rfsrc), 98
sidClustering.rfsrc, 3, 6, 83, 98
stat.split (stat.split.rfsrc), 103
stat.split.rfsrc, 6, 59, 83, 103
subsample, 3
subsample (subsample.rfsrc), 106
subsample.rfsrc, 6, 48, 83, 106
synthetic, 111
synthetic.rfsrc, 6, 53, 59, 83

132 INDEX

tune (tune.rfsrc), 115
tune.rfsrc, 6, 83, 115

var.select (var.select.rfsrc), 118
var.select.rfsrc, 6, 8, 33, 83, 118
vdv, 123
veteran, 124
vimp, 3
vimp (vimp.rfsrc), 124
vimp.rfsrc, 6, 8, 17, 33, 59, 83, 109, 121, 124

wihs, 44, 127
wine, 128

	randomForestSRC-package
	breast
	find.interaction.rfsrc
	follic
	get.tree.rfsrc
	hd
	holdout.vimp.rfsrc
	housing
	imbalanced.rfsrc
	impute.rfsrc
	max.subtree.rfsrc
	nutrigenomic
	partial.rfsrc
	pbc
	peakVO2
	plot.competing.risk.rfsrc
	plot.quantreg.rfsrc
	plot.rfsrc
	plot.subsample.rfsrc
	plot.survival.rfsrc
	plot.variable.rfsrc
	predict.rfsrc
	print.rfsrc
	quantreg.rfsrc
	rfsrc
	rfsrc.anonymous
	rfsrc.fast
	rfsrc.news
	sidClustering.rfsrc
	stat.split.rfsrc
	subsample.rfsrc
	synthetic
	tune.rfsrc
	var.select.rfsrc
	vdv
	veteran
	vimp.rfsrc
	wihs
	wine
	Index

