
Package ‘rpql’
August 20, 2023

Title Regularized PQL for Joint Selection in GLMMs

Version 0.8.1

Date 2023-08-01

Author Francis K.C. Hui <francis.hui@gmail.com>, with contribu-
tions from Samuel Mueller <samuel.mueller@sydney.edu.au> and A.H. Welsh <Alan.Welsh@anu.edu.au>

Maintainer Francis Hui <fhui28@gmail.com>

Description Performs joint selection in Generalized Linear Mixed Models (GLMMs) using penal-
ized likelihood methods. Specifically, the Penalized Quasi-
Likelihood (PQL) is used as a loss function, and penalties are then augmented to perform simul-
taneous fixed and random effects selection. Regularized PQL avoids the need for integra-
tion (or approximations such as the Laplace's method) during the estimation pro-
cess, and so the full solution path for model selection can be constructed relatively quickly.

License GPL-2

Imports gamlss.dist, lme4, Matrix, MASS, mvtnorm, Rcpp,

Suggests nlme

NeedsCompilation yes

LinkingTo Rcpp, RcppArmadillo

Repository CRAN

Date/Publication 2023-08-19 22:50:02 UTC

R topics documented:
rpql-package . 2
build.start.fit . 3
calc.marglogL . 6
gendat.glmm . 8
lseq . 11
nb2 . 13
rpql . 14
rpqlseq . 25
summary.rpql . 27

Index 29

1

2 rpql-package

rpql-package Joint effects selection in GLMMs using regularized PQL

Description

rpql offers fast joint selection of fixed and random effects in Generalized Linear Mixed Model
(GLMMs) via regularization. Specifically the penalized quasi-likelihood (PQL, Breslow and Clay-
ton, 1993) is used as a loss function, and penalties are added on to perform fixed and random effects
selection e.g., the lasso (Tibshirani, 1996) penalty. This method of joint selection in GLMMs, re-
ferred to regularized PQL, is very fast compared to information criterion and hypothesis testing,
and has attractive large sample properties (Hui et al., 2016). Its performance however may not be
great if the amount of data to estimate each random effect is not large, i.e. the cluster size is not
large.

Details

Package: rpql
Type: Package
Version: 0.8.1
Date: 2023-08-01
License: GPL-2

Author(s)

Francis K.C. Hui <francis.hui@gmail.com>, with contributions from Samuel Mueller <samuel.mueller@sydney.edu.au>
and A.H. Welsh <Alan.Welsh@anu.edu.au>

Maintainer: Francis Hui <fhui28@gmail.com>

References

• Breslow, N. E., and Clayton, D. G. (1993). Approximate inference in generalized linear mixed
models. Journal of the American Statistical Association, 88, 9-25.

• Hui, F.K.C., Mueller, S., and Welsh, A.H. (2017). Joint Selection in Mixed Models using
Regularized PQL. Journal of the American Statistical Association, 112, 1323-1333.

• Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), 58, 267-288.

Examples

Please see examples in help file for the rpql function

build.start.fit 3

build.start.fit Constructs a start fit for use in the rpql function

Description

Takes a GLMM fitted using the lme4 package i.e., using either the lmer or glmer functions, and
construct a list containing starting values for use in the start argument in main fitting function
rpql. It also constructs adaptive lasso weights, which can subsequently be used in the pen.weights
arguments in the rpql function, if the adaptive lasso penalty is used for variable selection.

Usage

build.start.fit(lme4.fit, id = NULL, gamma = 0, cov.groups = NULL)

Arguments

lme4.fit An object of class "lmerMod" or "glmerMod", obtained when fitting a (G)LMM
using the lmer and glmer functions in the lme4 package.

id A optional list with each element being a vector of IDs that reference the model
matrix in the corresponding element in the list Z. Each vector of IDs must be
integers (but not factors). Note this is optional argument as it is only use for
non-compulsory formatting purposes in the function.

gamma A vector of power parameters, γ, for use in constructing adaptive lasso weights.
Can be a vector of one or two elements. If two elements, then the first and
second elements are the power parameter for the fixed and random effect weights
respectively. If one element, the same power parameter is used for both fixed
and random effect weights. Defaults to 0, in which case the weights are all equal
to 1 i.e., it reverts to the unweighted lasso penalty.

cov.groups A vector specifying if fixed effect coefficients (including the intercept) should
be regarded and therefore penalized in groups. For example, if one or more
of the fixed effect covariates are factors, then lme4 will automatically create
dummy variables in the model matrix and estimate coefficients for each level,
using one level as the reference. cov.groups is then used to identify all the
coefficients that corresponds to that factor, such that all of these coefficients
are penalized collectively as a group. Defaults to NULL, in which case it is
assumed all coefficients should be treated independently. Please see the details
and examples for more details.

Details

This function is mainly used when: 1) you want to produce good starting values for the main fitting
function rpql, and so you fit a saturated (full) GLMM using lme4 and use the estimates from there
as starting values, and/or 2) you want to obtain adaptive lasso weights of the form weightk =
| ˜parameterk|−γ , where γ > 0 is the power parameter and ˜parameterk is the parameter estimate
from the saturated model fit. For regularized PQL specifically, this function will construct adaptive

4 build.start.fit

lasso weights from the lme4 fit as follows: Let wF and wR denote fixed and random effect adaptive
weights respectively. Then we have,

wFk = |β̃k|−γ1

wRl = |Σ̃ll|−γ2 ,

where β̃k is the estimated coefficient for the kth fixed effect, Σ̃ll is the lth diagonal element from
the estimated random effects covariance matrix, and γ is a vector of two power parameters; see Zou
(2006) for the adaptive lasso, and Hui et al. (2016) for regularized PQL selection in GLMMs using
on adaptive lasso type penalties.

If cov.groups is supplied, this means that some of the fixed effects coefficients should be treated
and penalized collectively as a group. The most common cases where this is used is when you
have factor or categorical variables with more than two levels, or when you have polynomial terms
that should be dealt with together. For instance, suppose you have a model matrix consisting of
six columns, where first three columns correspond to separate covariates (including the intercept)
and the last three columns all correspond to dummy variables created for a factor variable with
four levels , e.g. soil moisture with levels dry, moderately moist, very moist, wet. The coefficients
from the last three columns should then be penalized together, and so we can set cov.groups =
c(1,2,3,4,4,4).

In doing so, the adaptive lasso weights for the grouped coefficients are then constructed differently.
Following on from the example above, we have the fixed effect weight for soil moisture defined as

wF = ‖β̃‖−γ1 ,

where ‖·‖ corresponds to the L2-norm and β̃ are the fixed effect coefficients belonging in the group
(three in this case). When entered into the rpql function, an adaptive group lasso (Wang and Leng,
2008) is applied to these set of coefficients, such that they are all encouraged to be shrunk to zero
at the same time.

Of course, after construction the adaptive lasso weights can be manually altered before entering into
the main rpql function e.g., if one wants certain fixed and/or random effects to not be penalized.

Value

A list containing the following elements

fixef Fixed effect coefficient estimates from lme4.fit.
ranef A list of random effect predicted coefficients from lme4.fit.
ran.cov A list of random effects covariance matrices from lme4.fit.
cov.groups The argument cov.groups. Defaults to NULL.
pen.weights A list of adaptive lasso weights constructed from lme4.fit. Contains elements

pen.weight$fixed and pen.weights$random, which are the weights for the
fixed and random effects respectively. Please see details above as to their con-
struction.

Warnings

• In order to construct sensible starting values and weights, this function should really only be
used when lme4.fit is a fit of the saturated GLMM, i.e. all fixed and random effects included.

build.start.fit 5

Author(s)

Francis K.C. Hui <francis.hui@gmail.com>, with contributions from Samuel Mueller <samuel.mueller@sydney.edu.au>
and A.H. Welsh <Alan.Welsh@anu.edu.au>

Maintainer: Francis Hui <fhui28@gmail.com>

References

• Hui, F.K.C., Mueller, S., and Welsh, A.H. (2016). Joint Selection in Mixed Models using
Regularized PQL. Journal of the American Statistical Association: accepted for publication.

• Wang, H., and Leng, C. (2008). A note on adaptive group lasso. Computational Statistics &
Data Analysis, 52, 5277-5286.

• Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American statisti-
cal association, 101, 1418-1429.

See Also

rpql for fitting and performing model selection in GLMMs using regularized PQL, which may use
the values obtained from build.start.fit for starting values and adaptive lasso weights.

Examples

##-------------------------
Example 1: Bernoulli GLMM with grouped covariates.
Independent cluster model with 50 clusters and equal cluster sizes of 10
Nine covariates where the last covariate (soil type) is a factor with four levels
##-------------------------
n <- 50; p <- 8; m <- 10
set.seed(123)
X <- data.frame(matrix(rnorm(n*m*p),n*m,p), soil=sample(1:4,size=m*n,replace=TRUE))
X$soil <- factor(X$soil)
X <- model.matrix(~ ., data = X)
colnames(X) <- paste("X",1:ncol(X),sep="")

Z <- X[,1:5] ## Random effects model matrix taken as first five columns
true_betas <- c(-0.1,1,-1,1,-1,1,-1,0,0,0,0,0)
true_D <- matrix(0,ncol(Z),ncol(Z))
true_D[1:3,1:3] <- matrix(c(9,4.8,0.6,4.8,4,1,0.6,1,1),
3,3,byrow=TRUE) ## 3 important random effects

simy <- gendat.glmm(id = list(cluster = rep(1:n,each=m)), X = X, beta = true_betas,
Z = list(cluster = Z), D = list(cluster = true_D), family = binomial())

Not run:
library(lme4)
dat <- data.frame(y = simy$y, simy$X, simyZcluster, simy$id)
fit_satlme4 <- glmer(y ~ X - 1 + (Z - 1 | cluster), data = dat,
family = "binomial")
fit_sat <- build.start.fit(fit_satlme4, id = simy$id, gamma = 2,

6 calc.marglogL

cov.groups = c(1:9,10,10,10))

new.fit <- rpql(y = simy$y, X = simy$X, Z = simy$Z, id = simy$id, lambda = 0.01,
pen.type = "adl", pen.weights = fit_sat$pen.weights,
cov.groups = fit_sat$cov.groups, start = fit_sat, family = binomial())

End(Not run)

calc.marglogL Calculate the marginal log-likelihood for a GLMM fitted using rpql

Description

After fitting and performing joint (fixed and random effects) using regularized PQL, one may then
(for one reason or another) want to calculate the marginal likelihood for the (sub)model, possibly
on a test dataset for prediction. This is the main purpose of calc.marglogL.

Usage

calc.marglogL(new.data, fit, B = 1000)

Arguments

new.data A list containing the elements new.data$y, new.data$X, and new.data$Z. These
correspond respectively to the responses, fixed effects model matrix, and random
effects model matrices that the marginal log-likelihood is be calculated on. No
check is made against the elements in fit to ensure that these are of the correct
dimensions compared, and furthermore it is assumed that new.data$Z is a list
in the same order as the Z used when fitting the original model via rpql.

fit An object of class pqrl. In the least, fit should be a list containing the el-
ements fit$family for the family, e.g. gaussian(), poisson(), fit$fixef for
the estimated vector of fixed effects, fit$ran.cov which is a list of estimated
random effects covariance matrices. If appropriate, fit may also contain the
elements fit$phi for the estimated variance parameter in normal, lognormal,
and negative binomial GLMMs, fit$shape for the estimated shape parame-
ter used in Gamma GLMMs, fit$trial.size for the trial size(s) for binomial
GLMMs, and fit$zeroprob for the estimated probability of a structural zero
in ZIP GLMMs.

B A positive integer for the number of random effects examples to generate, when
performing Monte-Carlo integration. Defaults to 1000.

calc.marglogL 7

Details

Regularized PQL performs penalized joint (fixed and random effects) selection for GLMMs, where
the penalized quasi-likelihood (PQL, Breslow and Clayton, 1993) is used the loss function. After
fitting, one may then wish to calculate the marginal log-likelihood for the (sub)model, defined as

` = log

(∫
f(y;β, b, φ)f(b;Σ)db

)
,

where f(y;β, b, φ) denotes the conditional likelihood of the responses y given the fixed effects β,
random effects b, and nuisance parameters φ if appropriate, and f(b;Σ) is the multivariate normal
distribution for the random effects, with covariance matrix Σ. calc.marglogL calculates the above
marginal likelihood using Monte-Carlo integration.

Admittedly, this function is not really useful for fitting the GLMM per-se: it is never called by the
main function rpql, and the marginal likelihood is (approximately) calculated anyway if hybrid.est
= TRUE and the final submodel is refitted using lme4. Where the function comes in handy is if you
have a validation or test dataset, and you want to calculated the predicted (log) likelihood of the test
data given the regularized PQL fit.

Value

The marginal log-likelihood of new.data given the GLMM in fit.

Warnings

• No check is made to see if the dimensions of the elements new.data and fit match, e.g. the
number of columns in new.data$X is equal to the number of elements in fit$fixef. Please
ensure they are!

• Monte-Carlo integration is computationally intensive especially if y is long!

Author(s)

Francis K.C. Hui <francis.hui@gmail.com>, with contributions from Samuel Mueller <samuel.mueller@sydney.edu.au>
and A.H. Welsh <Alan.Welsh@anu.edu.au>

Maintainer: Francis Hui <fhui28@gmail.com>

References

• Breslow, N. E., & Clayton, D. G. (1993). Approximate inference in generalized linear mixed
models. Journal of the American Statistical Association, 88, 9-25.

See Also

rpql for fitting and performing model selection in GLMMs using regularized PQL. lme4 also ap-
proximately calculates the marginal log-likelihood when fitting a GLMM.

Examples

Not given

8 gendat.glmm

gendat.glmm Simulates datasets based on a Generalized Linear Mixed Model
(GLMM).

Description

Datasets are simulated from a GLMM given a series of inputs including: model matrices X and Z
for the fixed and random effects respectively, a set of true fixed effect coefficients beta, a list of true
random effect covariance matrices D, the family of response, and some other nusiance parameters if
appropriate.

Usage

gendat.glmm(id, X, beta, Z, D, trial.size = 1, family = gaussian(),
phi = NULL, shape = NULL, zeroprob = NULL, upper.count = Inf)

Arguments

id A list with each element being a vector of IDs that reference the model matrix
in the corresponding element in the list Z. Each vector of IDs must be integers
(but not factors).

X A model matrix of corresponding to the fixed effects. A column of ones should
be included if a fixed intercept is to be included in the model.

beta A vector of true fixed effect parameters, with the same length as the number of
columns in X.

Z A list with each element being a model matrix for a set of random effects. Each
element of Z is referenced by a vector of IDs given by the corresponding element
in the list id. Each model matrix (element of Z) should have the same number
of rows as the length of y.

D A list with each element being a symmetric random effects covariance matrix
which is used to generate random effects. These random effects are then applied
to the corresponding element in the list Z, and are referenced by the correspond-
ing element in the list id.

trial.size The trial size if family = binomial(). Either takes a single non-zero value or a
vector of non-zero values with length the same as the number of rows in X. The
latter allows for differing trial sizes across responses. Defaults to 1.

family The distribution for the responses in GLMM. The argument must be applied as a
object of class "family". Currently supported arguments include: gaussian(),
poisson(), binomial(), Gamma(), nb2() for negative binomial, LOGNO() for
log-normal, and ZIP() for zero-inflated Poisson.

phi A non-zero value for the true variance parameter σ2 if family = gaussian(),
the true variance parameter σ2 on the log scale if family = LOGNO(), or the
overdispersion parameter if family = nb2(), where the negative binomial vari-
ance is parameterized as V = µ+ φµ2. Defaults to NULL.

gendat.glmm 9

shape A non-zero value for the shape parameter a if family = Gamma(), where the
variance is parameterized as V = µ2/a. Defaults to NULL.

zeroprob A value between 0 and 1 for the probability of a structural zero if family =
ZIP() for zero-inflated Poisson. Defaults to NULL.

upper.count A non-zero integer which allows the user to control the maximum value of the
counts generates for datasets when family = poisson() or nb2(). When the re-
sponses are simulated, a while loop is run to ensure that all responses generated
are less than or equal to upper.count. Default to Inf.

Details

The relationship between the mean of the responses and covariates in a GLMM is given as follows:
For i = 1, . . . , n, where n is, equivalently, the number of rows in X, the length of each element in
id, and the number of rows in each element of Z, we have

g(µi) = xTi β + zTi1bi1 + zTi2bi2 + . . . ,

where g(·) is the link function, µi is the mean of the distribution for observation i, xi is row i of the
fixed effects model matrix X, and β is the fixed effects coefficients. For the random effects, zi1 is
row i of the random effects model matrix in the first element of Z, while bi1 is the vector of random
effects generated for observation i based on the first element of D. The remaining parameters zi2,
bi2 and so on, are defined similarly.

Having lists for id, Z, and D allows for multiple sets of random effects to be included in the true
GLMM. This is analogous to the lme4 package, where multiple random effects are permitted in the
formula, e.g., (1|creek) + (1|creek:sample). If the true GLMM contains only one set of random
effects, e.g., in longitudinal data, then the three lists will all contain only one element. Cases with
multiple sets of random effects include nested and crossed designs, in which case id, Z, and D will
have two or more elements.

It is recommended that the user think through and design these lists carefully to ensure that they are
actually constructing a true GLMM that they want to simulated data from. Yes it takes some getting
use too, and we apologize for this =(Please see examples below for some ideas.

Finally, note that some of the elements of beta can be zero, i.e. truly unimportant fixed effects.
Likewise, each element of D can be a random effects covariance matrix containing zero rows and
columns, i.e. truly unimportant random effects.

Value

A list containing the following elements

y The vector simulated responses.

b A list with each element being a matrix of random effects simulated from a
multivariate normal distribution with mean zero and covariance matrix equal to
the corresponding element in the list D. For each element in b, the number of
columns of the matrix equals the dimension of corresponding covariance matrix
element in D, while the number of rows equals to the number of unique IDs in
the corresponding element of the list id.

10 gendat.glmm

id, X, Z, beta, D, phi, shape, zeroprob, trial.size, family

Some of the arguments entered into gendat.glmm.

nonzero.beta A vector indexing the non-zero values of beta, i.e. the truly important fixed
effects.

nonzero.b A list with each element being a vector indexing the non-zero diagonal variances
in the corresponding element of the list D, i.e. the truly important random effects.

Author(s)

Francis K.C. Hui <francis.hui@gmail.com>, with contributions from Samuel Mueller <samuel.mueller@sydney.edu.au>
and A.H. Welsh <Alan.Welsh@anu.edu.au>

Maintainer: Francis Hui <fhui28@gmail.com>

References

• Schielzeth, H., & Nakagawa, S. (2013). Nested by design: model fitting and interpretation in
a mixed model era. Methods in Ecology and Evolution, 4, 14-24.

See Also

rpql for fitting and performing model selection in GLMMs using regularized PQL.

Examples

##-------------------------
Example 1: Linear Mixed Models
Independent cluster model with 50 clusters
Nine covariates including a fixed and random intercept
Please note the rpql is currently not optimized for LMMs!
##-------------------------
library(mvtnorm)
library(lme4)

n <- 50; m <- 10; p <- 8;
Generate rows of a model matrix from a multivariate normal distribution with
AR1 covariance structure.

H <- abs(outer(1:p, 1:p, "-"))
X <- cbind(1,rmvnorm(n*m,rep(0,p),sigma=0.5^H));

Z <- X
true_betas <- c(1,3,2,1.5,-1,0,0,0,0) ## 5 important fixed effects
true_D <- matrix(0,p+1,p+1) ## 3 important random effects
true_D[1:3,1:3] <- matrix(c(9,4.8,0.6,4.8,4,1,0.6,1,1),3,3,byrow=TRUE)

simy <- gendat.glmm(id = list(cluster = rep(1:n,each=m)), X = X, beta = true_betas,
Z = list(cluster = Z), D = list(cluster = true_D), phi = 1, family = gaussian())
Notice how id, Z, and D all are lists with one element, and that
the name of the first element (a generic name "cluster") is the
same for all three lists.

lseq 11

id is where the action takes place. In particular, id$cluster is
designed so that the first m elements correspond to cluster 1,
the second m elements correspond to cluster 2, and so forth.
In turn, the first m rows of X and Z$cluster correspond
to cluster 1, and so on.

Not run:
dat <- data.frame(y = simy$y, simy$X, simyZcluster, simy$id)
fit_satlme4 <- lmer(y ~ X - 1 + (Z - 1 | cluster), data = dat,
REML = FALSE)
fit_sat <- build.start.fit(fit_satlme4, gamma = 2)

lambda_seq <- lseq(1e-4,1,length=100)
fit <- rpqlseq(y = simy$y, X = simy$X, Z = simy$Z, id = simy$id,
family = gaussian(), lambda = lambda_seq, pen.type = "adl",
pen.weights = fit_sat$pen.weights, start = fit_sat)

summary(fit$best.fit[[5]]) ## Second of the hybrid ICs
apply(fit$collect.ics, 2, which.min) ## Look at best fit chosen by different ICs

End(Not run)

Please see other examples in help file for the \code{rpql} function.

lseq Generates a sequence of tuning parameters on the log scale

Description

Generates a sequence of tuning parameters λ that are equally spaced on the log-scale. It may be
used as part of constructing a solution path for the main fitting function rpql.

Usage

lseq(from, to, length, decreasing = FALSE)

Arguments

from The minimum tuning parameter to start the sequence from.

to The maximum tuning parameter to go to.

length The length of the sequence.

decreasing Should the sequence be in ascending or descending order?

12 lseq

Details

For joint selection of fixed and random effects in GLMMs, regularized PQL (Hui et al., 2016) works
taking the penalized quasi-likelihood (PQL, Breslow and Clayton, 1993) as a loss function, and then
sticking on some penalties in order to model variable. The penalties will depend upon one or more
tuning parameters λ > 0, and the typical way this is chosen is to construct a sequence of λ values,
fit the regularized PQL to each one value, and then use a method like information criterion to select
the best λ and hence the best model. Please see the help file for rpql for more details, and glmnet
(Friedman et al., 2010) and ncvreg (Breheny, and Huang, 2011) as examples of other packages that
do penalized regression and involve tuning parameter selection.

The idea of equally spacing the sequence of λ’s on the log (base 10) scale may not necessary be what
you want to do, and one is free to use the standard seq() function for constructing sequences. By
equaling spacing them on log-scale, it means that there will be a large concentration of small tuning
parameter values, with less large tuning parameter values (analogous to a right skewed distribution).
This may be useful if you believe the that most of the penalization/variable selection action takes
place on smaller values of λ.

It is somewhat of an art form to construct a good sequence of tuning parameter values: the smallest
λ should produce the saturated model if possible, and the largest λ should shrink most if not all
covariates to zero i.e., the null model. Good luck!

Value

A sequence of tuning parameter values of length equal to length.

Author(s)

Francis K.C. Hui <francis.hui@gmail.com>, with contributions from Samuel Mueller <samuel.mueller@sydney.edu.au>
and A.H. Welsh <Alan.Welsh@anu.edu.au>

Maintainer: Francis Hui <fhui28@gmail.com>

References

• Breheny, P. and Huang, J. (2011) Coordinate descent algorithms fof nonconvex penalized
regression, with applications to biological feature selection. The Annals of Appliedv Statistics,
5, 232-253.

• Breslow, N. E., and Clayton, D. G. (1993). Approximate inference in generalized linear mixed
models. Journal of the American Statistical Association, 88, 9-25.

• Friedman, J., Hastie T., and Tibshirani, R. (2010). Regularization Paths for Generalized
Linear Models via Coordinate Descent. Journal of Statistical Software, 33, 1-22. URL:
http://www.jstatsoft.org/v33/i01/.

• Hui, F.K.C., Mueller, S., and Welsh, A.H. (2016). Joint Selection in Mixed Models using
Regularized PQL. Journal of the American Statistical Association: accepted for publication.

See Also

rpql for fitting and performing model selection in GLMMs using regularized PQL.

nb2 13

Examples

Please see examples in help file for the rpql function

nb2 A negative binomial family

Description

Since the negative binomial is not a family in base R, an nb2() family has been created which
establishes the negative binomial as a family for use in the main rpql function. Only the log
link is available at the moment, with the variance parameterized as V = µ + φµ2 where φ is the
overdispersion parameter.

Usage

nb2()

Details

Used in the form rpql(y, ..., family = nb2(), ...).

Value

An object of class "family"

Author(s)

Francis K.C. Hui <francis.hui@gmail.com>, with contributions from Samuel Mueller <samuel.mueller@sydney.edu.au>
and A.H. Welsh <Alan.Welsh@anu.edu.au>

Maintainer: Francis Hui <fhui28@gmail.com>

See Also

negative.binomial in the MASS package for another example of a negative.binomial family.

Examples

Not run:
The function is currently defined as follows
nb2 <- function () {

link <- "log"
linkfun <- function(mu) log(mu)
linkinv <- function(eta) pmax(exp(eta), .Machine$double.eps)
mu.eta <- function(eta) pmax(exp(eta), .Machine$double.eps)
variance <- function(mu, phi) mu + phi * mu^2
valideta <- function(eta) TRUE

14 rpql

validmu <- function(mu) all(mu > 0)
structure(list(family = "negative.binomial", link = "log",

linkfun = linkfun, linkinv = linkinv, mu.eta = mu.eta,
variance = variance, valideta = valideta, validmu = validmu,
name = link), class = "family")

}

End(Not run)

rpql Joint effects selection in GLMMs using regularized PQL.

Description

rpql offers fast joint selection of fixed and random effects in Generalized Linear Mixed Model
(GLMMs) via regularization. The penalized quasi-likelihood (PQL) is used as a loss function, and
penalties are added on to perform fixed and random effects selection. This method of joint selection
in GLMMs, referred to regularized PQL, is fast compared to information criterion and hypothesis
testing (Hui et al., 2016).

Please note rpql is the core workshops function that performed regularized PQL on a single set
of tuning parameters. rpqlseq is a wrapper to permit a sequence of tuning parameter values. The
latter is often what users want to use.

Usage

rpql(y, ...)

Default S3 method:
rpql(y, X, Z, id, family = gaussian(), trial.size = 1, lambda,

pen.type = "lasso", start = NULL, cov.groups = NULL, pen.weights = NULL,
hybrid.est = FALSE, offset = NULL, intercept = TRUE, save.data = FALSE,
control = list(tol = 1e-4, maxit = 100, trace = FALSE, restarts = 5,
scad.a = 3.7, mcp.gamma = 2, lasso.lambda.scale = TRUE, seed = NULL), ...)

S3 method for class 'rpql'
print(x, ...)

Arguments

y A vector of responses
X A model matrix corresponding to the fixed effects. It should have the same

number of rows as the length of y. An intercept column must be included if a
fixed intercept is desired.

Z A list with each element being a model matrix for a set of random effects. Each
element of Z is referenced by a vector of IDs given by the corresponding element
in the list id. Each model matrix (element of Z) should have the same number
of rows as the length of y.

rpql 15

id A list with each element being a vector of IDs that reference the model matrix
in the corresponding element in the list Z. Each vector of IDs must be integers
(but not factors).

x An object for class "rpql".

family The distribution for the responses in GLMM. The argument must be applied as a
object of class "family". Currently supported arguments include: gaussian(),
poisson(), binomial(), Gamma(), nb2() for negative binomial, LOGNO() for
log-normal, and ZIP() for zero-inflated Poisson.

trial.size The trial size if family = binomial(). Either takes a single non-zero value or a
vector of non-zero values with length the same as the number of rows in X. The
latter allows for differing trial sizes across responses. Defaults to 1.

lambda A vector of length one or two specifying the tuning parameters used in regu-
larized PQL. If two elements are supplied, then first and second elements are
for the fixed and random effects penalty respectively. If one element, then it is
applied to both penalties.

pen.type A vector of one or two strings, specifying the penalty used for variable selec-
tion. If two elements are supplied, then first and second strings are the fixed and
random effects penalty respectively. If one element, the same type of penalty is
used. Currently supported argument include: "lasso" for standard lasso (Tib-
shirani, 1996), "scad" for SCAD penalty with a controlled by control$scad.a
(Fan and Li, 2001), "adl" for adaptive lasso (Zou, 06), "mcp" for MC+ penalty
with γ controlled by controlled by control$mcp.gamma (Zhang, 2010). If the
adaptive lasso is used, then pen.weights must also be supplied. Defaults to
standard lasso penalty for both fixed and random effects.

start A list of starting values. It must contain the following elements: start$fixef
as starting values for the fixed effect coefficients, start$ranef which is a list
containing matrices of starting values for the random effects coefficients. It may
also contain start$D which is a list of matrices to act as starting values for
random effects covariance matrices.

cov.groups A vector specifying if the columns of X (including the intercept) should be re-
garded and therefore penalized in groups. For example, if one or more of the
fixed effect covariates are factors, then lme4 will automatically create dummy
variables in the model matrix and estimate coefficients for each level, using one
level as the reference. cov.groups is then used to identify all the coefficients
that corresponds to that factor, such that all of these coefficients are penalized
collectively as a group. Defaults to NULL, in which case it is assumed all coef-
ficients should be treated independently. Please see the details and examples for
more details.

pen.weights A list containing up to two elements for additional (adaptive lasso) weights to
be included for penalization. This must be supplied if pen.type has one or both
elements set to "adl", otherwise it is optional. A weights equal to zero implies
no penalization is applied to the parameter. The two elements in the list are as
follows: for fixed effects, pen.type$fixed should be a vector with length equal
to the number of columns in X. For random effects, pen.weights$ran should be
a list of the same length as the list Z, where each element in that list is a vector
with length equal to the number of columns in the corresponding element of the

16 rpql

list Z (recall that each element of Z is a model matrix). Defaults to NULL, in
which case there are no weights involved in the penalization.

hybrid.est Should a hybrid estimation approach be used? That is, once model selection is
performed using regularized PQL, should the submodel be re-estimated using
the lme4 package, if possible? Defaults to FALSE.

offset This can be used to specify an a priori known component to be included in the
linear predictor during fitting. It should be numeric vector of length equal to y.
Defaults to NULL.

intercept Is one of the columns of X an intercept term? This is used to indicate the presence
of a fixed intercept in the model, which subsequently will NOT be penalized.
Defaults to TRUE.

save.data Should y, X, and Z, be saved as part of the output? Defaults to FALSE. The data
is not saved by default in order to save memory.

control A list controlling the finer details of the rPQL algorithm. These include:

• tol: Tolerance value for convergence in the regularized PQL to be declared,
where convergence is measured as the difference between the estimated
parameters in successive iterations. Defaults to a value of 1e-4.

• maxit: The maximum number of update iterations for regularized PQL.
Defaults to 100.

• trace: Should the update estimates of the fixed effect coefficients and that
random effect covariance matrices be printed at each iteration? Defaults to
FALSE.

• restarts: The number of restarts to try in case the algorithm diverges,
i.e. the fixed effect coefficients and /or random effects covariance matrices
"blow up". Defaults to a value of 5. Divergence is mostly likely to occur
when you have count responses with some extremely large counts in there,
in which regularized PQL can throw a hissy fit.

• scad.a, mcp.gamma: Controls the a and γ parameters in the SCAD and
MC+ penalty respectively. Defaults to a = 3.7 (Fan and Li, 2001) and
γ = 2 (Zhang, 2010) respectively. Please note these parameters are only in
use when pen.type involves these penalties.

• seed: A seed that can be used if results need to be replicated. Defaults to
NULL, in which case a random seed is used.

... Not used.

Details

Intro
Generalized Linear Mixed Models (GLMMs) are an extension of Generalized Linear Models (GLM,
see the glm function) to include one or more sets of random effects. For i = 1, . . . , n, where n is
the length of y, we have

g(µi) = xTi β + zTi1bi1 + zTi2bi2 + . . . ,

where g(·) is the link function, µi is the mean of the distribution for observation i, xi is row i of
the fixed effects model matrix X, and β is the fixed effects coefficients. For the random effects, zi1

rpql 17

is row i of the random effects model matrix in the first element of Z, zi2 is from the second element
of Z and so forth. The random effects bi1, bi2, . . . are drawn from a multivariate normal distribution
with mean zero and differing covariance matricesD1,D2,

Note that having lists for id, Z, allows for multiple sets of random effects to be included in the
GLMM. This is analogous to the lme4 package, where multiple random effects are permitted in
the formula e.g., (1|creek) + (1|creek:sample). If the GLMM contains only one set of random
effects, e.g., in longitudinal data, then the two lists will all contain only one element. Cases where
multiple sets of random effects may be used include nested and crossed designs, in which case id,
Z, will have two or more elements. It is recommended that the user think through and design these
lists carefully to ensure that they are actually constructing the appropriate GLMM of interest. Yes it
takes some getting use too, and we apologize for this =(Please see examples below for some ideas.

Regularized PQL
Regularized PQL is designed as a fast approach to joint selection to GLMMs (Hui et al., 2016). It
works by taking the penalized quasi-likelihood (PQL, Breslow and Clayton, 1993) and adding on
penalties to perform selection of the fixed and random effects. That is, maximize the regularized
PQL function

` =

n∑
i=1

log(f(yi|β, bi1, bi2, . . .))−
1

2

n∑
i=1

bTi1D
−1
1 bi1 −

1

2

n∑
i=1

bTi2D
−1
2 bi2 − . . .− Pλ

where Pλ denotes penalties to shrink the fixed effect β and random effect bi1, bi2, . . . coefficients,
which depend on one or more tuning parameters λ. Like the PQL itself, regularized PQL is a fast
approach for estimating GLMMs because it treats the random effects as "fixed" coefficients, and
therefore no integration is required. Penalties are then used to shrunk one or more β’s and b’s to
zero, the latter done so in a group-based manner, in order to perform joint selection (see Hui et al.,
2016, for details). In short, regularized PQL is able to fit many GLMMs in a relatively short period
of time, which in turn facilitates the construction of a solution or regularization path ranging from
the null (intercept-only) to the full (saturated) model. A tuning parameter selection method such
as information criterion can then be used to pick the select the final subset of fixed and random
effects. A few penalty types are available in the package, from which we prefer to use the adaptive
LASSO (with weights based on the full model, Zou, 2006) mainly because by having weights, we
can avoids have to search through a two-dimensional grid of tuning parameter values.

Note that if one only wanted to penalize the fixed effects and leave the random effects unpenal-
ized, this can be achieved by setting the second element/s of lambda equal to to e.g., lambda =
c(1,0). Note though that in longitudinal studies, for covariates included as both fixed and random
effects, if the random effects is not penalized then neither should the fixed effect. This ensures
that no covariates end up being selected in the model as a purely random effects (non-hierarchical
shrinkage, Hui et al., 2016). This can be accounted for also setting the corresponding elements of
pen.weights$fixed to zero.

AN IMPORTANT NOTE
While regularized PQL is relatively fast, it will produce biased estimates of the fixed and random
effects parameters for non-normal responses, especially if the amount of data to estimate each ran-
dom effect is not large e.g., if the number of time points or cluster size is not large. We envision
regularized PQL as a method of joint variable selection ONLY, and strongly encourage the user to
adopt a hybrid estimation approach (using hybrid.est = TRUE, for instance). That is, once model
selection is performed using regularized PQL, the final submodel should be re-estimated using more
exact methods like quadrature or MCMC.

18 rpql

Because regularized PQL treats the random effects as “fixed" coefficients and therefore penalizes
these, then the random effects covariance matrices D1,D2, . . . are regarded more as nuisance pa-
rameters. This is in contrast to traditional maximum likelihood estimation where the random effect
coefficients bi1, bi2, . . . are integrated over. As nuisance parameters, regularized PQL employs an
iterative estimator based on maximizing the Laplace-approximated marginal log-likelihood, assum-
ing all other parameters are fixed, for estimating the covariance matrix D1,D2, This iterative
estimator was used in Hui et al., (2016) for independent clustered data specifically. When they are
multiple sets of random effects, each covariance matrix is estimated conditionally on all others i.e.,
the random effect coefficients corresponding to all other random effects are held constant. This can
be thought of as employing a series of conditional Laplace approximations to obtain updates for
D1,D2,

A not so short discussion about information criterion
How to choose the tuning parameters for penalized regression is an active area of area of research
in statistics (see for instance Zhang et al., 2010, Hui et al., 2014), with the most popular solutions
being cross validation and information criteria. That is, a solution path is constructed and the best
submodel is then chosen by minimizing the value of the information criterion. Anyway, rpql offers
the following information criteria for tuning parameter selection, as available in ics in the output.
Please note all of the criteria below use only the first part of the PQL function as the loss function

i.e., IC = −2
n∑
i=1

log(f(yi|β, bi1, bi2, . . .))+ model complexity terms.

1. A AIC-type criterion that penalizes a values of 2 for every non-zero fixed effect coefficient,
and, for each set of random effects, penalizes a value of 2 for every non-zero random effect
coefficient in that set.

2. A BIC-type criterion that penalizes a value of log(n) for every non-zero fixed effect coeffi-
cient, and, for each set of random effects, penalizes a value of log(nc) for every non-zero,
unique element in covariance matrix for that set, where n_c denotes the number of clusters
corresponding to that random effect.

3. A BIC-type criterion that penalizes a value of log(n) for every non-zero fixed effect coef-
ficient, and, for each set of random effects, penalizes a value of log(n) for every non-zero,
unique element in covariance matrix for that set. This combination of penalties is the one used
in the package lme4.

4. Three hybrid information criteria that penalizes a value log(n) for every non-zero fixed effect
coefficient, and, for each set of random effects, penalizes a value of 2/1/0.5 for every non-zero
random effect coefficient in that set.

Selection consistency for all but the first AIC criteria have been established, although empirically
performance may differ. We generally prefer the three hybrid criterion, although it is recommended
that the user tries several of them and see how results differ!

Value

An object of class "rpql" containing the following elements:

call The matched call.

fixef A vector of estimated fixed effect coefficients, β.

ranef A list with each element being a matrix of estimated (predicted) random effect
coefficients, bi1, bi2, and so on.

rpql 19

ran.cov A list with each element being an estimated random effect covariance matrices,
D1,D2,

logLik The (unpenalized) PQL likelihood value at convergence.
phi, shape, zeroprob

Estimates of nuisance parameters (if appropriate), including the variance and
overdispersion parameter for normal, lognormal and negative binomial families,
the shape parameter for the Gamma family, and the probability of a structural
zero for zero-inflated Poisson family.

family The family fitted.

n The length of y.

id The id argument.
lambda, pen.type

The tuning parameters and penalties used.

ics A vector containing the number of estimated parameters in the GLMM (note
regularized PQL treats the random effects as "fixed"), and some information
criteria. Please see details above for more information.

nonzero.fixef A vector indexing which of the estimated fixed effect coefficients are non-zero.

nonzero.ranef A list with each element being a vector indexing which of the estimated random
effects are non-zero, i.e. which of the diagonal elements in the corresponding
element of ran.cov are non-zero.

hybrid The estimated fit from lme4, if hybrid.est = TRUE.

y,X,Z The data the GLMM is fitted to, if save.data = TRUE.

Warnings

• We strongly recommend you scale your responses (if normally distributed) and any continuous
covariates, otherwise rpql like all penalized likelihood methods, may not make much sense!

• Like its standard unpenalized counterpart, regularized PQL can produce very bias parameter
estimates in finite samples, especially if you do not have a lot of data to estimate each random
effect. We therefore envision regularized PQL as a tool for fast model selection in GLMMs,
and strongly recommend you re-estimate the final submodel using more accurate estimation
methods i.e., use a hybrid estimation approach, in order to obtain better final parameter esti-
mates and predictions of the random effects.

• If save.data = TRUE, the data you fitted the GLMM is also saved as part of the output, and
this can potentially take up a lot of memory.

• If you are constantly suffering convergence issues with regularized PQL, even after multiple
restarts, consider increasing lambda[2] to penalized the random effects more and stabilize
the estimation algorithm. You may also want to consider better starting values, in particular,
smaller values of start$ranef. Good luck!

Author(s)

Francis K.C. Hui <francis.hui@gmail.com>, with contributions from Samuel Mueller <samuel.mueller@sydney.edu.au>
and A.H. Welsh <Alan.Welsh@anu.edu.au>

Maintainer: Francis Hui <fhui28@gmail.com>

20 rpql

References

• Breslow, N. E., and Clayton, D. G. (1993). Approximate inference in generalized linear mixed
models. Journal of the American Statistical Association, 88, 9-25.

• Fan, J., and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its
oracle properties. Journal of the American statistical Association, 96, 1348-1360.

• Hui, F. K. C., Mueller, S., and Welsh, A.H. (2017). Joint Selection in Mixed Models using
Regularized PQL. Journal of the American Statistical Association, 112, 1323-1333.

• Hui, F. K. C., Mueller, S., and Welsh, A.H. (2017). Hierarchical Selection of Fixed and
Random Effects in Generalized Linear Mixed Models. Statistica Sinica, 27, 501-518.

• Hui, F. K. C., Warton, D. I., and Foster, S. D. (2014). Tuning parameter selection for the
adaptive lasso using ERIC. Journal of the American Statistical Association, 110, 262-269.

• Lin, X., and Breslow, N. E. (1996). Bias correction in generalized linear mixed models with
multiple components of dispersion. Journal of the American Statistical Association, 91, 1007-
1016.

• Mueller, S., Scealy, J. L., and Welsh, A. H. (2013). Model selection in linear mixed models.
Statistical Science, 28, 135-167.

• Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), 58, 267-288.

• Zhang, Y., Li, R., and Tsai, C. L. (2010). Regularization parameter selections via generalized
information criterion. Journal of the American Statistical Association, 105, 312-323.

• Zhang, C. H. (2010). Nearly unbiased variable selection under minimax concave penalty. The
Annals of Statistics, 38, 894-942.

• Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American statisti-
cal association, 101, 1418-1429.

See Also

rpqlseq for the wrapper function that runs rpql multiple times on a sequence of tuning parameter
values, build.start.fit for building start lists from a GLMM fitted using the lme4 package,
summary for a summary of the regularized PQL fit. For alternative methods of fitting GLMMs, you
may also want be check out the packages lme4, nlme, MCMCglmm and glmmADMB.

Examples

Please note all examples below use the \code{rpqlseq} wrapper function.

library(lme4)
library(gamlss.dist)

##-------------------------
Example 1: Poisson GLMM on simulated data
Indepenent cluster model with 30 clusters and equal cluster sizes of 10
9 fixed and random effect covariates including a fixed and random intercept
##-------------------------
library(mvtnorm)
set.seed(1)

rpql 21

n <- 30; m <- 10; p <- 8;
Generate rows of a model matrix from a multivariate normal distribution
with AR1 covariance structure.

H <- abs(outer(1:p, 1:p, "-"))
X <- cbind(1,rmvnorm(n*m,rep(0,p),sigma=0.5^H));
Z <- X
true_betas <- c(0.1,1,-1,-1,1,rep(0,p-4)) ## 5 truly important fixed effects
true_D <- matrix(0,ncol(Z),ncol(Z))
true_D[1:3,1:3] <- matrix(c(1,0.6,0.6,0.6,1,0.4,0.6,0.4,1),3,3,byrow=TRUE)
3 important random effects

simy <- gendat.glmm(id = list(cluster=rep(1:n,each=m)), X = X, beta = true_betas,
Z = list(cluster=Z), D = list(cluster=true_D), family = poisson())

Not run:
Construct a solution path using adaptive LASSO for selection
dat <- data.frame(y = simy$y, simy$X, simyZcluster, simy$id)
fit_satlme4 <- glmer(y ~ X - 1 + (Z - 1 | cluster), data = dat,
family = "poisson")
fit_sat <- build.start.fit(fit_satlme4, gamma = 2)
Please see example 3 for another way of constructing the adaptive weights

lambda_seq <- lseq(1e-6,1,length=100)
fit <- rpqlseq(y = simy$y, X = simy$X, Z = simy$Z, id = simy$id,
family = poisson(), lambda = lambda_seq, pen.type = "adl",
pen.weights = fit_sat$pen.weights, start = fit_sat)

summary(fit$best.fit[[5]]) ## Second of the hybrid ICs
apply(fit$collect.ics, 2, which.min) ## Look at best fit chosen by different ICs

Note, if you wanted to penalized the fixed effects only, this can achieved
by setting fit_sat$pen.weights$random$cluster <- rep(0,ncol(simyZcluster))

An alternative way to construct the X and Z matrices for input into rpqlseq is as follows:
Big thanks for Andrew Olney for this suggestion!
XMM <- unname(model.matrix(fit_satlme4))
ZMM <- getME(fit_satlme4,"mmList"); names(ZMM) <- "cluster"
lambda_seq <- lseq(1e-6,1,length=100)
fit <- rpqlseq(y = simy$y, X = XMM, Z = ZMM, id = simy$id,

family = poisson(), lambda = lambda_seq, pen.type = "adl",
pen.weights = fit_sat$pen.weights, start = fit_sat)
summary(fit$best.fit[[5]]) ## Second of the hybrid ICs

End(Not run)

##-------------------------
Example 2: Similar to example 1 but with Bernoulli GLMMs
30 clusters, cluster size of 20
##-------------------------

22 rpql

library(mvtnorm)
set.seed(1)
n <- 30; m <- 20; p <- 8;
Generate rows of a model matrix from a multivariate normal distribution
with AR1 covariance structure.

H <- abs(outer(1:p, 1:p, "-"))
X <- cbind(1,rmvnorm(n*m,rep(0,p),sigma=0.5^H));
Z <- X
true_betas <- c(-0.1,1,-1,1,-1,rep(0,p-4)) ## 5 truly important fixed effects
true_D <- matrix(0,ncol(Z),ncol(Z))
true_D[1:3,1:3] <- diag(c(3,2,1), nrow = 3)
3 important random effects

simy <- gendat.glmm(id = list(cluster=rep(1:n,each=m)), X = X,
beta = true_betas, Z = list(cluster=Z), D = list(cluster=true_D), family = binomial())

Not run:
Construct a solution path using adaptive LASSO for selection
dat <- data.frame(y = simy$y, simy$X, simyZcluster, simy$id)
fit_satlme4 <- glmer(y ~ X - 1 + (Z - 1 | cluster), data = dat,
family = "binomial")
fit_sat <- build.start.fit(fit_satlme4, gamma = 2)

lambda_seq <- lseq(1e-6,1,length=100)
best.fit <- list(ics = rep(Inf,6))
fit <- rpqlseq(y = simy$y, X = simy$X, Z = simy$Z, id = simy$id,
family = binomial(), lambda = lambda_seq, pen.type = "adl",
pen.weights = fit_sat$pen.weights, start = fit_sat)

summary(fit$best.fit[[5]]) ## Second of the hybrid ICs
apply(fit$collect.ics, 2, which.min) ## Look at best fit chosen by different ICs

An alternative way to construct the X and Z matrices for input into rpqlseq is as follows:
XMM <- unname(model.matrix(fit_satlme4))
ZMM <- getME(fit_satlme4,"mmList"); names(ZMM) <- "cluster"
lambda_seq <- lseq(1e-6,1,length=100)
fit <- rpqlseq(y = simy$y, X = XMM, Z = ZMM, id = simy$id,

family = binomial(), lambda = lambda_seq, pen.type = "adl",
pen.weights = fit_sat$pen.weights, start = fit_sat)
summary(fit$best.fit[[5]]) ## Second of the hybrid ICs

End(Not run)

##-------------------------
Example 3: Bernoulli GLMMs on simulated data
Nested data with 200 observations in total: split into 10 creeks,
5 samples nested within each creek
##-------------------------
mn <- 100;
X <- matrix(1,mn,1);

rpql 23

ids <- list(samples = rep(1:50,each=2), creek = rep(1:10,each=10))
We have two sets of random intercepts only, one for creek and one for
samples nested within creek.
Zs <- list(samples = X, creek = X)

true_betas <- 0.25
true_D <- list(samples = as.matrix(1e-5), creek = as.matrix(0.5))
Please ensure each element of true_D is a matrix

simy <- gendat.glmm(id = ids, X = X, beta = true_betas, Z = Zs,
D = true_D, trial.size = 1, family = binomial())

Not run:
fit <- rpqlseq(y = simy$y, X = simy$X, Z = simy$Z, id = simy$id,
family = binomial(), lambda = lambda_seq, pen.type = "scad")

summary(fit$best.fit[[5]]) ## Second of the hybrid ICs
apply(fit$collect.ics, 2, which.min) ## Look at best fit chosen by different ICs

End(Not run)

##-------------------------
Example 4: Linear mixed models on Alfalfa split-plot data
##-------------------------
Not run:

library(nlme)
data(Alfalfa)
Alfalfa$Yield <- scale(Alfalfa$Yield)
X <- as.matrix(model.matrix(~ Date, data = Alfalfa))
Note Date is categorical variable!
colnames(X)[1] <- "x1"
Z <- list(BlockVariety = matrix(1,nrow(X),1), Block = matrix(1,nrow(X),1))
Four samples of each Block*Variety
ids <- list(BlockVariety = rep(1:(nrow(X)/4),each=4),
Block = as.numeric(Alfalfa$Block))

How you would fit it in lme4
fit_satlme4 <- lmer(Yield ~ X - 1 + (1|Block/Variety), data = Alfalfa)
fit_sat <- build.start.fit(fit_satlme4, cov.groups = c(1,2,2,2), gamma = 2)

Construct a solution path using adaptive LASSO for selection
lambda_seq <- lseq(1e-8,2,length=100)
fit <- rpqlseq(y = Alfalfa$Yield, X = X, Z = Z, id = ids,
lambda = lambda_seq, cov.groups = c(1,2,2,2), pen.type = "adl",
pen.weights = fit_sat$pen.weights, start = fit_sat)

summary(fit$best.fit[[5]]) ## Second of the hybrid ICs
apply(fit$collect.ics, 2, which.min) ## Look at best fit chosen by different ICs

End(Not run)

24 rpql

##-------------------------
Example 5: Linear mixed models on sleep study dataset
##-------------------------

Not run:

data(sleepstudy)

How you fit it in lme4
Response is scaled so as to avoid large variances and easier intepretation
sleepstudy$Reaction <- scale(sleepstudy$Reaction)
sleepstudy$Days <- scale(sleepstudy$Days)
fm1 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy)

How you fit it using rpql
Construct a solution path using adaptive LASSO for selection
X <- cbind(1, sleepstudy$Days)
Z <- list(subject = X)
ids <- list(subject = as.numeric(sleepstudy$Subject))
fit_sat <- build.start.fit(fm1, gamma = 2)

lambda_seq <- lseq(1e-8,1e-1,length=100)
fit <- rpqlseq(y = sleepstudy$Reaction, X = X, Z = Z, id = ids,
lambda = lambda_seq, pen.type = "adl",
pen.weights = fit_sat$pen.weights, start = fit_sat)

summary(fit$best.fit[[5]]) ## Second of the hybrid ICs
apply(fit$collect.ics, 2, which.min) ## Look at best fit chosen by different ICs
Best fit might well be the saturated fit!
This is at least consistent with confint(fm1)

End(Not run)

##-------------------------
Example 6: GLMM with lognormal responses
Fixed effects selection only
##-------------------------

Not run:

n <- 50; m <- 10; p <- 8;
H <- abs(outer(1:p, 1:p, "-"))
X <- cbind(1,rmvnorm(n*m,rep(0,p),sigma=0.5^H));
Z <- X[,1:3] ## 3 random effects all of which important
true_betas <- c(0.1,1,-1,-1,1,rep(0,p-4)) ## 5 important fixed effects
true_D <- matrix(0,ncol(Z),ncol(Z))
true_D[1:3,1:3] <- matrix(c(1,0.6,0.6,0.6,1,0.4,0.6,0.4,1),3,3,byrow=TRUE)

simy <- gendat.glmm(id = list(cluster=rep(1:n,each=m)), X = X,
beta = true_betas, Z = list(cluster=Z), D = list(cluster=true_D),
family = LOGNO(), phi = 1)

rpqlseq 25

We will use the SCAD penalty for fixed effects only with no weights
Note lognormal mixed models are usually hard to fit by maximum likelihood in R!
Hence adaptive weights are sightly hard to obtain

Note also that since random effects are not penalized, then generally
the corresponding fixed effect covariates should not be penalized
(at least in longitudinal studies), in keeping in line with the
hierarchical principle of the effects.
To account for this in the above, we can use the pen.weights argument
to prevent penalization of the first three fixed effect covariates

lambda_seq <- lseq(1e-5,1,length=100)
fit <- rpqlseq(y = simy$y, X = simy$X, Z = simy$Z, id = simy$id,

family = LOGNO(), lambda = lambda_seq, pen.type = "scad",
pen.weights = list(fixed = rep(c(0,1), c(3,ncol(X)-3))))

summary(fit$best.fit[[3]])
apply(fit$collect.ics, 2, which.min) ## Look at best fit chosen by different ICs

End(Not run)

rpqlseq Wrapper function for joint effects selection in GLMMs using regular-
ized PQL.

Description

rpql offers fast joint selection of fixed and random effects in Generalized Linear Mixed Model
(GLMMs) via regularization. The penalized quasi-likelihood (PQL) is used as a loss function, and
penalties are added on to perform fixed and random effects selection. This method of joint selection
in GLMMs, referred to regularized PQL, is fast compared to information criterion and hypothesis
testing (Hui et al., 2016).

rpqlseq is a wrapper function to permit a sequence of tuning parameter values, which wraps around
the code workhorse function rpql.

Usage

rpqlseq(y, X, Z, id, family = gaussian(), trial.size = 1, lambda,
pen.type = "lasso", start = NULL, cov.groups = NULL, pen.weights = NULL,
offset = NULL, intercept = TRUE, save.data = FALSE,
control = list(tol = 1e-4, maxit = 100, trace = FALSE, restarts = 5,
scad.a = 3.7, mcp.gamma = 2, lasso.lambda.scale = TRUE, seed = NULL), ...)

26 rpqlseq

Arguments

y, X, Z, id, family, trial.size

As per the rpql function. Please see the help file for rpql for details on the
arguments.

lambda Either a vector containing sequence of tuning parameter values, which is ap-
plied to both penalties, or two-column matrix containing a sequence of tuning
parameter values for the fixed and random effects penalty respectively.

pen.type, start, cov.groups, pen.weights, offset, intercept, save.data, control

As per the rpql function. Please see the help file for rpql for details on the
arguments.

... Not used.

Details

Please see the help file for rpql for details on how regularized PQL works. rpqlseq is simply a
wrapper function to run the core rpql function multiple times, on a sequence of tuning parameter
values, in order to construct a regularization path. The best models, based on different information
criteria for selecting the best tuning parameter (degree of sparsity) are then returned.

Value

An object of class "rpql" containing the following elements:

best.fits A list containing the best fitted models as based on different information crite-
ria used to select the tuning parameter. Each element in this list has the same
structure as the output from the rpql function. Please see the rpql function for
details on the information criteria available as well as the nature of the output.

collect.ics A matrix containing the values of various information criteria calculated for the
sequence of lambda values supplied. The best fitted models found in best.fits
is based off this matrix i.e., each element in best.fits corresponds to a model
that was chosen based on minimizing the corresponding information criterion
in collect.ics. Please see the rpql function for details on the information
criteria available.

lambda The sequence of tuning parameters considered.

Author(s)

Francis K.C. Hui <francis.hui@gmail.com>, with contributions from Samuel Mueller <samuel.mueller@sydney.edu.au>
and A.H. Welsh <Alan.Welsh@anu.edu.au>

Maintainer: Francis Hui <fhui28@gmail.com>

See Also

rpql, which is the core workhorse function that performed regularized PQL for a single set of
tuning parameter values.

summary.rpql 27

Examples

Please see examples in help file for the \code{rpql} function for usage.

summary.rpql Summary of GLMM fitted using regularized PQL.

Description

A summary of the results from applying rpql.

Usage

S3 method for class 'rpql'
summary(object, ...)

S3 method for class 'summary.rpql'
print(x,...)

Arguments

object An object of class "rpql".

x An object of class "rpql".

... Not used.

Value

A list (some of which is printed) containing the following elements:

Call The matched call.

fixed Estimated fixed effects coefficients.

ranef A list with each element being a matrix of estimated random effects coefficients.

ran.cov A list with each element being a estimated random effects covariance matrix.

logLik PQL log-likelihood value at convergence.

family The family argument, i.e. response type.
pen.type,lambda

Penalties used for selection and the corresponding tuning parameter values.

ics A vector containing the number of estimated, non-zero parameters, and three in-
formation criterion. Please see the help file for rpql for details on these criteria.

id The id argument, i.e. list of IDs.

nonzero.fixef A vector indexing which of the estimated fixed effect coefficients are non-zero.

nonzero.ranef A list with each element being a vector indexing which of the estimated random
effects are non-zero, i.e. which of the diagonal elements in the corresponding
element of ran.cov are non-zero.

28 summary.rpql

Author(s)

Francis K.C. Hui <francis.hui@gmail.com>, with contributions from Samuel Mueller <samuel.mueller@sydney.edu.au>
and A.H. Welsh <Alan.Welsh@anu.edu.au>

Maintainer: Francis Hui <fhui28@gmail.com>

See Also

rpql for fitting and performing model selection in GLMMs using regularized PQL.

Examples

Please see other examples in help file for the \code{rpql} function.

Index

build.start.fit, 3, 20

calc.marglogL, 6

gendat.glmm, 8

lseq, 11

nb2, 13
negative.binomial, 13

print.rpql (rpql), 14
print.summary.rpql (summary.rpql), 27

rpql, 5, 7, 10, 12, 14, 26, 28
rpql-package, 2
rpqlseq, 20, 25

summary, 20
summary.rpql, 27

29

	rpql-package
	build.start.fit
	calc.marglogL
	gendat.glmm
	lseq
	nb2
	rpql
	rpqlseq
	summary.rpql
	Index

