
Package ‘rres’
October 14, 2022

Type Package

Title Realized Relatedness Estimation and Simulation

Version 1.1

Date 2018-03-27

Author Bowen Wang

Maintainer Bowen Wang <bowenwang7@gmail.com>

Description
Functions for studying realized genetic relatedness between people. Users will be able to simu-
late inheritance patterns given pedigree structures, generate SNP marker data given inheri-
tance patterns, and estimate realized relatedness between pairs of individuals us-
ing SNP marker data. See Wang (2017) <doi:10.1534/genetics.116.197004>. This work was sup-
ported by National Institutes of Health grants R37 GM-046255.

License GPL (>= 2)

Imports Rcpp (>= 0.12.16), kernlab

LinkingTo Rcpp

RoxygenNote 6.0.1

NeedsCompilation yes

Repository CRAN

Date/Publication 2018-06-04 21:54:23 UTC

R topics documented:
check.pedinfo . 2
fgl2ibd . 2
fgl2relatedness . 3
get.pedindex . 4
grm.matrix . 4
grm.pair . 5
ibd.length . 7
ibd.marker . 8
ibd.proportion . 9

1

https://doi.org/10.1534/genetics.116.197004

2 fgl2ibd

ibd.segment . 10
ld.weights . 11
populate.snp . 12
read.plink.binary . 13
read.plink.text . 14
recode.ibd . 15
recode.snpdata . 16
sim.haplotype . 17
sim.recomb . 18
write.ibdhaplo . 19

Index 20

check.pedinfo Check pedigree information.

Description

check.pedinfo checks that the pedigree information provided is consistent.

Usage

check.pedinfo(pedinfo)

Arguments

pedinfo dataframe.

Details

Member ID must be unique. Parents must precede offsprings. Sex information must match parental
status, and are coded 1 and 2 for male and female respectively. An error message will be produced
only if inconsistencies are found.

fgl2ibd Score IBD state.

Description

fgl2ibd determines pairwise IBD state given the four founder genome labels of two individuals at
a marker.

Usage

fgl2ibd(fgl1p, fgl1m, fgl2p, fgl2m)

fgl2relatedness 3

Arguments

fgl1p, fgl1m, fgl2p, fgl2m

positive integer, represents founder genome label.

Details

IBD states take value from 1 to 15, which represent the indices of the underlying IBD states from
1111 to 1234 in lexicographical order. E.g., output 1 means IBD state 1111, output 2 means IBD
state 1112 etc. Recoding in, e.g., Jacquard order, can be obtained using recode.ibd.

Value

A value between 1 and 15 representing index of IBD state in lexicographical order.

Examples

fgl2ibd(1, 1, 1, 1)
fgl2ibd(1, 2, 1, 2)
fgl2ibd(3, 4, 5, 6)
fgl2ibd(4, 5, 4, 4)

fgl2relatedness Score pairwise relatedness.

Description

fgl2relatedness determines pairwise relatedness given the four founder genome labels of two
individuals at a marker.

Usage

fgl2relatedness(fgl1p, fgl1m, fgl2p, fgl2m)

Arguments

fgl1p, fgl1m, fgl2p, fgl2m

positive integer, represents founder genome label.

Value

A value in [0, 0.5, 1, 2] representing local relatedness coefficient.

Examples

fgl2relatedness(1, 1, 1, 1)
fgl2relatedness(1, 2, 1, 2)
fgl2relatedness(1, 2, 1, 3)
fgl2relatedness(3, 4, 5, 6)
fgl2relatedness(4, 5, 4, 4)

4 grm.matrix

get.pedindex Get pedigree index.

Description

get.pedindex returns indices of individuals in the pedigree.

Usage

get.pedindex(pedinfo, member.set)

Arguments

pedinfo dataframe.

member.set character vector.

Details

member.set contains member IDs of individuals of interest.

Value

An integer vector of indices for each individual of interest found in pedinfo.

Examples

a simple pedigree with sibling marriage
pedigree = as.character(rep(1, 5))
member = as.character(c(11, 12, 21, 22, 31))
sex = as.numeric(c(1, 2, 1, 2, 1))
father = as.character(c(NA, NA, 11, 11, 21))
mother = as.character(c(NA, NA, 12, 12, 22))
pedinfo = data.frame(pedigree, member, sex, father, mother, stringsAsFactors = FALSE)

get.pedindex(pedinfo, c("22", "31"))

grm.matrix GRM for multiple individuals

Description

grm.matrix computes relatedness estimates between every pairs of individuals.

Usage

grm.matrix(genotype, freq, method = "twostep", weights = NULL,
init.est = NULL)

grm.pair 5

Arguments

genotype numeric matrix.

freq numeric vector, values between 0 and 1.

method string.

weights numeric vector, values between 0 and 1.

init.est numeric.

Details

genotype is the matrix of counts of reference alleles. Rows represents subjects and columns repre-
sents SNP markers. freq is the vector of reference allele frequencies.

The default method is "twostep", other options include "classic", "robust" and "general". When
using the default "twostep" method, user can supply an initial estimate through init.est to bypass
the first step. When "general" is selected, weights must also be specified. The difference between
the two-step GRM, classic GRM and robust GRM is discussed in Wang et al. (2017).

References

Wang et al. (2017) Genetics 205:1063-1078, https://www.ncbi.nlm.nih.gov/pubmed/28100587.

See Also

grm.pair.

grm.pair GRM for a pair of individuals.

Description

grm.pair computes relatedness estimates between two individuals.

Usage

grm.pair(geno1, geno2, freq, method = "twostep", weights = NULL,
init.est = NULL)

Arguments

geno1, geno2 numeric vector.

freq numeric vector, values between 0 and 1.

method string.

weights numeric vector, values between 0 and 1.

init.est numeric.

https://www.ncbi.nlm.nih.gov/pubmed/28100587

6 grm.pair

Details

geno1 and geno2 are vectors of counts of reference alleles. freq is the vector of reference allele
frequencies.

The default method is "twostep", other options include "classic", "robust" and "general". When
using the default "twostep" method, user can supply an initial estimate through init.est to bypass
the first step. When "general" is selected, weights must also be specified. The difference between
the two-step GRM, classic GRM and robust GRM is discussed in Wang et al. (2017).

Value

An estimate of realized relatedness.

References

Wang et al. (2017) Genetics 205:1063-1078, https://www.ncbi.nlm.nih.gov/pubmed/28100587.

See Also

grm.matrix

Examples

simulate genotypes for a full sib pair
pedigree = as.character(rep(1, 4))
member = as.character(c(11, 12, 21, 22))
sex = as.numeric(c(1, 2, 1, 2))
father = as.character(c(NA, NA, 11, 11))
mother = as.character(c(NA, NA, 12, 12))
pedinfo = data.frame(pedigree, member, sex, father, mother, stringsAsFactors = FALSE)
set.seed(1)
inher = sim.recomb(pedinfo, 3500) # on a hypothetical chromosome

nsnp = 100000
marker = seq(0,3500,length.out=nsnp)
freq = runif(nsnp, 0.05, 0.95)
haplo = sim.haplotype(freq, 4)
geno = populate.snp(inher, haplo, marker, output.allele = FALSE)

simulation truth
ibd.proportion(inher,3,4)

different GRM estimates
grm.pair(geno[3,], geno[4,], freq, method = "twostep")
grm.pair(geno[3,], geno[4,], freq, method = "classic")
grm.pair(geno[3,], geno[4,], freq, method = "robust")
grm.pair(geno[3,], geno[4,], freq, method = "general", weights = sample(freq, nsnp)/sum(freq))

compute the relatedness matrix
grm.matrix(geno, freq)
grm.matrix(geno, freq, method = "robust")

https://www.ncbi.nlm.nih.gov/pubmed/28100587

ibd.length 7

ibd.length Score IBD length.

Description

ibd.length returns the total length of IBD segemnt between two haplotypes.

Usage

ibd.length(inher.hap1, inher.hap2, startpos = NULL, endpos = NULL)

Arguments

inher.hap1, inher.hap2

numeric matrix.
startpos, endpos

non-negative number.

Details

This function works with output from sim.recomb.

Value

A non-negative number representing the length of IBD segment in Haldane centiMorgan.

Examples

a simple pedigree with sibling marriage
pedigree = as.character(rep(1, 5))
member = as.character(c(11, 12, 21, 22, 31))
sex = as.numeric(c(1, 2, 1, 2, 1))
father = as.character(c(NA, NA, 11, 11, 21))
mother = as.character(c(NA, NA, 12, 12, 22))
pedinfo = data.frame(pedigree, member, sex, father, mother, stringsAsFactors = FALSE)
inheritance = sim.recomb(pedinfo, 100)

IBD length between the two haplotypes of inbred individual 31
ibd.length(inheritance[[9]], inheritance[[10]])

8 ibd.marker

ibd.marker Score IBD sharing at a list of marker positions.

Description

ibd.marker determines pairwise IBD sharing at marker positions.

Usage

ibd.marker(inheritance, marker, ind1index, ind2index = NULL,
relatedness = TRUE)

Arguments

inheritance list of numeric matrices.

marker numeric vector.
ind1index, ind2index

positive integer, represents index of individual in pedigree.

relatedness logical, determines coding of IBD information.

Details

When only index of one individual is supplied, IBD sharing status at each marker is coded as 0 (not
IBD) or 1 (IBD) between the two haplotypes of the individual.

When indices of two individuals are supplied, IBD sharing status at each marker is either in related-
ness (default) or lexicographical order of IBD state, where recoding can be done using recode.ibd.

Value

A numeric vector of IBD sharing status at the list of marker positions.

Examples

a simple pedigree with sibling marriage
pedigree = as.character(rep(1, 5))
member = as.character(c(11, 12, 21, 22, 31))
sex = as.numeric(c(1, 2, 1, 2, 1))
father = as.character(c(NA, NA, 11, 11, 21))
mother = as.character(c(NA, NA, 12, 12, 22))
pedinfo = data.frame(pedigree, member, sex, father, mother, stringsAsFactors = FALSE)
inheritance = sim.recomb(pedinfo, 100)
nsnp = 10
marker = sort(runif(nsnp, 0, 100))

IBD at markers between the two haplotypes of the inbred individual
ibd.marker(inheritance, marker, 5)

IBD at markers between the two full sibs, with different IBD coding

ibd.proportion 9

ibd.marker(inheritance, marker, 3, 4) # relatedness
ibd.marker(inheritance, marker, 3, 4, relatedness = FALSE) # lexicographical order of IBD state

ibd.proportion Score IBD proportion.

Description

ibd.proportion returns the proportion of IBD sharing between two haplotypes of the same indi-
vidual or two individuals.

Usage

ibd.proportion(inheritance, ind1index, ind2index = NULL, startpos = NULL,
endpos = NULL)

Arguments

inheritance list of matrices.
ind1index, ind2index

positive integer.
startpos, endpos

non-negative number.

Details

When only one individual index is supplied, ibd.proportion returns the realized inbreeding co-
efficient of the individual. When two individual indices are supplied, ibd.proportion returns the
realized relatedness of the two individuals.

Value

A value between 0 and 1 representing the proportion of IBD segment.

Examples

a simple pedigree with sibling marriage
pedigree = as.character(rep(1, 5))
member = as.character(c(11, 12, 21, 22, 31))
sex = as.numeric(c(1, 2, 1, 2, 1))
father = as.character(c(NA, NA, 11, 11, 21))
mother = as.character(c(NA, NA, 12, 12, 22))
pedinfo = data.frame(pedigree, member, sex, father, mother, stringsAsFactors = FALSE)
inheritance = sim.recomb(pedinfo, 100)

realized inbreeding of inbred child
get.pedindex(pedinfo, "31")
ibd.proportion(inheritance, 5)

10 ibd.segment

realized relatedness between individual 21 and 22 (parents of inbred child)
get.pedindex(pedinfo, c("21", "22"))
ibd.proportion(inheritance, 3, 4)

ibd.segment Score IBD sharing by segment.

Description

ibd.segment determines the starting and endping genetic positions of segments with different
amount of pairwise IBD sharing.

Usage

ibd.segment(inheritance, ind1index, ind2index = NULL, relatedness = TRUE)

Arguments

inheritance list of numeric matrices.
ind1index, ind2index

positive integer, represents index of individual in pedigree.

relatedness logical, determines coding of IBD information.

Details

When only index of one individual is supplied, IBD sharing status for each segment is coded as 0
(not IBD) or 1 (IBD) between the two haplotypes of the individual.

When indices of two individuals are supplied, IBD sharing status for each segment is either in
relatedness (default) or lexicographical order of IBD state, where recoding can be done using
recode.ibd.

Value

A dataframe of three variables. ibd represents IBD sharing status of a segment, and startpos/endpos
represents starting/ending genetic position of the segment.

Examples

a simple pedigree with sibling marriage
pedigree = as.character(rep(1, 5))
member = as.character(c(11, 12, 21, 22, 31))
sex = as.numeric(c(1, 2, 1, 2, 1))
father = as.character(c(NA, NA, 11, 11, 21))
mother = as.character(c(NA, NA, 12, 12, 22))
pedinfo = data.frame(pedigree, member, sex, father, mother, stringsAsFactors = FALSE)
inheritance = sim.recomb(pedinfo, 100)

IBD segments between the two haplotypes of the inbred individual

ld.weights 11

ibd.segment(inheritance, 5)

IBD segments between the two full sibs
ibd.segment(inheritance, 3, 4) # relatedness
ibd.segment(inheritance, 3, 4, relatedness = FALSE) # lexicographical order of IBD state

ld.weights LD weights

Description

ld.weights computes LD weights for all markers, which is subsequently used to compute LD
weighted GRM.

Usage

ld.weights(data, input.genotype = TRUE)

Arguments

data numeric matrix.

input.genotype logical.

Details

data can either be the subject by marker numeric genotype matrix (with 0, 1 or 2 coding), or the
matrix of marker genotypic correlations. The default option is to input genotype matrix.

Value

A numeric vector of weights. Note that the sum of weights is not constrained to be 1. They should
be scaled appropriately before computing the LD weighted GRM.

Examples

simulate genotypes of 500 individuals at 100 markers
nsnp = 100 # number of SNPs
freq = runif(nsnp, 0.05, 0.95)
nhaplo = 1000 # number of founder haplotypes
haplo.mat = sim.haplotype(freq, nhaplo)
geno.mat = t(sapply(c(1:500), function(x) 4 - haplo.mat[2*x-1,] - haplo.mat[2*x,]))

compute unconstrained LD weights
ld.weights(geno.mat)

12 populate.snp

populate.snp Populate SNPs.

Description

populate.snp assigns alleles to markers, given inheritance information and founder haplotypes.

Usage

populate.snp(inheritance, haplotype, marker, member.index = NULL,
output.allele = TRUE, output.haplotype = FALSE)

Arguments

inheritance list of numeric matrices.

haplotype numeric matrix.

marker numeric vector.

member.index integer vector.

output.allele logical.
output.haplotype

logical.

Details

inheritance is a list of matrices produced by, e.g., sim.recomb. Each matrix contains a column of
founder genome labels and a column of recombination breakpoints for the corresponding meiosis.

haplotype is a numeric matrix. The matrix is number of haplotypes by number of markers in
dimension. Standard coding in this package is 1 for reference allele and 2 for alternate allele. This
coding is required when output.allele = FALSE. Input data with different coding of alleles can
be recoded using recode.snpdata. Number of haplotypes cannot be fewer than the number of
founder genome labels in inheritance. The haplotypes will be assigned to each founder genome
label in given order.

marker is a vector of marker genetic positions in Haldane centiMorgan in ascending order. Range
of marker positions cannot exceed range covered by inheritance.

member.index contains indices of members in the pedigree that we wish to output data. Default
value is FALSE, in which case marker data on everyone will be produced. get.pedindex can help
find indices given member ID.

output.allele determines if one or two numbers will be used to represent data at each marker.
Default is TRUE, in which case marker data is represented by two ordered (paternal first) alleles.
Otherwise marker data is represented by a single number (0, 1 or 2) of reference alleles.

output.haplotype determines if haplotype data are separate in output. It is only used when
output.allele = TRUE. Default value is FALSE, in which case each row in the output matrix repre-
sents ordered genotypes from all markers of the same individual. Otherwise each row in the output
matrix represents a parental haplotype.

read.plink.binary 13

Value

A matrix of genotypic/haplotypic data. The matrix is in individual major, where marker data for
each individual/meiosis are found on the same row. Exact format of the matrix depends on various
input arguments.

Examples

a simple pedigree with sibling marriage
pedigree = as.character(rep(1, 5))
member = as.character(c(11, 12, 21, 22, 31))
sex = as.numeric(c(1, 2, 1, 2, 1))
father = as.character(c(NA, NA, 11, 11, 21))
mother = as.character(c(NA, NA, 12, 12, 22))
pedinfo = data.frame(pedigree, member, sex, father, mother, stringsAsFactors = FALSE)

L = 100.0 # segment length
nsnp = 10 # number of SNPs
nhaplo = 4 # number of founder haplotypes
inher = sim.recomb(pedinfo, L)
haplo = matrix(c(3,4,4,4), nhaplo, nsnp)
marker = sort(runif(nsnp, 0, L))

output genotype data for the 4th and 5th member
of pedigree, genotype data displayed as two alleles
populate.snp(inher, haplo, marker, c(4, 5))

output haplotype data for the 4th and 5th member of pedigree
populate.snp(inher, haplo, marker,c(4, 5), output.haplotype = TRUE)

output genotype data for all members, genotype data
displayed as counts of reference alleles
geno = recode.snpdata(haplo, input.haplotype = TRUE, output.haplotype = TRUE)[[1]]
populate.snp(inher, geno, marker, output.allele = FALSE)

read.plink.binary Read PLINK binary file.

Description

read.plink.binary reads PLINK binary .bed file and the corresponding .bim and .fam file.

Usage

read.plink.binary(bed, bim = NULL, fam = NULL, na.strings = c("0", "-9"))

Arguments

bed, bim, fam PLINK files with appropriate extensions.

na.strings string vector, text entries to be treated as NA’s.

14 read.plink.text

Details

When the three files have the same name, only the .bed file needs to be specified.

Value

A list of three elements: genotype, fam and map. To be consistent with PLINK .bed file, genotype
is a n_subject by n_marker matrix of counts of reference alleles. Missing values are -9. fam is a
dataframe that contains the first six columns of a PLINK .ped file. map is a dataframe that contains
the four columns of a PLINK .map file, with two additional columns: allele_1 for the reference
allele type, allele_2 for the alternate allele type.

read.plink.text Read PLINK text file.

Description

read.plink.text reads PLINK text files in either the original or transposed format.

Usage

read.plink.text(ped, map = NULL, output.allele = TRUE, na.strings = c("0",
"-9"))

Arguments

ped, map PLINK files with appropraite extensions.

output.allele logical, default is to output genotype as alleles.

na.strings Character vector, set of characters to be treated as missing values.

Details

The PLINK pedigree file should be supplied with the appropriate extension. The corresponding
map file can be omitted if it has the same file name as the pedigree file and has the appropriate
extension.

Value

A list of three elements: genotype, fam and map. To be consistent with PLINK .ped file, genotype
by default is a n_subject by (2 x n_marker) matrix of alleles, where 1 represents the reference
allele and 2 the alternate allele. Alternatively, genotype can be outputted as 0, 1 or 2 copies of
reference allele count by using output.allele = FALSE. Missing values are -9. fam is a dataframe
that contains the first six columns of a PLINK .ped file. map is a dataframe that contains the four
columns of a PLINK .map file, with two additional columns: allele_1 for the reference allele type,
allele_2 for the alternate allele type.

recode.ibd 15

recode.ibd Recode IBD sharing.

Description

recode.ibd recodes pairwise IBD sharing information.

Usage

recode.ibd(ibdvec, from, to)

Arguments

ibdvec numeric vector of input IBD sharing information.

from, to string, IBD sharing information options include "ibdstate", "lexi", "jac", "jac.red"
and "relatedness".

Details

At any marker, there are 15 possible IBD states between the four genes of two individuals. "ibd-
state" represents the standard coding of the 15 states from 1111 to 1234. "lexi" and "jac" represent
lexicographical and Jacquard ordering of "ibdstate" from 1 to 15 respectively. "jac.red" is a con-
densed Jacquard ordering from 1 to 9 for the genotypically distinct groups of IBD states when
phasing is unknown. "relatedness" refers to local relatedness coefficient taking values in (0, 0.5, 1,
2).

"ibdstate", "lexi" and "jac" are of the highest level (complete information), "jac.red" is of mid level,
whereas "relatedness" is of the lowest level. Conversion cannot go from lower level to higher level.

Value

A numeric vector of recoded IBD states.

Examples

test.state = c(1111, 1122, 1212, 1222, 1234)
recode.ibd(test.state, "ibdstate", "lexi")
recode.ibd(test.state, "ibdstate", "jac")
recode.ibd(test.state, "ibdstate", "jac.red")
recode.ibd(test.state, "ibdstate", "relatedness")

16 recode.snpdata

recode.snpdata Recode SNP marker data.

Description

recode.snpdata recodes SNP marker data for use with other functions in this package.

Usage

recode.snpdata(data, snp.major = FALSE, ma.ref = FALSE,
input.haplotype = FALSE, output.allele = TRUE, output.haplotype = FALSE,
na.string = NULL)

Arguments

data numeric matrix or dataframe.

snp.major logical.

ma.ref logical.
input.haplotype

logical.

output.allele logical.
output.haplotype

logical.

na.string numeric or character vector.

Details

The standard marker data used by other functions of this package takes one of three forms: (a)
subjects by row, counts of reference alleles by column; (b) subjects by row, allelic types (2 per
marker) by column; (c) haplotypes (2 per subject) by row, allelic types by column. Reference
alleles are coded 1, alternate alleles are coded 2.

By default, snp.major = FALSE, set it to TRUE if input matrix has SNPs by row and allelic types
(2 per subject) by column. ma.ref = FALSE, set it to TRUE if the minor allele is to be the reference
allele. input.haplotype = FALSE, set it to TRUE if input matrix has haplotypes (2 per subject) by
row and allelic types by column. output.allele = TRUE, set it to FALSE if counts of reference
alleles is the desired output format. output.haplotype = FALSE, set it to TRUE if recoded marker
data by haplotype is the desired output format. input.haplotype is only invoked when snp.major
= FALSE. output.haplotype is only invoked when output.allele = TRUE.

Value

A list of two elements. First element named data is a matrix of recoded marker data in specified
format. Second element is a dataframe named alleles that specifies reference/alternate alleles at
all markers.

sim.haplotype 17

Examples

test.dat = matrix(c(3,4,4,3), 4, 10)

treat test.dat as 4 input haplotypes of two subjects at 10 SNP markers,
output recoded data as haplotypes
recode.snpdata(test.dat, input.haplotype = TRUE, output.haplotype = TRUE)

treat test.dat as 4 input haplotypes of two subjects at 10 SNP markers,
output recoded data as counts of reference alleles
recode.snpdata(test.dat, input.haplotype = TRUE, output.allele = FALSE)
#'
treat test.dat as allelic types at 5 SNPs of 4 subjects,
output recoded data as haplotypes
recode.snpdata(test.dat, output.haplotype = TRUE)

sim.haplotype Simulate artificial haplotypes.

Description

sim.haplotype returns haplotypes of the specified number of SNPs simulated under linkage equi-
librium.

Usage

sim.haplotype(freq, nhaplo)

Arguments

freq vector of values between 0 and 1.

nhaplo positive integer.

Details

freq are reference allele frequencies. nhaplo haplotypes are simulated independently.

Value

A matrix of nhaplo rows and length(freq) columns. Reference alleles are coded 1, alternate
alleles are coded 2.

Examples

nsnp = 7 # number of SNPs
freq = runif(nsnp, 0.05, 0.95)
nhaplo = 4 # number of founder haplotypes
sim.haplotype(freq, nhaplo)

18 sim.recomb

sim.recomb Simulate inheritance on a given pedigree.

Description

sim.recomb returns inheritance information simulated on a given pedigree over the specified seg-
ment length.

Usage

sim.recomb(pedinfo, seglength)

Arguments

pedinfo dataframe.

seglength positive real number.

Details

pedinfo must contain at least the following components: unique individual ID named member,
father and mother ID named father and mother, and sex (1 for male, 2 for female) named sex.
Parents must precede offsprings. Pedigree founders are treated as unrelated.

seglength represents length of genomic segment in Haldane centiMorgan. Recombination break-
points are simulated under a homogeneous Poisson process with rate seglength/100.

Value

A list of matrices for each meiosis. Each matrix has two columns: founder genome labels (fgl) and
recombination breakpoints (recomb). Paternal meiosis precedes maternal meiosis.

Examples

a simple pedigree with sibling marriage
pedigree = as.character(rep(1, 5))
member = as.character(c(11, 12, 21, 22, 31))
sex = as.numeric(c(1, 2, 1, 2, 1))
father = as.character(c(NA, NA, 11, 11, 21))
mother = as.character(c(NA, NA, 12, 12, 22))
pedinfo = data.frame(pedigree, member, sex, father, mother, stringsAsFactors = FALSE)

simulate inheritance over a segment of 100 centiMorgan
sim.recomb(pedinfo, 100)

write.ibdhaplo 19

write.ibdhaplo Write IBDHAPLO

Description

write.ibdhaplo prepares the marker data file for running IBDHAPLO.

Usage

write.ibdhaplo(marker, freq, data, member, input.allele = TRUE,
input.haplotype = FALSE, outfile = tempfile("ibdhaplo", fileext = ".txt"))

Arguments

marker numeric vector, marker genetic positions in cM.
freq numeric vector, marker reference allele frequencies.
data numeric matrix, genetic marker data.
member string vector, member ID.
input.allele logical, default TRUE.
input.haplotype

logical, default FALSE.
outfile string, output file name.

Details

The input marker data needs to be subject/haplotype by marker/allele. For example, suppose data
is a 4x10 matrix, use input.allele = FALSE if data contains counts of reference alleles of 4 indi-
viduals at 10 markers; use input.haplotype = TRUE if data contains allelic types of 4 haplotypes
at 10 markers; use default options if data contains allelic types of 4 individuals at 5 markers.

References

MORGAN Tutorial, https://www.stat.washington.edu/thompson/Genepi/MORGAN/Morgan.
shtml.

Brown et al. (2012) Genetics 190:1447-1460, https://www.ncbi.nlm.nih.gov/pubmed/22298700.

Examples

Not run:
nsnp = 7 # number of SNPs
freq = runif(nsnp, 0.05, 0.95)
nhaplo = 4 # number of founder haplotypes
haplotype = sim.haplotype(freq, nhaplo)
marker = sort(runif(7,0,100))
write.ibdhaplo(marker, freq, haplotype, member = c("ind1", "ind2"),
input.haplotype = TRUE)

End(Not run)

https://www.stat.washington.edu/thompson/Genepi/MORGAN/Morgan.shtml
https://www.stat.washington.edu/thompson/Genepi/MORGAN/Morgan.shtml
https://www.ncbi.nlm.nih.gov/pubmed/22298700

Index

check.pedinfo, 2

fgl2ibd, 2
fgl2relatedness, 3

get.pedindex, 4, 12
grm.matrix, 4, 6
grm.pair, 5, 5

ibd.length, 7
ibd.marker, 8
ibd.proportion, 9
ibd.segment, 10

ld.weights, 11

populate.snp, 12

read.plink.binary, 13
read.plink.text, 14
recode.ibd, 3, 8, 10, 15
recode.snpdata, 12, 16

sim.haplotype, 17
sim.recomb, 7, 12, 18

write.ibdhaplo, 19

20

	check.pedinfo
	fgl2ibd
	fgl2relatedness
	get.pedindex
	grm.matrix
	grm.pair
	ibd.length
	ibd.marker
	ibd.proportion
	ibd.segment
	ld.weights
	populate.snp
	read.plink.binary
	read.plink.text
	recode.ibd
	recode.snpdata
	sim.haplotype
	sim.recomb
	write.ibdhaplo
	Index

