
Binomial Mixtures
Section 6.1 of Drton and Plummer (2017) considers singular BIC calculations for binomial mixture models.
This section uses simulated data. We therefore introduce a convenience function for simulating from a
binomial mixture model.

rBinomMix = function(n, alpha, theta, size) {
nindex = rmultinom(1, size=n, prob=alpha)
rbinom(n, size, rep(theta, nindex))

}

The rBinomMix() function generates n samples from a mixture model in which component i has a binomial
distribution with probability parameter theta[i] and size parameter size (assumed to be common to all
mixture components). The prior probability of component i is proportional to alpha[i]. Model singularities
arise when two mixture components h and l have the same probability parameters θh = θl or a mixture
weight is zero.

We now set the parameters for the true, data-generating distribution. We choose a 4-component model in
which each component has equal prior weight and the probability parameters range between 0.2 and 0.8. The
number of trials is 30 for all mixture components.

numTrials = 30
trueNumComponents = 4
alpha = rep(1 / trueNumComponents, trueNumComponents)
theta = seq(0.2, 0.8, length = trueNumComponents)

Figure 1 shows a histogram of 10000 random samples from this mixture model.
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Figure 1: 10000 random samples from a binomial mixture model with 4 components

The variable maxNumComponents sets the maximum number of components considered in the calculation of
BIC and sBIC.
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maxNumComponents = 7

To illustrate the singular BIC for binomial mixture models we step through the calculations for a single
simulated data set of 100 observations.

set.seed(11)
Y = rBinomMix(100, alpha, theta, numTrials)
library(sBIC)
binomMix = BinomialMixtures(maxNumComponents, phi = 1)

This creates an object binomMix of class “BinomialMixtures” containing the approximate learning coefficients
for mixture models with up to 7 components. Learning coefficients for binomial mixtures are not fully charac-
terized, but an upper bound is given by Drton and Plummer (2017, equation 6.7). The “BinomialMixtures”
class uses these bounds as proxies for the learning coefficients if the penalty parameter phi is set to phi=1.
The extension to general Dirichlet hyperparameter phi is given in Drton and Plummer (2017, equation 6.15).

For binomial mixtures the sBIC function takes as its first argument a 2-column integer matrix where the first
column gives the number of success and the second gives the number of failures.

a = sBIC(cbind(Y, numTrials-Y), binomMix)

The models represented by binomMix are fitted by functions in the flexmix package (Gruen and Leisch
2008).

Note that the object binomMix is modified by this call to sBIC. The “BinomialMixtures” class inherits from
the “Object” class in the “R.methodsS3” package which uses call-by-reference semantics. On exit from the
sBIC() function, binomMix contains a copy of the supplied data as well as maximum likelihood values for all
fitted models.

The BIC and sBIC values for these data are most easily compared by standardizing them so that the maximum
value is zero.

a$BIC - max(a$BIC)

## [1] -263.591396 -10.480096 0.000000 -2.339031 -6.944908 -11.549635
## [7] -16.155156

a$sBIC - max(a$sBIC)

## [1] -263.5916492 -10.4803489 0.0000000 -0.4634676 -2.8027388
## [6] -5.1084456 -7.4117377

When the prior on the mixture weights is a uniform distribution, alternative, tighter bounds on the learning
coefficients can be derived from Rousseau and Mengersen (2011). These bounds are implemented by the
“BinomialMixtures” class with penalty phi=0.5. The penalty parameter can be reset by using the setPhi
member function.

binomMix$setPhi(0.5)

The singular BIC can then be recalculated. It is not necessary to resupply the data to the sBIC function
since, as noted above, it already contains the data and maximum likelihood estimates. Supplying NULL to the
sBIC() function will recalculate the singular BIC without refitting the models
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a = sBIC(NULL, binomMix)
a$sBIC - max(a$sBIC)

## [1] -263.8937369 -10.7824367 -0.3014814 0.0000000 -1.2975122
## [6] -2.4887688 -3.6527034

To empirically investigate the asymptotic properties of sBIC for binomial models, we consider increasing
sample sizes of 50, 200, and 500 (represented by the variable sampleSizes) with 200 simulations for each
sample size (represented by nSim)

nSim = 200
sampleSizes = c(50, 200, 500)
set.seed(11)

The code below reproduces Figure 6 of Drton and Plummer (2017), which shows frequencies of the estimated
number of mixture components (i.e. the model with the highest BIC or sBIC) for increasing sample sizes.
The simulations are too slow to be automatically run when this vignette is built, but the interested reader
run them manually.

bictable <- vector("list", length(sampleSizes))
for (i in seq_along(sampleSizes)) {

results <- matrix(0, nrow=nSim, ncol=3, dimnames=list(NULL, c("BIC","sBIC1","sBIC05")))
for (j in 1:nSim) {

Y = rBinomMix(sampleSizes[i], alpha, theta, numTrials)
X = cbind(Y, numTrials - Y)

binomMix = BinomialMixtures(maxNumComponents, phi = 1)
out = sBIC(X, binomMix)
nc.BIC = which.max(out$BIC)
nc.sBIC1 = which.max(out$sBIC)

binomMix$setPhi(0.5)
out = sBIC(NULL, binomMix)
nc.sBIC05 = which.max(out$sBIC)
results[j, ] <- c(nc.BIC, nc.sBIC1, nc.sBIC05)

}
bictable[[i]] <- apply(results, 2, tabulate, nbins=maxNumComponents)

}

The code below plots the frequency tables produced by the simulations.

par(mfrow=c(1, length(bictable)))
for (i in 1:length(bictable)) {

tab <- t(bictable[[i]])
barplot(t(bictable[[i]]), beside=TRUE, ylim=c(0, nSim), names.arg=1:maxNumComponents,

col=c("white","grey","black"),
legend = c(expression(BIC), expression(bar(sBIC)[1]), expression(bar(sBIC)[0.5])),
sub=paste("n =", sampleSizes[i])

}
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